A Full-Band Mobile-TV LNA with Mixed-Voltage ESD Protection in 90-nm CMOS

  • Pui-In Mak
  • Rui Paulo Martins
Part of the Analog Circuits and Signal Processing book series (ACSP)


This chapter presents a number of circuit techniques enforced in the design of an electrostatic discharge (ESD)-protected ultra-wideband (UWB) low-noise amplifier (LNA) for mobile-TV applications. Unlike the design of narrowband LNAs, concurrent reception over a wide range of spectrum necessitates the LNA to feature high linearity, preventing desensitization by the high-power blockers. This requirement, in conjunction with the obvious design goals of ESD protected input, low noise figure (NF), low power, impedance match and high gain, constitute hard tradeoffs to obtain a sensible balance and good compromise among all. The proposed LNA is to cover the full band of mobile-TV services from 170 to 1,700 MHz such that only one LNA is necessary to support multiple standards. It features a PMOS-based open-source input structure to optimize the I/O swings under a mixed-voltage ESD protection while offering an inductorless broadband input impedance match. The amplification core exploiting double current reuse and single-stage thermal-noise cancellation enhances the gain and noise performances with high power efficiency. Optimized in a 90-nm 1.2/2.5-V CMOS process with practical issues taken into account, the LNA using a constant-g m bias circuit achieves competitive and robust performances over process, voltage and temperature (PVT) variation. The simulated voltage gain is 20.6 dB, noise figure is 2.4–2.7 dB and IIP3 is +10.8 dBm. The power consumption is 9.6 mW at 1.2 V. |S11| < –10 dB is achieved up to 1.9 GHz without needing any external resonant network. Human Body Model ESD zapping tests of ±4 kV at the input pins cause no failure of any device.


Noise Figure Parasitic Capacitance Voltage Gain Negative Bias Temperature Instability Bias Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    P.-I. Mak, S.-P. U and R. P. Martins, “Transceiver Architecture Selection – Review, State-of-the-Art Survey and Case Study,” IEEE Circuits and Systems Magazine, Vol. 7, Issue 2, pp. 6–25, June 2007.CrossRefGoogle Scholar
  2. 2.
    Vassiliou et al., “A 65 nm CMOS Multistandard, Multiband TV Tuner for Mobile and Multimedia Applications,” IEEE J. of Solid- State Circuits, vol. 43, no. 7, pp. 1522–1533, Jul. 2008.CrossRefGoogle Scholar
  3. 3.
    P. Antoine, et al., “A Direct-Conversion Receiver for DVB-H,” in IEEE ISSCC, Digest of Technical Papers, pp. 426–427, Feb. 2005.Google Scholar
  4. 4.
    D. Saias, et al., “A 0.12μm CMOS DVB-T Tuner,” in IEEE ISSCC, Digest of Technical Papers, pp. 430–431, Feb. 2005.Google Scholar
  5. 5.
    I. Vassiliou et al., “A 0.18μm CMOS, Dual-Band, Direct-Conversion DVB-H Receiver,” in IEEE ISSCC, Digest of Technical Papers, pp. 606–607, Feb. 2006.Google Scholar
  6. 6.
    Falco Electronics SMD RF Balun, Available [online]:
  7. 7.
    I. V R. Bagheri, A. Mirzaei, S. Chehrazi, M. Heidari, M. Lee, M. Mikhemar, W. Tang and A. Abidi, “An 800MHz to 5GHz Software-Defined Radio Receiver in 90nm CMOS,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 480–481, Feb. 2006.Google Scholar
  8. 8.
    W. Zhuo, S. Shekhar, S. Embabi, J. Gyvez, D. Allstot and E. Sanchez-Sinencio, “A Capacitor Cross-Coupled Common-Gate Low-Noise Amplifier,” in IEEE Trans. On CAS-II: Express Briefs, vol. 52, no. 12, pp. 875–879, Dec. 2005.Google Scholar
  9. 9.
    C.-F. Liao and S.-I Liu, “A Broadband Noise-Canceling CMOS LNA for 3.1–10.6-GHz UWB Receivers,” IEEE J. of Solid-State Circuits, vol. 42, no. 2, pp. 329–339, Feb. 2007.CrossRefGoogle Scholar
  10. 10.
    E. A. Klumperink, F. Bruccoleri, P. Stroet and B. Nauta, “Amplifiers Exploiting Thermal Noise Canceling: A Review” in Proc. of Gallium Arsenide and other compound semiconductor Application Symp. (GAAS), pp. 371–374, Oct. 2004.Google Scholar
  11. 11.
    K. Bhatia, S. Hyvonen and E. Rosenbaum, “A Compact, ESD- Protected, SiGe BiCMOS LNA for Ultra-Wideband Applications,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1121–1130, May 2007.CrossRefGoogle Scholar
  12. 12.
    G. Banerjee, K. Soumyanath and D. J. Allstot, “Desensitized CMOS Low-Noise Amplifiers,” IEEE Trans. On CAS-I: Regular Papers, vol. 55, no. 3, pp. 752–765, Apr. 2008.MathSciNetCrossRefGoogle Scholar
  13. 13.
    R. Zele and D. Allstot, “Low Power CMOS Continuous-Time Filters,” IEEE J. of Solid-State Circuits, vol. 31, no. 2, pp. 157–168, Feb. 1996.CrossRefGoogle Scholar
  14. 14.
    ESD Sensitivity Testing: Human Body Model (HBM) – Component Level, ESD Association Standards, 1993.Google Scholar
  15. 15.
    P.-I. Mak and R. P. Martins, “Design of an ESD-Protected Ultra-Wideband LNA in Nanoscale CMOS for Full-Band Mobile TV Tuners,” IEEE Transactions on Circuits and Systems – I: Regular Papers, vol. 56, no. 5, pp. 933–942, May 2009.Google Scholar
  16. 16.
    S. Blaakmeer, E. Klumperink, D. Leenaerts and B. Nauta, “Wideband Balun-LNA With Simultaneous Output Balancing, Noise-Canceling and Distortion-Canceling,” IEEE J. of Solid-State Circuits, vol. 43, no. 6, pp. 1341–1350, Jun. 2008.CrossRefGoogle Scholar
  17. 17.
    W.-H. Chen, G. Liu, B. Zdravko and A. M. Niknejad, “A Highly Linear Broadband CMOS LNA Employing Noise and Distortion Cancellation,” IEEE J. of Solid-State Circuits, vol. 43, no. 5, pp. 1164–1176, May 2008.CrossRefGoogle Scholar
  18. 18.
    Y. Liao, Z. Tang and H. Min, “A CMOS Wide-Band Low-Noise Amplifier with Balun-Based Noise-Canceling Technique,” in Proc. IEEE A-SSCC, pp. 91–94, Nov. 2007.Google Scholar
  19. 19.
    M. Vidojkovic, M. Sanduleanu, J. Tang, P.Baltus and A. Roermund, “A 1.2 V, Inductorless, Broad-band LNA in 90 nm CMOS LP,” in Proc. IEEE RFIC symp., pp. 53–56, Jun. 2007.Google Scholar
  20. 20.
    A. Amer, E. Hegazi and H. Ragai, “A Low-Power Wideband CMOS LNA for WiMax,” IEEE Trans. On CAS-II: Express Briefs, vol. 54, no. 1, pp. 4–8, Jan. 2007.Google Scholar
  21. 21.
    Y.-J. Emery Chen and Y.-I. Huang, “Development of Integrated Broad-Band CMOS Low-Noise Amplifiers,” IEEE Trans. On CAS-I: Regular Papers, vol. 54, no. 10, pp. 2120–2127, Oct. 2007.CrossRefGoogle Scholar
  22. 22.
    B. Martineau, et al., “A Wideband LNA for Wireless Multi-standard Receiver in 130 nm SOI Process”, in Proc. IEEE PRIME, pp. 449–452, Jun. 2006.Google Scholar
  23. 23.
    S. Wang, A. Niknejad and R. Brodersen, “A Sub-mW 960-MHz Ultra-Wideband CMOS LNA,” in Proc. IEEE RFIC symp., pp. 35–38, Jun. 2005.Google Scholar
  24. 24.
    S. Chehrazi, A. Mirzaei, R. Bagheri, and A. Abidi, “A 6.5 GHz Wideband CMOS Low Noise Amplifier for Multi-Band Use,” in Proc. IEEE CICC, pp. 801–804, Sept. 2005.Google Scholar
  25. 25.
    R. Salerno, M. Tiebout, H. Paule, M. Streibl, C. Sandner and K. Kropf, “ESD-Protected CMOS 3–5GHz Wideband LNA+PGA Design for UWB,” in Proc. ESSCIRC, pp.219–222, Sept. 2005.Google Scholar
  26. 26.
    R. Molavi, S. Mirabbasi, and M. Hashemi, “A Wideband CMOS LNA Design Approach,” in Proc. IEEE ISCAS, pp. 5107–5110, May 2005.Google Scholar
  27. 27.
    D. R. Huang, et al., “A 40–900 MHz Broadband CMOS Differential LNA with Gain-Control for DTV RF Tuner”, in Proc. IEEE A-SSCC, pp. 465–468, Nov. 2005.Google Scholar
  28. 28.
    Y. Wang, J. S. Duster, and K. T. Kornegay, “Design of an Ultra- Wideband Low Noise Amplifier in 0.13μm CMOS,” in Proc. IEEE ISCAS, pp. 5067–5070, May 2005.Google Scholar
  29. 29.
    C.-W. Kim, M. S. Kang, P. T. Anh, H. T. Kim, and S. G. Lee, “An Ultra-Wideband CMOS Low Noise Amplifier for 3–5-GHz UWB System,” IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 544–547, Feb. 2005.CrossRefGoogle Scholar
  30. 30.
    J. Lerdworatawee and W. Namgoong, “Wide-Band CMOS Cascode Low-Noise Amplifier Design Based on Source Degeneration Topology,” IEEE Trans. On CAS-I: Regular Papers, vol. 52, no. 11, pp. 2327–2334, Nov. 2005.CrossRefGoogle Scholar
  31. 31.
    A. Bevilacqua and A. Niknejad, “An Ultra-Wideband CMOS LNA for 3.1 to 10.6 GHz Wireless Receivers,” in IEEE ISSCC Digest of Technical Papers, pp. 382–383, Feb. 2004.Google Scholar
  32. 32.
    H. Doh, Y. Jeong, S. Jung, and Y. Joo, “Design of CMOS UWB Low Noise Amplifier with Cascade Feedback,” in Proc. IEEE MWSCAS, pp. II-641–II-644, Jul. 2004.Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Pui-In Mak
    • 1
  • Rui Paulo Martins
    • 1
  1. 1.University of MacauMacaoChina

Personalised recommendations