Mast Cells, Angiogenesis and Cancer

  • Domenico Ribatti
  • Enrico Crivellato
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 716)

Abstract

Mast cells (MCs) were first described by Paul Ehrlich 1 in his doctoral thesis. MCs have long been implicated in the pathogenesis of allergic reactions and certain protective responses to parasites. As most tumors contain inflammatory cell infiltrates, which often include plentiful MCs, the question as to the possible contribution of MCs to tumor development has progressively been emerging. In this chapter, the specific involvement of MCs in tumor biology and tumor fate will be considered, with particular emphasis on the capacity of these cells to stimulate tumor growth by promoting angiogenesis and lymphangiogenesis. Data from experimental carcinogenesis and from different tumor settings in human pathology will be summarized. Information to be presented will suggest that MCs may serve as a novel therapeutic target for cancer treatment.

Keywords

Myeloma Mast Dermatol Poss Protamine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ehrlich P. Beiträge zur Theorie und Praxis der histologischen Färbung. 1878, Thesis, Leipzig University.Google Scholar
  2. 2.
    Crivellato E, Beltrami C, Mallardi F et al. Paul Ehrlich’s doctoral thesis: a milestone in the study of mast cells. Br J Haematol 2003a; 123:19–21.PubMedCrossRefGoogle Scholar
  3. 3.
    Galli SJ, Kalesnikoff J, Grimbaldeston MA et al. Mast cells as “tunable” effector and immunoregulatory cells: recent advances. Annu Rev Immunol 2005a; 23:749–786.PubMedCrossRefGoogle Scholar
  4. 4.
    Galli SJ, Nakae S, Tsai M. Mast cells in the development of adaptive immune responses. Nat Immunol 2005b; 6:135–142.PubMedCrossRefGoogle Scholar
  5. 5.
    Coussens LM, Raymond WW, Bergers G et al. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev 1999; 13:1382–1397.PubMedCrossRefGoogle Scholar
  6. 6.
    Gounaris E, Erdman SE, Restaino C et al. Mast cells are an essential hematopoietic component for polyp development. Proc Natl Acad Sci USA 2007; 104:19977–19982.PubMedCrossRefGoogle Scholar
  7. 7.
    Soucek L, Lawlor ER, Soto D et al. Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Nat Med 2007; 13:1211–1218.PubMedCrossRefGoogle Scholar
  8. 8.
    Nakayama T, Yao L, Tosato G. Mast cell-derived angiopoietin-1 plays a role in the growth of plasma cell tumors. J Clin Invest 2004; 114:1317–1325.PubMedGoogle Scholar
  9. 9.
    Hart P, Townley S, Grimbaldeston M et al. Mast cells, neuropeptides, histamine and prostaglandins in UV-induced systemic immunosuppression. Methods 2002; 28:79–89.PubMedCrossRefGoogle Scholar
  10. 10.
    Church M, Levi-Schaffer F. The human mast cell. J Allergy Clin Immunol 1997; 99:155–160.PubMedCrossRefGoogle Scholar
  11. 11.
    Hart P, Grimbaldeston M, Finlay-Jones J. Immunosuppression and skin cancer: role of histamine and mast cells. Clin Exp Pharmacol Physiol 2001; 28:1–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Okayama Y, Kawakami T. Development, migration and survival of mast cells. Immunol Res 2006; 34:97–115.PubMedCrossRefGoogle Scholar
  13. 13.
    Metz M, Grimbaldeston MA, Nakae S et al. Mast cells in the promotion and limitation of chronic inflammation. Immunol Rev 2007; 217:304–328.PubMedCrossRefGoogle Scholar
  14. 14.
    Huang B, Lei Z, Zhang GM et al. SCF-mediated mast cell infiltration and activation exacerbate the inflammation and immunosuppression in tumor microenvironment. Blood 2008; 112:1269–1279.PubMedCrossRefGoogle Scholar
  15. 15.
    Nowak EC, Weaver CT, Turner H et al. IL-9 as a mediator of Th17-driven inflammatory disease. J Exp Med 2009; 206:1653–1660.PubMedCrossRefGoogle Scholar
  16. 16.
    Sebolt-Leopold JS, Herrera R. Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer 2004; 4:937–947.PubMedCrossRefGoogle Scholar
  17. 17.
    Ditsworth D, Zong WX. NF-kappaB: key mediator of inflammation-associated cancer. Cancer Biol Ther 2004; 3:1214–1216.PubMedCrossRefGoogle Scholar
  18. 18.
    Pardoll D. Does the immune system see tumors as foreign or self? Annu Rev Immunol 2003; 21:807–839.PubMedCrossRefGoogle Scholar
  19. 19.
    Munn DH, Mellor AL. The tumor-draining lymph node as an immune-privileged site. Immunol Rev 2006; 213:146–158.PubMedCrossRefGoogle Scholar
  20. 20.
    Ullrich SE, Nghiem DX, Khaskina P. Suppression of an established immune response by UVA—a critical role for mast cells. Photochem Photobiol 2007; 83:1095–1100.PubMedCrossRefGoogle Scholar
  21. 21.
    Grimbaldenston MA, Nakae S, Kalesnikoff K et al. Mast cell-derived interleukin 10 limits skin pathology in contact dermatitis and chronic irradiation with ultraviolet B. Nat Immunol 2007; 38:1095–1104.CrossRefGoogle Scholar
  22. 22.
    Lu LF, Lind EF, Gondek DC et al. Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 2006; 442:997–1002.PubMedCrossRefGoogle Scholar
  23. 23.
    Kripke M. Immunological unresponsiveness induced by ultraviolet radiation. Immunol Rev 1984; 80:87–102.PubMedCrossRefGoogle Scholar
  24. 24.
    Ch’ng S, Wallis RA, Yuan L. Mast cells and cutaneous malignancies. Modern Pathol 2006; 19:149–159.CrossRefGoogle Scholar
  25. 25.
    Wille J, Kydonieus A, Murphy G. Cis-urocanic acid induces mast cell degranulation and release of preformed TNF-alpha: a possible mechanism linking UVB and cis-urocanic acid to immunosuppression of contact hypersensitivity. Skin Pharmacol Physiol 1999; 12:18–27.CrossRefGoogle Scholar
  26. 26.
    Chen W, Jin W, Hardegen N et al. Conversion of peripheral CD4+CD25 naïve T-cells to CD4+CD25+ regulatory T-cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 2003; 198:1875–1886.PubMedCrossRefGoogle Scholar
  27. 27.
    Kambayashi T, Allenspach EJ, Chang JT et al. Inducible MHC class II expression by mast cells supports effector and regulatory T-cell activation. J Immunol 2009; 182:4686–4695.PubMedCrossRefGoogle Scholar
  28. 28.
    Ju MJ, Qiu S J, Gao Q et al. Combination of peritumoral mast cells and T-regulatory cells predicts prognosis of hepatocellular carcinoma. Cancer Sci 2009; 100:1267–1274.PubMedCrossRefGoogle Scholar
  29. 29.
    Conti P, Pang X, Boucher W et al. Impact of Rantes and MCP-1 chemokines on in vivo basohilic mast cell recruitment in rat skin injection model and their role in modifying the protein and mRNA levels for histidine decarboxylase. Blood 1997; 89:4120–4127.PubMedGoogle Scholar
  30. 30.
    Theoharides T, Conti P. Mast cells: the Jekyll and Hyde of tumor growth. Trends Immunol 2004; 25:235–241.PubMedCrossRefGoogle Scholar
  31. 31.
    Dabbous M, Walker R, Haney L et al. Mast cells and matrix degradation at sites of tumor invasion in rat mammary adenocarcinoma. Br J Cancer 1986; 54:459–465.PubMedCrossRefGoogle Scholar
  32. 32.
    Stack MS, Johnson DA. Human mast cell tryptase activates single-chain urinary-type plasminogen activator (pro-urokinase). J Biol Chem 1994; 269:9416–9419.PubMedGoogle Scholar
  33. 33.
    Baram D, Vaday G, Salamon P et al. Human mast cells release metalloproteinase-9 on contact with activated T-cells: juxtacrine regulation by TNF-alpha. J Immunol 2001; 167:4009–4016.Google Scholar
  34. 34.
    Hara M, Matsumori A, Ono K et al. Mast cells cause apotosis of cardiomyocytes and proliferation of other intramyocardial cells in vitro. Circulation 1999; 100:1443–1449.PubMedGoogle Scholar
  35. 35.
    He S, a Walls AF. Human mast cell chymase induces the accumulation of neutrophils, eosinophils and other inflammatory cells in vivo. Br J Pharmacol 1988; 125:1491–1500.CrossRefGoogle Scholar
  36. 36.
    Sakamoto S, Goldhaber P, Glimcher M. The effect of heparin on the amount of enzyme released in tissue culture and on the activity of the enzyme. Calcif Tissue Int 1973; 12:247–258.CrossRefGoogle Scholar
  37. 37.
    Markwardt F, Klocking H. Heparin-induced release of plasminogen activator. Haemostasis 1977; 6:370–374.PubMedGoogle Scholar
  38. 38.
    Niwa Y, Kasugai T, Ohno K et al. Anemia and mast cells depletion in mutant rats that are homozygous at ‘white spotting (Ws)’ locus. Blood 1991; 78:1936–1941.PubMedGoogle Scholar
  39. 39.
    Lazar-Molnar E, Hegyesi H, Pallinger E et al. Inhibition of human primary melanoma cell proliferation by histamine is enhanced by interleukin-6. Eur J Clin Invest 2002; 32:743–749.PubMedCrossRefGoogle Scholar
  40. 40.
    Burtin C, Ponvert C, Fray A. Inverse correlation between tumor incidence and tissue histamine levels in W/Wv, W/+ and +/+ mice. J Natl Cancer Inst 1985; 74:671–674.PubMedGoogle Scholar
  41. 41.
    Halaban R, Kwon BS, Ghosh S et al. bFGF as an autocrine growth fator for human melanomas. Oncogene Res 1988; 3:177–186.PubMedGoogle Scholar
  42. 42.
    Schadendorf D, Moller A, Algermissen B et al. IL-8 produced by human malignant melanoma cells in vitro is an essential autocrine growth factor. J Immunol 1993; 151:2667.PubMedGoogle Scholar
  43. 43.
    Mukheriee S, Bandyopadhyay G, Dutta C et al. Evaluation of endoscopic biopsy in gastric lesions with a special reference to the significance of mast cell density. Indian J Pathol Microbiol 2009; 52:20–24.CrossRefGoogle Scholar
  44. 44.
    Imai T, Michizawa M, Shimizu H et al. Bilateral multiple spindle cell lipomas of the tongue. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008; 106:264–269.PubMedCrossRefGoogle Scholar
  45. 45.
    Nakashima K, Yamada N, Yoshida Y et al. Solitary sclerotic neurofibroma of the skin. Am J Dermatopathol 2008; 30:278–280.PubMedCrossRefGoogle Scholar
  46. 46.
    Leon A, Ceauşu Z, Ceauşu M et al. Mast cells and dendritic cells in basal cell carcinoma. Rom J Morphol Embryol 2009; 50:85–90.PubMedGoogle Scholar
  47. 47.
    Aoki M, Pawankar R, Niimi Y et al. Mast cells in basal cell carcinoma express VEGF, IL-8 and RANTES. Int Arch Allergy Immunol 2003; 130:216–223.PubMedCrossRefGoogle Scholar
  48. 48.
    Oliveira CR, Albuquerque GC, Simon EF et al. Case for diagnosis. Telangectasia macularis eruptive perstans. An Bras Dermatol 2009; 84:87–89.PubMedCrossRefGoogle Scholar
  49. 49.
    Kiliç A, Kösem M, Demirok A et al. Conjunctival myxoma: a clinicopathologic report. Ophthalmic Surg Lasers Imaging 2008; 39:514–516.PubMedCrossRefGoogle Scholar
  50. 50.
    Srinvasan R, Gautman U, Gupta R et al. Synovial sarcoma: diagnisos on fine-needle aspiration by morphology and molecular analysis. Cancer Cytopathol 2009; 117:128–136.CrossRefGoogle Scholar
  51. 51.
    Ribatti D, Ennas MG, Vacca A et al. Tumor vascularity and tryptase positive-mast cells correlate with a poor prognosis in melanoma. Eur J Clin Invest 2003b; 33:420–425.CrossRefGoogle Scholar
  52. 52.
    Iamaroon A, Pongsirlwet S, Jittidecharaks S et al. Increase of mast cells and tumor angiogenesis in oral squamous cell carcinoma. J Oral Pathol Med 2003; 32:195–199.PubMedCrossRefGoogle Scholar
  53. 53.
    Rojas IG, Spencer ML, Martinez A et al. Characterization of mast cell subpopulations in lip cancer. J Oral Pathol Med 2005; 34:268–273.PubMedCrossRefGoogle Scholar
  54. 54.
    Sharma VK, Agrawal AK, Pratarp VK et al. Mast cell reactivity in lymphoma: apreliminary communication. India J Cancer 1992; 29:61–65.Google Scholar
  55. 55.
    Molin D, Edstrom A, Glimelius I et al. Mast cell infiltration correlates with poor prognosis in Hodgkin’s lymphoma. Br J Haematol 2002; 119:122–124.PubMedCrossRefGoogle Scholar
  56. 56.
    Molin D. Bystander cells and prognosis in Hodgkin lymphoma. Review based on a doctoral thesis. Ups J Med Sci 2004; 109:179–228.PubMedCrossRefGoogle Scholar
  57. 57.
    Fukushima H, Ohsawa M, Ikura Y et al. Mast cells in diffuse large B-cell lymphoma; their role in fibrosis. Histopathology 2006; 49:498–505.PubMedCrossRefGoogle Scholar
  58. 58.
    Fukushima N, Satoh T, Sano M et al. Angiogenesis and mast cells in nonHodgkin’s lymphoma: strong correlation in angioimmunoblastic T-cell lymphoma. Leuk Lymphoma 2001; 42:709–720.PubMedCrossRefGoogle Scholar
  59. 59.
    Dave SS, Wright G, Than B et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infilitrating immune cells. N Engl J Med 2004; 351:2159–2169.PubMedCrossRefGoogle Scholar
  60. 60.
    Nechushtan H, Razin E. The function of MIFT and associated proteins in mast cells. Mol Immunol 2002; 38:1177–1180.PubMedCrossRefGoogle Scholar
  61. 61.
    Tournilhac O, Santos DD, Xu L et al. Mast cells in Waldenstrom’s macroglobulinemia support lymphoplasmacytic cell growth through CD154/CD40 signaling. Ann Oncol 2006; 17:1275–1282.PubMedCrossRefGoogle Scholar
  62. 62.
    Nonomura N, Takayama H, Nishimura K et al. Decreased number of mast cells infiltrating into needle biopsy specimens leads to a better prognosis of prostate cancer. Br J Cancer 2007; 97:952–956.PubMedGoogle Scholar
  63. 63.
    Fleiscmann A, Schlomm T, Köllermann J et al. Immunological microenvironment in prostate cancer: high mast cell densities are associated with favorable tumor characteristics and good prognosis. Prostate 2009; 69:976–981.CrossRefGoogle Scholar
  64. 64.
    Gomes AP, Johann JE, Lovato GG et al. Comparative analysis of the mast cell density in normal oral mucosa, actinic cheilitis and lip squamous cell carcinoma. Braz Dent J 2008; 19:186–189.PubMedCrossRefGoogle Scholar
  65. 65.
    Lago Costa N, Ferreira Oton-Lelte A, Pelxodo Chelm-Júnlor A et al. Density and migration of mast cells in lip squamous cell carcinoma and actinic cheilitis. Histol Histopathol 2009; 24:457–465.Google Scholar
  66. 66.
    Rojas IG, Martinez A, Brethauer U et al. Actinic cheilitis: epithelial expression of COX-2 and its association with mast cell tryptase and PAR-2. Oral Oncol 2009; 45:284–290.PubMedCrossRefGoogle Scholar
  67. 67.
    Oliveira-Neto HH, Ferreira Leite A, Lago Costa N et al. Decrease in mast cells in oral squamous cell carcinoma: Possible failure in the migration of these cells. Oral Oncol 2007; 43:484–490.PubMedCrossRefGoogle Scholar
  68. 68.
    Aaltomaa S, Lipponen P, Papinaho S et al. Mast cells in breast cancer. Anticancer Res 1993; 13:785–788.PubMedGoogle Scholar
  69. 69.
    Dabiri S, Huntsman D, Makretsov N et al. The presence of stromal mast cells identifies a subset of invasive breast cancers with a favorable prognosis. Mod Pathol 2004; 17:690–695.PubMedCrossRefGoogle Scholar
  70. 70.
    Gooch SJ, Lee AV, Yee D. Interleukin 4 inhibits growth and induces apoptosis in human breast cancer cells. Cancer Res 1998; 58:4199–4205.PubMedGoogle Scholar
  71. 71.
    Ohno S, Inagawa H, Soma G et al. Role of tumor-associated macrophage in malignant tumors: should the location of the infiltrated macrophages be taken into account during evaluation? Anticancer Res 2002; 22:4269–4275.PubMedGoogle Scholar
  72. 72.
    Samoszuk M, Corwin MA. Mast cell inhibitor cromolyn increases blood clotting and hypoxia in murine breast cancer. Int J Cancer 2003; 107:159–163.PubMedCrossRefGoogle Scholar
  73. 73.
    Kankkunen JP, Harvima IT, Naukkarinen A. Qunatitative analysis of tryptase and chymase containing mast cells in benign and malignant breast lesions. Int J Cancer 1997; 72:385–388.PubMedCrossRefGoogle Scholar
  74. 74.
    Thorense S, Tangen M, Hartveit F. Mast cells in the axillary nodes of breast cancer patients. Diagn Histopathol 1982; 5:65–67.Google Scholar
  75. 75.
    Delia Rovere F, Granata A, Monaco M et al. Phagocytosis of cancer cells by mast cells in breasr cancer. Anticancer Res 2009; 29:3157–3161.Google Scholar
  76. 76.
    Amini RM, Aaltonen K, Nevanlinna H et al. Mast cells and eosinophils in invasive breast carcinoma. BMC Cancer 2007; 7:165–169.PubMedCrossRefGoogle Scholar
  77. 77.
    Welsh TJ, Green RH, Richardson D et al. Macrophage and mast cell invasion of tumor cell islets confers a marked survival advantage in non small-cell lung cancer. J Clin Oncol 2005; 23:8959–8967.PubMedCrossRefGoogle Scholar
  78. 78.
    Chan JK, Magistris A, Loizzi V et al. Mast cell density, angiogenesis, blood clotting and prognosis in women with advanced ovarian cancer. Gynecol Oncol 2005; 99:20–25.PubMedCrossRefGoogle Scholar
  79. 79.
    Cinel L, Aban M, Bastruk M et al. The association of mast cell density with myometrial invasion in endometrial carcinoma: a preliminary report. Pathol Res Pract 2009; 205:255–258.PubMedCrossRefGoogle Scholar
  80. 80.
    Alì G, Boldrini L, Lucchi M et al. Tryptase mast cells in malignant pleural mesothelioma as an independent favorable prognostic factor. J Thorac Oncol 2009; 4:348–354.PubMedCrossRefGoogle Scholar
  81. 81.
    Thorton SC, Mueller SM, Levine EM. Human endothelial cells: use of heparin in cloning and long term cultivation. Science 1983; 222:623–625.CrossRefGoogle Scholar
  82. 82.
    Alessandri G, Raju KS, Gullino PM. Characterization of a chemoattractant for endothelium induced by angiogenic effectors. Cancer Res 1984; 44:1579–1584.PubMedGoogle Scholar
  83. 83.
    Ribatti D, Roncali L, Nico B et al. Effects of exogenous heparin on the vasculogenesis of the chorioallantoic membrane. Acta Anat 1987; 130:257–263.PubMedCrossRefGoogle Scholar
  84. 84.
    Norrby K, Sorbo J. Heparin enhances angiogenesis by a systemic mode of action. Int J Exp Pathol 1992; 73:1451–1455.Google Scholar
  85. 85.
    Norrby K. Heparin and angiogenesis: a low molecular weight fraction inhibits and a high molecular weight fraction stimulates angiogenesis systematically. Haemostasis 1993; 23:144–149.Google Scholar
  86. 86.
    Jakobson AM, Hahnenberger R. Antiangiogenic effect of heparin and other sulphated glycosaminoglycans in the chick embryo chorioallantoic membrane. Pharmacol Toxicol 1991; 69:122–126.PubMedCrossRefGoogle Scholar
  87. 87.
    Wilks JW, Scott PS, Urla LK et al. Inhibition of angiogenesis with combination treatments of angiostatic steroids and suramin. Int J Radiat Biol 1991; 60:73–77.PubMedCrossRefGoogle Scholar
  88. 88.
    Castellot JJ, Karnovsky MJ, Spiegelman BM. Differentiation-dependent stimulation of neovascularization and endothelial cell chemotaxis by 3T3 adipocytes. Proc Natl Acad Sci USA 1982; 79:5597–5601.PubMedCrossRefGoogle Scholar
  89. 89.
    Taylor S, Folkman J. Protamine is an inhibitor of angiogenesis. Nature 1982; 297:307–312.PubMedCrossRefGoogle Scholar
  90. 90.
    Folkman J, Shing Y. Angiogenesis. J Biol Chem 1992; 267:10931–10934.PubMedGoogle Scholar
  91. 91.
    Yayou A, Klagsbrun M, Esko JD et al. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 1991; 64:841–848.CrossRefGoogle Scholar
  92. 92.
    Sörbo J, Jakobsson A, Norrby K. Mast-cell histamine is angiogenic through receptors for histamine1 and histamine 2. Int J Exp Pathol 1994; 75:43–50.PubMedGoogle Scholar
  93. 93.
    Thompson WD, Campbell R, Evans T. Fibrin degradation and angiogenesis: quantitative analysis of the angiogenic response in the chick chorioallantoic membrane. J Pathol 1995; 145:27–37.CrossRefGoogle Scholar
  94. 94.
    Fang KC, Wolters PJ, Steinhoff M et al. Mast cell expression of gelatinase A and B is regulated by kit ligand and TGF-β. J Immunol 1999; 162:5528–5535.PubMedGoogle Scholar
  95. 95.
    Di Girolamo N, Wakefiled D. In vitro and in vivo expression of interstitial collagenase/MMP-1 by human mast cells. Dev Immunol 2000; 7:131–142.PubMedCrossRefGoogle Scholar
  96. 96.
    Vincent AJ, Zhang J, Ostor A et al. Matrix metalloproteinase-1 and-3 and mast cells are present in the endometrium of women using progestin-only contraceptives. Human Reprod 2000; 15:123–130.CrossRefGoogle Scholar
  97. 97.
    Raza SL, Cornelius LA. Matrix metalloproteinases: pro-and anti-angiogenic activities. J Invest Dermatol Symp Proc 2000; 5:47–54.CrossRefGoogle Scholar
  98. 98.
    Taiplae J, Lohi J, Saarinen J et al. Human mast cell chymase and leukocyte elestase release latent transforming growth factor beta-1 from the extracellular matrix of cultured human epithelial and endothelial cells. J Biol Chem 1995; 270:4689–4696.CrossRefGoogle Scholar
  99. 99.
    Gruber BL, Marchese MJ, Suzuki K et al. Synovial procollagenase activation by human mast cell tryptase dependence upon matrix metalloproteinase 3 activation. J Clin Invest 1989; 84:1657–1662.PubMedCrossRefGoogle Scholar
  100. 100.
    Blair RJ, Meng H, Marchese MJ et al. Tryptase is a novel, potent angiogenic factor. J Clin Invest 1997; 99:2691–2700.PubMedCrossRefGoogle Scholar
  101. 101.
    Muramatsu M, Katada J, Hattori M et al. Chymase mediates mast cell-induced angiogenesis in the hamster sponge granuloma. Eur J Pharmacol 2000a; 402:181–191.PubMedCrossRefGoogle Scholar
  102. 102.
    Muramatsu M, Katada J, Hattori M et al. Chymase as a proangiogenic factor; a possible involvement of chymase-angiotensin-dependent pathway in the hamster sponge angiogenesis model. J Biol Chem 2000b; 275:5545–5552.PubMedCrossRefGoogle Scholar
  103. 103.
    Qu Z, Kayton RJ, Ahmadi P et al. Ultrastructural immunolocalization of basic fibroblast growth factor in mast cell secretory granules: morphological evidence for bFGF release through degranulation. J Histochem Cytochem 1998; 46:1119–1128.PubMedCrossRefGoogle Scholar
  104. 104.
    Grutzkau A, Kruger-Krasagakes S, Baumeister H et al. Synthesis, storage and release of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) by human mast cells: implications for the biological significance of VEGF 206. Mol Biol Cell 1998; 9:875–884.PubMedGoogle Scholar
  105. 105.
    Cantarella G, Lempereur L, Presta M et al. Nerve growth factor-endothelial cell interactions lead to angiogenesis in vitro and in vivo. FASEB J 2002; 16:1307–1309.PubMedGoogle Scholar
  106. 106.
    Emanueli C, Salis MB, Pinna A et al. Nerve growth factor promotes angiogenesis and arteriogenesis in ischemic hindlimbs. Circulation 2002; 106:2257–2262.PubMedCrossRefGoogle Scholar
  107. 107.
    Kessler DA, Langer RS, Pless NA et al. Mast cells and tumor angiogenesis. Int J Cancer 1976; 18:703–709.PubMedCrossRefGoogle Scholar
  108. 108.
    Poole TJ, Zetter BR. Stimulation of rat peritoneal mast cell migration by tumor-derived peptides. Cancer Res 1983; 43:5857–5861.PubMedGoogle Scholar
  109. 109.
    Starkey JR, Crowle PK, Taubenberger S. Mast cell-deficient W/Wv mice exhibit a decreased rate of tumor angiogenesis. Int J Cancer 1988; 42:48–52.PubMedCrossRefGoogle Scholar
  110. 110.
    Ribatti D, Crivellato E, Candussio L et al. Mast cells and their secretory granules are angiogenic in the chick embryo chorioallantoic membrane. Clin Exp Allergy 2001; 31:602–608.PubMedCrossRefGoogle Scholar
  111. 111.
    Benitez-Bribiesca L, Wong A, Utrera D et al. The role of mast cell tryptase in neoangiogenesis of premalignant and malignant lesions of the uterine cervix. J Histochem Cytochem 2001; 49:1061–1062.PubMedCrossRefGoogle Scholar
  112. 112.
    Ribatti D, Finato N, Crivellato E et al. Neovascularization and mast cells with tryptase activity increase simultaneously with pathologic progression in human endometrial cancer. Am J Obstet Gynecol 2005; 193:1961–1965.PubMedCrossRefGoogle Scholar
  113. 113.
    Sawatsubashi M, Yamada T, Fukushima N et al. Association of vascular endothelial growth factor and mast cells with angiogenesis in laryngeal squamous cell carcinoma. Virchows Arch 2000; 436:243–248.PubMedCrossRefGoogle Scholar
  114. 114.
    Imada D, Shijubo N, Kojima H et al. Mast cells correlate with angiogenesis and poor outcome in stage I lung adenocarcinoma. Eur Resp J 2000; 15:1087–1093.CrossRefGoogle Scholar
  115. 115.
    Takanami I, Takeuchi K, Narume M. Mast cell density is associated with angiogenesis and poor prognosis in pulmonary adenocarcinoma. Cancer 2000; 88:2686–2692.PubMedCrossRefGoogle Scholar
  116. 116.
    Tomita M, Matsuzaki Y, Onitsuka T. Effect of mast cell on tumor angiogenesis in lung cancer. Ann Thorac Surg 2000; 69:1686–1690.PubMedCrossRefGoogle Scholar
  117. 117.
    Toth T, Toth-Jakatics R, Jimi S et al. Cutaneous malignant melanoma: correlation between neovascularization and peritumor accumulation of mast cells overexpressing vascular endothelial growth factor. Hum Pathol 2000; 31:955–960.CrossRefGoogle Scholar
  118. 118.
    Ribatti D, Vacca A, Ria R et al. Neovascularization, expression of fibroblast growth factor-2 and mast cell with tryptase activity increase simultaneously with pathological progression in human malignant melanoma. Eur J Cancer 2003; 39:666–675.PubMedCrossRefGoogle Scholar
  119. 119.
    Elpek GO, Gelen T, Aksoy NH et al. The prognostic relevance of angiogenesis and mast cells in squamous cell carcinoma of the oesophagus. J Clin Pathol 2001; 54:940–944.PubMedCrossRefGoogle Scholar
  120. 120.
    Guidolin D, Crivellato E, Nico B et al. An image analysis of the spatial distribution of perivascular mast cells in human melanoma. Int J Mol Med 2006; 17:981–987.PubMedGoogle Scholar
  121. 121.
    Ng L, Beer TW, Murray K. Vascular density has prognostic value in Merkel cell carcinoma. Am J Dermatopathol 2008; 30:442–445.PubMedCrossRefGoogle Scholar
  122. 122.
    Yodavudh S, Tangjitgamol S, Puangsa-art S. Prognostic significance of microvessel density and mast cell density for the survival of Thai patients with primary colorectal cancer. J Med Assoc Thai 2008; 91:723–732.PubMedGoogle Scholar
  123. 123.
    Gulubova M, Vlaykova T. Prognostic significance of mast cell number and microvascular density for the survival of patients with primary colorectal cancer. J Gastroenterol Hepatol 2009; 24:1265–1275.PubMedCrossRefGoogle Scholar
  124. 124.
    Ribatti D, Finato N, Crivellato E et al. Angiogenesis and mast cells in human breast cancer sentinel lymph nodes with and without micrometastases. Histopathology 2007; 51:837–842.PubMedCrossRefGoogle Scholar
  125. 125.
    Ranieri G, Ammendola M, Patruno R et al. Tryptase-positive mast cells correlate with angiogenesis in early breast cancer patients. Int J Oncol 2009; 35:115–120.PubMedCrossRefGoogle Scholar
  126. 126.
    Ribatti D, Nico B, Vacca A et al. Do mast cells help to induce angiogenesis in B-cell nonHodgkin’s lymphomas? Br J Cancer 1998; 77:1900–1906.PubMedCrossRefGoogle Scholar
  127. 127.
    Ribatti D, Vacca A, Marzullo A et al. Angiogenesis and mast cell density with tryptase activity increase simultaneously with pathological progression in B-cell nonHodgkin’s lymphomas. Int J Cancer 2000; 82:171–175.Google Scholar
  128. 128.
    Glimelius I, Edstrom A, Fischer M et al. Angiogenesis and mast cells in Hodgkin’s lymphoma. Leukemia 2005; 19:2360–2362.PubMedCrossRefGoogle Scholar
  129. 129.
    Terpos E, Tasidou A, Kastritis E et al. Angiogenesis in Waldenström’s macroglobulinemia. Clin Lymphoma Myeloma 2009; 9:46–49.PubMedCrossRefGoogle Scholar
  130. 130.
    Ribatti D, Vacca A, Nico B et al. Bone marrow angiogenesis and mast cell density increase simultaneously with progression of human multiple myeloma. Br J Cancer 1999; 79:451–455.PubMedCrossRefGoogle Scholar
  131. 131.
    Crivellato E, Nico B, Vacca A et al. Mast cell heterogeneity in B-cell nonHodgkin’s lymphomas: an ultrastructural study. Leuk Lymphoma 2002; 43:2201–2205.PubMedCrossRefGoogle Scholar
  132. 132.
    Crivellato E, Nico B, Vacca A et al. Ultrastructural analysis of mast cell recovery after secretion by piecemeal degranulation in B-cell nonHodgkin’s lymphoma. Leuk Lymphoma 2003; 44:517–521.PubMedCrossRefGoogle Scholar
  133. 133.
    Kops SK, Van Loveren H, Rosenstein RW et al. Mast cell activation and vascular alterations in immediate hypersensitivity-like reactions induced by a T-cell derived antigen-binding factor. Lab Invest 1984; 50:421–434.PubMedGoogle Scholar
  134. 134.
    Theoharides T, Kempuraj D, Tagen M et al. Differential release of mast cells mediators and the pathogenesis of inflammation. Immunol Rev 2007; 217:65–78.PubMedCrossRefGoogle Scholar
  135. 135.
    Ribatti D, Polimeno G, Vacca A et al. Correlation of bone marrow angiogenesis and mast cells with tryptase activity in myelodysplastic syndromes. Leukemia 2002; 16:1680–1684.PubMedCrossRefGoogle Scholar
  136. 136.
    Molica S, Vacca A, Crivellato E et al. Tryptase-positive mast cells predict clinical outcome of patients with early B-cell chronic lymphocytic leukemia. Eur J Haematol 2003; 71:137–139.PubMedCrossRefGoogle Scholar
  137. 137.
    Ribatti D, Molica S, Vacca A et al. Tryptase-positive mast cells correlate positively with bone marrow angiogenesis in B-cell chronic lymphocytic leukemia. Leukemia 2003; 17:1428–1430.PubMedCrossRefGoogle Scholar
  138. 138.
    Heinrich MC, Griffith DJ, Druker BJ et al. Inhibition of c-kit receptor tyrosine kinase activity by STI 571 a selective tyrosine kinase inhibitor. Blood 2000; 96:925–932.PubMedGoogle Scholar
  139. 139.
    Kitamura Y, Hirotab S. Kit as a human oncogenic tyrosine kinase. Cell Mol Life Sci 2004; 61:2924–2931.PubMedCrossRefGoogle Scholar
  140. 140.
    Akin C, Metcalfe DD. The biology of Kit in disease and the application of pharmacogenetics. J Allergy Cin Immunol 2004; 114:13–19.CrossRefGoogle Scholar
  141. 141.
    Nielsen HJ, Christenseb IJ, Svendsen MN et al. Ranitidine as adjuvant treatment in colorectal cancer. Br J Surg 2002; 89:1416–1422.PubMedCrossRefGoogle Scholar
  142. 142.
    Parshad R, Kapoor S, Gupta SD. Does famotidine enhance tumor infiltrating lymphocytes in breast cancer? Results of a randomized prospective pilot study. Acta Oncol 2002; 41:362–365.PubMedCrossRefGoogle Scholar
  143. 143.
    Molica S, Montillo M, Ribatti D et al. Intense reversal of bone marrow angiogenesis after sequential fludarabine-induction and alemtuzumab-consolidation therapy in advanced chronic lymphocytic leukemia. Haematologica 2007; 92:1367–1374.PubMedGoogle Scholar
  144. 144.
    Ramakrishnan G, Jagan S, Kamaraj S et al. Silymarin attenuated mast cell recruitment thereby decreased the expressions of matrix metalloproteinases-2 and 9 in rat liver carcinogenesis. Invest New Drugs 2009; 27:233–240.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2011

Authors and Affiliations

  • Domenico Ribatti
    • 1
  • Enrico Crivellato
    • 2
  1. 1.Department of Human Anatomy and HistologyUniversity of Bari Medical SchoolPiazza Giulio Cesare BariItaly
  2. 2.Department of Medical and Morphological Reseach, Section of AnatomyUniversity of Udine Medical SchoolUdineItaly

Personalised recommendations