Metabolic Imaging in Translational Stroke Research

Chapter
Part of the Springer Series in Translational Stroke Research book series (SSTSR)

Abstract

Recent technological developments have improved understanding of not only the structural changes following cerebral arterial occlusion, but have also highlighted the dynamic evolution of stroke pathophysiology. Although altered cerebral tissue metabolism is a central feature of such changes following stroke, direct imaging correlates of metabolic activity are currently not used for therapeutic decision making. However, metabolic imaging may potentially improve targeting of therapies to those patients with a relevant tissue substrate. In this chapter we discuss imaging techniques which may provide metabolic information in acute stroke. Although positron emission tomography is the gold standard technique for metabolic imaging in acute stroke in a research environment, magnetic resonance techniques such as spectroscopy, 17O imaging, and deoxyhaemoglobin weighted imaging may have have potential clinical utility. However, despite measuring relative ­concentrations of metabolites directly, the application of magnetic resonance spectroscopy has been limited by issues surrounding quantification and signal to noise ratio. 17O and deoxyhemoglobin weighted imaging are promising, but require to be validated in acute stroke. In this chapter we discuss potential future directions of these metabolic imaging in translational stroke research.

Keywords

Permeability Attenuation Lactate Glutathione Choline 

References

  1. 1.
    Hacke W, Kaste M, Bluhmki E, Brozman M, Davalos A, Guidetti D, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008;359:1317–29.PubMedCrossRefGoogle Scholar
  2. 2.
    Heiss WD, Huber M, Fink GR, Herholz K, Pietrzyk U, Wagner R, et al. Progressive derangement of periinfarct viable tissue in ischemic stroke. J Cereb Blood Flow Metab. 1992;12:193.PubMedCrossRefGoogle Scholar
  3. 3.
    The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med. 1995;333:1581.CrossRefGoogle Scholar
  4. 4.
    Ma H, Zavala JA, Teoh H, Churilov L, Gunawan M, Ly J, et al. Penumbral mismatch is underestimated using standard volumetric methods and this is exacerbated with time. J Neurol Neurosurg Psychiatry. 2009;80:991–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Kakuda W, Lansberg MG, Thijs VN, Kemp SM, Bammer R, Wechsler LR, et al. Optimal definition for PWI/DWI mismatch in acute ischemic stroke patients. J Cereb Blood Flow Metab. 2008;28:887–91.PubMedCrossRefGoogle Scholar
  6. 6.
    Schlaug G, Benfield A, Baird AE, Siewert B, Lovblad KO, Parker RA, et al. The ischemic penumbra: operationally defined by diffusion and perfusion MRI. Neurology. 1999;53:1528.PubMedCrossRefGoogle Scholar
  7. 7.
    Marchal G, Serrati C, Rioux P, Petit-Taboue MC, Viader F, de la Sayette V, et al. Pet imaging of cerebral perfusion and oxygen consumption in acute ischaemic stroke: relation to outcome. Lancet. 1993;341:925.PubMedCrossRefGoogle Scholar
  8. 8.
    Furlan M, Marchal G, Viader F, Derlon JM, Baron JC. Spontaneous neurological recovery after stroke and the fate of the ischemic penumbra. Ann Neurol. 1996;40:216.PubMedCrossRefGoogle Scholar
  9. 9.
    Muir KW, Buchan A, von Kummer R, Rother J, Baron J-C. Imaging of acute stroke. Lancet Neurol. 2006;5:755–68.PubMedCrossRefGoogle Scholar
  10. 10.
    Read SJ, Hirano T, Abbott DF, Sachinidis JI, Tochon-Danguy HJ, Chan JG, et al. Identifying hypoxic tissue after acute ischemic stroke using PET and 18F-fluoromisonidazole. Neurology. 1998;51:1617.PubMedCrossRefGoogle Scholar
  11. 11.
    Markus R, Reutens DC, Kazui S, Read S, Wright P, Chambers BR, et al. Topography and temporal evolution of hypoxic viable tissue identified by 18F-fluoromisonidazole positron emission tomography in humans after ischemic stroke. Stroke. 2003;34:2646–52.PubMedCrossRefGoogle Scholar
  12. 12.
    Spratt NJ, Donnan GA, Howells DW. Characterisation of the timing of binding of the hypoxia tracer FMISO after stroke. Brain Res. 2009;1288:135–42.PubMedCrossRefGoogle Scholar
  13. 13.
    Spratt NJ, Donnan GA, McLeod DD, Howells DW. ‘Salvaged’ stroke ischaemic penumbra shows significant injury: studies with the hypoxia tracer FMISO. J Cereb Blood Flow Metab. 2011;31:934–43.PubMedCrossRefGoogle Scholar
  14. 14.
    Heiss WD, Kracht L, Grond M, Rudolf J, Bauer B, Wienhard K, et al. Early [C-11]flumazenil/H2O positron emission tomography predicts irreversible ischemic cortical damage in stroke patients receiving acute thrombolytic therapy. Stroke. 2000;31:366–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Rojas S, Martin A, Pareto D, Herance JR, Abad S, Ruiz A, et al. Positron emission tomography with C-11-flumazenil in the rat shows preservation of binding sites during the acute phase after 2 h-transient focal ischemia. Neuroscience. 2011;182:208–16.PubMedCrossRefGoogle Scholar
  16. 16.
    Higuchi T, Fernandez EJ, Maudsley AA, Shimizu H, Weiner MW, Weinstein PR. Mapping of lactate and N-acetyl-l-aspartate predicts infarction during acute focal ischemia: in vivo 1 h magnetic resonance spectroscopy in rats. Neurosurgery. 1996;38:121–9. discussion 129–130.PubMedCrossRefGoogle Scholar
  17. 17.
    Saunders DE, Howe FA, van den Boogaart A, McLean MA, Griffiths JR, Brown MM. Continuing ischemic damage after acute middle cerebral artery infarction in humans demonstrated by short-echo proton spectroscopy. Stroke. 1995;26:1007.PubMedCrossRefGoogle Scholar
  18. 18.
    Duijn JH, Matson GB, Maudsley AA, Hugg JW, Weiner MW. Human brain infarction—proton MR spectroscopy. Radiology. 1992;183:711–8.PubMedGoogle Scholar
  19. 19.
    Nicoli F, Lefur Y, Denis B, Ranjeva JP, Confort-Gouny S, Cozzone PJ. Metabolic counterpart of decreased apparent diffusion coefficient during hyperacute ischemic stroke: a brain proton magnetic resonance spectroscopic imaging study. Stroke. 2003;34:e82.PubMedCrossRefGoogle Scholar
  20. 20.
    Gideon P, Henriksen O, Sperling B, Christiansen P, Olsen TS, Jorgensen HS, et al. Early time course of N-acetylaspartate, creatine and phosphocreatine, and compounds containing choline in the brain after acute stroke. A proton magnetic resonance spectroscopy study. Stroke. 1992;23:1566.PubMedCrossRefGoogle Scholar
  21. 21.
    Maniega SM, Cvoro V, Chappell FM, Armitage PA, Marshall I, Bastin ME, et al. Changes in NAA and lactate following ischemic stroke a serial MR spectroscopic imaging study. Neurology. 2008;71:1993–9.CrossRefGoogle Scholar
  22. 22.
    Gillard JH, Barker PB, van Zijl PC, Bryan RN, Oppenheimer SM. Proton MR spectroscopy in acute middle cerebral artery stroke. AJNR Am J Neuroradiol. 1996;17:873.PubMedGoogle Scholar
  23. 23.
    Dani KA, An L, Shen J, Warach S. Magnetic resonance spectroscopy may be helpful in acute stroke. Cerebrovasc Dis. 2010;29:1015–9770.Google Scholar
  24. 24.
    Baird TA, Parsons MW, Phanh T, Butcher KS, Desmond PM, Tress BM, et al. Persistent poststroke hyperglycemia is independently associated with infarct expansion and worse clinical outcome. Stroke. 2003;34:2208.PubMedCrossRefGoogle Scholar
  25. 25.
    Parsons MW. Acute hyperglycemia adversely affects stroke outcome: a magnetic resonance imaging and spectroscopy study. Ann Neurol. 2002;52:20–8.PubMedCrossRefGoogle Scholar
  26. 26.
    McCormick M, Hadley D, McLean JR, Macfarlane JA, Condon B, Muir KW. Randomized, controlled trial of insulin for acute poststroke hyperglycemia. Ann Neurol. 2010;67:570–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Muir KW. Heterogeneity of stroke pathophysiology and neuroprotective clinical trial design. Stroke. 2002;33:1545.PubMedCrossRefGoogle Scholar
  28. 28.
    An L, Dani KA, Shen J, Warach S, Investigator NNHS. Pilot results of in vivo brain glutathione measurements in stroke patients using magnetic resonance spectroscopy. Stroke.41:E386-E386Google Scholar
  29. 29.
    An L, Zhang Y, Thomasson DM, Latour LL, Baker EH, Shen J, et al. Measurement of glutathione in normal volunteers and stroke patients at 3T using J-difference spectroscopy with minimized subtraction errors. J Magn Reson Imaging. 2009;30:263–70.PubMedCrossRefGoogle Scholar
  30. 30.
    Zhang NY, Zhu XH, Lei H, Ugurbil K, Chen W. Simplified methods for calculating cerebral metabolic rate of oxygen based on o-17 magnetic resonance spectroscopic imaging measurement during a short o-17(0) inhalation. J Cereb Blood Flow Metab. 2004;24:840–8.PubMedCrossRefGoogle Scholar
  31. 31.
    de Crespigny AJ, D’Arceuil HE, Engelhorn T, Moseley ME. MRI of focal cerebral ischemia using O-17-labeled water. Magn Reson Med. 2000;43:876–83.PubMedCrossRefGoogle Scholar
  32. 32.
    Fiat D, Kang SH. Determination of the rate of cerebral oxygen-consumption and regional cerebral blood-flow by noninvasive O-17 in vivo NMR-spectroscopy and magnetic-resonance-imaging. 2. Determination of CMRO2 for the rat by O-17 NMR, and CMRO2, RCBF and the partition-coefficient for the cat by O-17 MRI. Neurol Res. 1993;15:7–22.PubMedGoogle Scholar
  33. 33.
    Zhu XH, Zhang Y, Tian RX, Lei H, Zhang NY, Zhang XL, et al. Development of O-17 NMR approach for fast imaging of cerebral metabolic rate of oxygen in rat brain at high field. Proc Natl Acad Sci USA. 2002;99:13194–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Mellon EA, Beesam RS, Elliott MA, Reddy R. Mapping of cerebral oxidative metabolism with MRI. Proc Natl Acad Sci U S A. 2010;107:11787–92.PubMedCrossRefGoogle Scholar
  35. 35.
    Fiat D, Hankiewicz J, Liu SY, Trbovic S, Brint S. O-17 magnetic resonance imaging of the human brain. Neurol Res. 2004;26:803–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Atkinson IC, Thulborn KR. Feasibility of mapping the tissue mass corrected bioscale of cerebral metabolic rate of oxygen consumption using 17-oxygen and 23-sodium MR imaging in a human brain at 9.4 T. Neuroimage. 2010;51:723–33.PubMedCrossRefGoogle Scholar
  37. 37.
    Atkinson IC, Sonstegaard R, Pliskin NH, Thulborn KR. Vital signs and cognitive function are not affected by 23-sodium and 17-oxygen magnetic resonance imaging of the human brain at 9.4 T. J Magn Reson Imaging. 2010;32:82–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Hoffman S, Begovatz P, Nagel A, Umathum R, Schommer K, Bachert P, et al. A measurement setup for direct 17O MRI at 7T. Magn Reson Med. 2011;000:000.Google Scholar
  39. 39.
    Zhu XH, Merkle H, Kwag JH, Ugurbil K, Chen W. O-17 relaxation time and NMR sensitivity of cerebral water and their field dependence. Magn Reson Med. 2001;45:543–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A. 1990;87:9868.PubMedCrossRefGoogle Scholar
  41. 41.
    Thulborn KR, Waterton JC, Matthews PM, Radda GK. Oxygenation dependence of the transverse relaxation-time of water protons in whole-blood at high-field. Biochim Biophys Acta. 1982;714:265–70.PubMedCrossRefGoogle Scholar
  42. 42.
    Wright GA, Hu BS, Macovski A. Estimating oxygen-saturation of blood in vivo with MR imaging at 1.5 T. J Magn Reson Imaging. 1991;1:275–83.PubMedCrossRefGoogle Scholar
  43. 43.
    Li DB, Wang Y, Waight DJ. Blood oxygen saturation assessment in vivo using T-2* estimation. Magn Reson Med. 1998;39:685–90.PubMedCrossRefGoogle Scholar
  44. 44.
    Turner R, Lebihan D, Moonen CTW, Despres D, Frank J. Echo-planar time course MRI of cat brain oxygenation changes. Magn Reson Med. 1991;22:159–66.PubMedCrossRefGoogle Scholar
  45. 45.
    Decrespigny AJ, Wendland MF, Derugin N, Kozniewska E, Moseley ME. Real-time observation of transient focal ischemia and hyperemia in cat brain. Magn Reson Med. 1992;27:391–7.CrossRefGoogle Scholar
  46. 46.
    Roussel SA, Vanbruggen N, King MD, Gadian DG. Identification of collaterally perfused areas following focal cerebral-ischemia in the rat by comparison of gradient-echo and diffusion-weighted MRI. J Cereb Blood Flow Metab. 1995;15:578–86.PubMedCrossRefGoogle Scholar
  47. 47.
    Dunn JF, Wadghiri YZ, Meyerand ME. Regional heterogeneity in the brain’s response to hypoxia measured using bold MR imaging. Magn Reson Med. 1999;41:850–4.PubMedCrossRefGoogle Scholar
  48. 48.
    Jones RA, Muller TB, Haraldseth O, Baptista AM, Oksendal AN. Cerebrovascular changes in rats during ischemia and reperfusion: A comparison of bold and first pass bolus tracking techniques. Magn Reson Med. 1996;35:489–96.PubMedCrossRefGoogle Scholar
  49. 49.
    Tamura H, Hatazawa J, Toyoshima H, Shimosegawa E, Okudera T, Tamura H, et al. Detection of deoxygenation-related signal change in acute ischemic stroke patients by T2*-weighted magnetic resonance imaging. Stroke. 2002;33:967–71.PubMedCrossRefGoogle Scholar
  50. 50.
    Wardlaw JM, von Heijne A. Increased oxygen extraction demonstrated on gradient echo (T2*) imaging in a patient with acute ischaemic stroke. Cerebrovasc Dis. 2006;22:456–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Geisler BS, Brandhoff F, Fiehler J, Saager C, Speck O, Rother J, et al. Blood-oxygen-level-dependent MRI allows metabolic description of tissue at risk in acute stroke patients. Stroke. 2006;37:1778–84.PubMedCrossRefGoogle Scholar
  52. 52.
    Yablonskiy DA, Haacke EM. Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med. 1994;32:749–63.PubMedCrossRefGoogle Scholar
  53. 53.
    An H, Lin W. Quantitative measurements of cerebral blood oxygen saturation using magnetic resonance imaging. J Cereb Blood Flow Metab. 2000;20:1225–36.PubMedCrossRefGoogle Scholar
  54. 54.
    An H, Lin W, Celik A, Lee YZ. Quantitative measurements of cerebral metabolic rate of oxygen utilization using MRI: a volunteer study. NMR Biomed. 2001;14:441–7.PubMedCrossRefGoogle Scholar
  55. 55.
    An H, Liu Q, Chen Y, Lin W, An H, Liu Q, et al. Evaluation of MR-derived cerebral oxygen metabolic index in experimental hyperoxic hypercapnia, hypoxia, and ischemia. Stroke. 2009;40:2165–72.PubMedCrossRefGoogle Scholar
  56. 56.
    Lee JM, Vo KD, An H, Celik A, Lee Y, Hsu CY, et al. Magnetic resonance cerebral metabolic rate of oxygen utilization in hyperacute stroke patients. Ann Neurol. 2003;53:227–32.PubMedCrossRefGoogle Scholar
  57. 57.
    Kavec M, Grohn OH, Kettunen MI, Silvennoinen MJ, Penttonen M, Kauppinen RA. Use of spin echo T(2) bold in assessment of cerebral misery perfusion at 1.5T. MAGMA. 2001;12:32–9.PubMedGoogle Scholar
  58. 58.
    Kettunen MI, Grohn OH, Silvennoinen MJ, Penttonen M, Kauppinen RA, Kettunen MI, et al. Quantitative assessment of the balance between oxygen delivery and consumption in the rat brain after transient ischemia with T2-BOLD magnetic resonance imaging. J Cereb Blood Flow Metab. 2002;22:262–70.PubMedCrossRefGoogle Scholar
  59. 59.
    Kavec M, Usenius JP, Tuunanen PI, Rissanen A, Kauppinen RA, Kavec M, et al. Assessment of cerebral hemodynamics and oxygen extraction using dynamic susceptibility contrast and spin echo blood oxygenation level-dependent magnetic resonance imaging: applications to carotid stenosis patients. Neuroimage. 2004;22:258–67.PubMedCrossRefGoogle Scholar
  60. 60.
    Santosh C, Brennan D, McCabe C, Macrae IM, Holmes WM, Graham DI, et al. Potential use of oxygen as a metabolic biosensor in combination with T2*-weighted MRI to define the ischemic penumbra. J Cereb Blood Flow Metab. 2008;28:1742–53.PubMedCrossRefGoogle Scholar
  61. 61.
    Robertson C, McCabe C, Gallagher L, Lopez-Gonzalez M, Condon B, Muir K, et al. Stroke penumbra defined by an MRI-based oxygen challenge technique: 2. Validation based on the consequences of reperfusion. J Cereb Blood Flow Metab. 2011;31(8):1788–98.PubMedCrossRefGoogle Scholar
  62. 62.
    Robertson C, McCabe C, Gallagher L, Lopez-Gonzalez M, Condon B, Muir K, et al. Stroke penumbra defined by an MRI-based oxygen challenge technique: 1. Validation using[14c]2-deoxyglucose autoradiography. J Cereb Blood Flow Metab. 2011;31(8):1778–87.PubMedCrossRefGoogle Scholar
  63. 63.
    Dani KA, Santosh C, Brennan D, McCabe C, Holmes WM, Condon B, et al. T2*-weighted magnetic resonance imaging with hyperoxia in acute ischemic stroke. Ann Neurol. 2010;68:37–47.PubMedCrossRefGoogle Scholar
  64. 64.
    Dani K, Santosh C, Brennan D, McCabe C, Holmes W, Condon B, et al. Oxygen challenge MRI may detect crossed cerebellar diaschsis. Stroke. 2011;42:E199.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Institute of Neuroscience and PsychologyUniversity of GlasgowGlasgowScotland

Personalised recommendations