Skip to main content

A Full-Band Mobile-TV LNA with Mixed-Voltage ESD Protection in 90-nm CMOS

  • Chapter
  • First Online:
  • 1417 Accesses

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

Abstract

This chapter presents a number of circuit techniques enforced in the design of an electrostatic discharge (ESD)-protected ultra-wideband (UWB) low-noise amplifier (LNA) for mobile-TV applications. Unlike the design of narrowband LNAs, concurrent reception over a wide range of spectrum necessitates the LNA to feature high linearity, preventing desensitization by the high-power blockers. This requirement, in conjunction with the obvious design goals of ESD protected input, low noise figure (NF), low power, impedance match and high gain, constitute hard tradeoffs to obtain a sensible balance and good compromise among all. The proposed LNA is to cover the full band of mobile-TV services from 170 to 1,700 MHz such that only one LNA is necessary to support multiple standards. It features a PMOS-based open-source input structure to optimize the I/O swings under a mixed-voltage ESD protection while offering an inductorless broadband input impedance match. The amplification core exploiting double current reuse and single-stage thermal-noise cancellation enhances the gain and noise performances with high power efficiency. Optimized in a 90-nm 1.2/2.5-V CMOS process with practical issues taken into account, the LNA using a constant-g m bias circuit achieves competitive and robust performances over process, voltage and temperature (PVT) variation. The simulated voltage gain is 20.6 dB, noise figure is 2.4–2.7 dB and IIP3 is +10.8 dBm. The power consumption is 9.6 mW at 1.2 V. |S11| < –10 dB is achieved up to 1.9 GHz without needing any external resonant network. Human Body Model ESD zapping tests of ±4 kV at the input pins cause no failure of any device.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. P.-I. Mak, S.-P. U and R. P. Martins, “Transceiver Architecture Selection – Review, State-of-the-Art Survey and Case Study,” IEEE Circuits and Systems Magazine, Vol. 7, Issue 2, pp. 6–25, June 2007.

    Article  Google Scholar 

  2. Vassiliou et al., “A 65 nm CMOS Multistandard, Multiband TV Tuner for Mobile and Multimedia Applications,” IEEE J. of Solid- State Circuits, vol. 43, no. 7, pp. 1522–1533, Jul. 2008.

    Article  Google Scholar 

  3. P. Antoine, et al., “A Direct-Conversion Receiver for DVB-H,” in IEEE ISSCC, Digest of Technical Papers, pp. 426–427, Feb. 2005.

    Google Scholar 

  4. D. Saias, et al., “A 0.12μm CMOS DVB-T Tuner,” in IEEE ISSCC, Digest of Technical Papers, pp. 430–431, Feb. 2005.

    Google Scholar 

  5. I. Vassiliou et al., “A 0.18μm CMOS, Dual-Band, Direct-Conversion DVB-H Receiver,” in IEEE ISSCC, Digest of Technical Papers, pp. 606–607, Feb. 2006.

    Google Scholar 

  6. Falco Electronics SMD RF Balun, Available [online]: http://www.falcomex.com/products/3/04-00.asp

  7. I. V R. Bagheri, A. Mirzaei, S. Chehrazi, M. Heidari, M. Lee, M. Mikhemar, W. Tang and A. Abidi, “An 800MHz to 5GHz Software-Defined Radio Receiver in 90nm CMOS,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 480–481, Feb. 2006.

    Google Scholar 

  8. W. Zhuo, S. Shekhar, S. Embabi, J. Gyvez, D. Allstot and E. Sanchez-Sinencio, “A Capacitor Cross-Coupled Common-Gate Low-Noise Amplifier,” in IEEE Trans. On CAS-II: Express Briefs, vol. 52, no. 12, pp. 875–879, Dec. 2005.

    Google Scholar 

  9. C.-F. Liao and S.-I Liu, “A Broadband Noise-Canceling CMOS LNA for 3.1–10.6-GHz UWB Receivers,” IEEE J. of Solid-State Circuits, vol. 42, no. 2, pp. 329–339, Feb. 2007.

    Article  Google Scholar 

  10. E. A. Klumperink, F. Bruccoleri, P. Stroet and B. Nauta, “Amplifiers Exploiting Thermal Noise Canceling: A Review” in Proc. of Gallium Arsenide and other compound semiconductor Application Symp. (GAAS), pp. 371–374, Oct. 2004.

    Google Scholar 

  11. K. Bhatia, S. Hyvonen and E. Rosenbaum, “A Compact, ESD- Protected, SiGe BiCMOS LNA for Ultra-Wideband Applications,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1121–1130, May 2007.

    Article  Google Scholar 

  12. G. Banerjee, K. Soumyanath and D. J. Allstot, “Desensitized CMOS Low-Noise Amplifiers,” IEEE Trans. On CAS-I: Regular Papers, vol. 55, no. 3, pp. 752–765, Apr. 2008.

    Article  MathSciNet  Google Scholar 

  13. R. Zele and D. Allstot, “Low Power CMOS Continuous-Time Filters,” IEEE J. of Solid-State Circuits, vol. 31, no. 2, pp. 157–168, Feb. 1996.

    Article  Google Scholar 

  14. ESD Sensitivity Testing: Human Body Model (HBM) – Component Level, ESD Association Standards, 1993.

    Google Scholar 

  15. P.-I. Mak and R. P. Martins, “Design of an ESD-Protected Ultra-Wideband LNA in Nanoscale CMOS for Full-Band Mobile TV Tuners,” IEEE Transactions on Circuits and Systems – I: Regular Papers, vol. 56, no. 5, pp. 933–942, May 2009.

    Google Scholar 

  16. S. Blaakmeer, E. Klumperink, D. Leenaerts and B. Nauta, “Wideband Balun-LNA With Simultaneous Output Balancing, Noise-Canceling and Distortion-Canceling,” IEEE J. of Solid-State Circuits, vol. 43, no. 6, pp. 1341–1350, Jun. 2008.

    Article  Google Scholar 

  17. W.-H. Chen, G. Liu, B. Zdravko and A. M. Niknejad, “A Highly Linear Broadband CMOS LNA Employing Noise and Distortion Cancellation,” IEEE J. of Solid-State Circuits, vol. 43, no. 5, pp. 1164–1176, May 2008.

    Article  Google Scholar 

  18. Y. Liao, Z. Tang and H. Min, “A CMOS Wide-Band Low-Noise Amplifier with Balun-Based Noise-Canceling Technique,” in Proc. IEEE A-SSCC, pp. 91–94, Nov. 2007.

    Google Scholar 

  19. M. Vidojkovic, M. Sanduleanu, J. Tang, P.Baltus and A. Roermund, “A 1.2 V, Inductorless, Broad-band LNA in 90 nm CMOS LP,” in Proc. IEEE RFIC symp., pp. 53–56, Jun. 2007.

    Google Scholar 

  20. A. Amer, E. Hegazi and H. Ragai, “A Low-Power Wideband CMOS LNA for WiMax,” IEEE Trans. On CAS-II: Express Briefs, vol. 54, no. 1, pp. 4–8, Jan. 2007.

    Google Scholar 

  21. Y.-J. Emery Chen and Y.-I. Huang, “Development of Integrated Broad-Band CMOS Low-Noise Amplifiers,” IEEE Trans. On CAS-I: Regular Papers, vol. 54, no. 10, pp. 2120–2127, Oct. 2007.

    Article  Google Scholar 

  22. B. Martineau, et al., “A Wideband LNA for Wireless Multi-standard Receiver in 130 nm SOI Process”, in Proc. IEEE PRIME, pp. 449–452, Jun. 2006.

    Google Scholar 

  23. S. Wang, A. Niknejad and R. Brodersen, “A Sub-mW 960-MHz Ultra-Wideband CMOS LNA,” in Proc. IEEE RFIC symp., pp. 35–38, Jun. 2005.

    Google Scholar 

  24. S. Chehrazi, A. Mirzaei, R. Bagheri, and A. Abidi, “A 6.5 GHz Wideband CMOS Low Noise Amplifier for Multi-Band Use,” in Proc. IEEE CICC, pp. 801–804, Sept. 2005.

    Google Scholar 

  25. R. Salerno, M. Tiebout, H. Paule, M. Streibl, C. Sandner and K. Kropf, “ESD-Protected CMOS 3–5GHz Wideband LNA+PGA Design for UWB,” in Proc. ESSCIRC, pp.219–222, Sept. 2005.

    Google Scholar 

  26. R. Molavi, S. Mirabbasi, and M. Hashemi, “A Wideband CMOS LNA Design Approach,” in Proc. IEEE ISCAS, pp. 5107–5110, May 2005.

    Google Scholar 

  27. D. R. Huang, et al., “A 40–900 MHz Broadband CMOS Differential LNA with Gain-Control for DTV RF Tuner”, in Proc. IEEE A-SSCC, pp. 465–468, Nov. 2005.

    Google Scholar 

  28. Y. Wang, J. S. Duster, and K. T. Kornegay, “Design of an Ultra- Wideband Low Noise Amplifier in 0.13μm CMOS,” in Proc. IEEE ISCAS, pp. 5067–5070, May 2005.

    Google Scholar 

  29. C.-W. Kim, M. S. Kang, P. T. Anh, H. T. Kim, and S. G. Lee, “An Ultra-Wideband CMOS Low Noise Amplifier for 3–5-GHz UWB System,” IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 544–547, Feb. 2005.

    Article  Google Scholar 

  30. J. Lerdworatawee and W. Namgoong, “Wide-Band CMOS Cascode Low-Noise Amplifier Design Based on Source Degeneration Topology,” IEEE Trans. On CAS-I: Regular Papers, vol. 52, no. 11, pp. 2327–2334, Nov. 2005.

    Article  Google Scholar 

  31. A. Bevilacqua and A. Niknejad, “An Ultra-Wideband CMOS LNA for 3.1 to 10.6 GHz Wireless Receivers,” in IEEE ISSCC Digest of Technical Papers, pp. 382–383, Feb. 2004.

    Google Scholar 

  32. H. Doh, Y. Jeong, S. Jung, and Y. Joo, “Design of CMOS UWB Low Noise Amplifier with Cascade Feedback,” in Proc. IEEE MWSCAS, pp. II-641–II-644, Jul. 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mak, PI., Martins, R.P. (2012). A Full-Band Mobile-TV LNA with Mixed-Voltage ESD Protection in 90-nm CMOS. In: High-/Mixed-Voltage Analog and RF Circuit Techniques for Nanoscale CMOS. Analog Circuits and Signal Processing. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9539-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9539-1_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9538-4

  • Online ISBN: 978-1-4419-9539-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics