Skip to main content

Angiogenesis and Arteriogenesis as Stroke Targets

  • Chapter
  • First Online:
Translational Stroke Research

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR))

Abstract

Stroke is the third leading cause of morbidity and long-term disability. Reestablishment of functional microvasculature such as promotion of angiogenesis and arteriogenesis in the ischemic border creates a hospitable microenvironment for neuronal plasticity leading to functional recovery. To capitalize on angiogenesis and arteriogenesis as therapeutic targets for stroke treatment, knowledge of the precise molecular mechanisms which stimulate these vascular processes is necessary. Vascular endothelial growth factor, its receptors, the Angiopoietin-1 (Ang1)/Tie2 system and endothelial nitric oxide synthase, among other angiogenic factors mediate and contribute to post-ischemic angiogenesis and arteriogenesis. This chapter reviews molecular mechanisms which promote angiogenesis and arteriogenesis following cerebral ischemia and the associated vascular remodeling effects of experimental pharmacological (Statins and Niaspan) and cellular (bone marrow stromal cells) approaches for the treatment of stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cronin CA. Intravenous tissue plasminogen activator for stroke: a review of the ECASS III results in relation to prior clinical trials. J Emerg Med. 2010;38(1):99–105.

    Article  PubMed  Google Scholar 

  2. Carpenter CR, et al. Thrombolytic therapy for acute ischemic stroke beyond three hours. J Emerg Med. 2011;40(1):82–92.

    Article  PubMed  Google Scholar 

  3. Katzan IL, et al. Utilization of intravenous tissue plasminogen activator for acute ischemic stroke. Arch Neurol. 2004;61(3):346–50.

    Article  PubMed  Google Scholar 

  4. Weimar C, et al. Intravenous thrombolysis in German stroke units before and after regulatory approval of recombinant tissue plasminogen activator. Cerebrovasc Dis. 2006;22(5–6):429–31.

    Article  PubMed  CAS  Google Scholar 

  5. Schwammenthal Y, et al. Trombolysis in acute stroke. Isr Med Assoc J. 2006;8(11):784–7.

    PubMed  Google Scholar 

  6. Pratt PF, Medhora M, Harder DR. Mechanisms regulating cerebral blood flow as therapeutic targets. Curr Opin Investig Drugs. 2004;5(9):952–6.

    PubMed  CAS  Google Scholar 

  7. Plate KH. Mechanisms of angiogenesis in the brain. J Neuropathol Exp Neurol. 1999;58(4):313–20.

    Article  PubMed  CAS  Google Scholar 

  8. Renner O, et al. Time- and cell type-specific induction of platelet-derived growth factor receptor-beta during cerebral ischemia. Brain Res Mol Brain Res. 2003;113(1–2):44–51.

    Article  PubMed  CAS  Google Scholar 

  9. Chen J, et al. Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res. 2003;92(6):692–9.

    Article  PubMed  CAS  Google Scholar 

  10. Krupinski J, et al. Role of angiogenesis in patients with cerebral ischemic stroke. Stroke. 1994;25(9):1794–8.

    Article  PubMed  CAS  Google Scholar 

  11. Wei L, et al. Collateral growth and angiogenesis around cortical stroke. Stroke. 2001;32(9):2179–84.

    Article  PubMed  CAS  Google Scholar 

  12. Christoforidis GA, et al. Angiographic assessment of pial collaterals as a prognostic indicator following intra-arterial thrombolysis for acute ischemic stroke. AJNR Am J Neuroradiol. 2005;26(7):1789–97.

    PubMed  Google Scholar 

  13. Liebeskind DS. Collaterals in acute stroke: beyond the clot. Neuroimaging Clin N Am. 2005;15(3):553–73, x.

    Google Scholar 

  14. Dor Y, Keshet E. Ischemia-driven angiogenesis. Trends Cardiovasc Med. 1997;7(8):289–94.

    Article  PubMed  CAS  Google Scholar 

  15. Risau W. Mechanisms of angiogenesis. Nature. 1997;386(6626):671–4.

    Article  PubMed  CAS  Google Scholar 

  16. Folkman J, D’Amore PA. Blood vessel formation: what is its molecular basis? Cell. 1996;87(7):1153–5.

    Article  PubMed  CAS  Google Scholar 

  17. Patan S. Vasculogenesis and angiogenesis. Cancer Treat Res. 2004;117:3–32.

    Article  PubMed  CAS  Google Scholar 

  18. Schaper W, Buschmann I. Arteriogenesis, the good and bad of it. Eur Heart J. 1999;20(18):1297–9.

    Article  PubMed  CAS  Google Scholar 

  19. Buschmann I, Schaper W. Arteriogenesis versus angiogenesis: two mechanisms of vessel growth. News Physiol Sci. 1999;14:121–5.

    PubMed  Google Scholar 

  20. Scholz D, Cai WJ, Schaper W. Arteriogenesis, a new concept of vascular adaptation in occlusive disease. Angiogenesis. 2001;4(4):247–57.

    Article  PubMed  CAS  Google Scholar 

  21. Buschmann I, Schaper W. The pathophysiology of the collateral circulation (arteriogenesis). J Pathol. 2000;190(3):338–42.

    Article  PubMed  CAS  Google Scholar 

  22. van Royen N, et al. Stimulation of arteriogenesis; a new concept for the treatment of arterial occlusive disease. Cardiovasc Res. 2001;49(3):543–53.

    Article  PubMed  Google Scholar 

  23. Seetharam D, et al. High-density lipoprotein promotes endothelial cell migration and reendothelialization via scavenger receptor-B type I. Circ Res. 2006;98(1):63–72.

    Article  PubMed  CAS  Google Scholar 

  24. Heil M, Schaper W. Influence of mechanical, cellular, and molecular factors on collateral artery growth (arteriogenesis). Circ Res. 2004;95(5):449–58.

    Article  PubMed  CAS  Google Scholar 

  25. Jalali S, et al. Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. Proc Natl Acad Sci USA. 2001;98(3):1042–6.

    Article  PubMed  CAS  Google Scholar 

  26. Cai WJ, et al. Activation of the integrins alpha 5beta 1 and alpha v beta 3 and focal adhesion kinase (FAK) during arteriogenesis. Mol Cell Biochem. 2009;322(1–2):161–9.

    Article  PubMed  CAS  Google Scholar 

  27. Chen KD, et al. Mechanotransduction in response to shear stress. Roles of receptor tyrosine kinases, integrins, and Shc. J Biol Chem. 1999;274(26):18393–400.

    Article  PubMed  CAS  Google Scholar 

  28. Chachisvilis M, Zhang YL, Frangos JA. G protein-coupled receptors sense fluid shear stress in endothelial cells. Proc Natl Acad Sci USA. 2006;103(42):15463–8.

    Article  PubMed  CAS  Google Scholar 

  29. Hoefer IE, et al. Arteriogenesis proceeds via ICAM-1/Mac-1- mediated mechanisms. Circ Res. 2004;94(9):1179–85.

    Article  PubMed  CAS  Google Scholar 

  30. Behm CZ, et al. Molecular imaging of endothelial vascular cell adhesion molecule-1 expression and inflammatory cell recruitment during vasculogenesis and ischemia-mediated arteriogenesis. Circulation. 2008;117(22):2902–11.

    Article  PubMed  CAS  Google Scholar 

  31. Hoefer IE, et al. Direct evidence for tumor necrosis factor-alpha signaling in arteriogenesis. Circulation. 2002;105(14):1639–41.

    Article  PubMed  CAS  Google Scholar 

  32. Kosaki K, et al. Fluid shear stress increases the production of granulocyte-macrophage colony-stimulating factor by endothelial cells via mRNA stabilization. Circ Res. 1998;82(7):794–802.

    Article  PubMed  CAS  Google Scholar 

  33. Buschmann IR, et al. GM-CSF: a strong arteriogenic factor acting by amplification of monocyte function. Atherosclerosis. 2001;159(2):343–56.

    Article  PubMed  CAS  Google Scholar 

  34. Cai WJ, et al. Expression of endothelial nitric oxide synthase in the vascular wall during arteriogenesis. Mol Cell Biochem. 2004;264(1–2):193–200.

    Article  PubMed  CAS  Google Scholar 

  35. Arras M, et al. Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J Clin Invest. 1998;101(1):40–50.

    Article  PubMed  CAS  Google Scholar 

  36. Schaper W, Scholz D. Factors regulating arteriogenesis. Arterioscler Thromb Vasc Biol. 2003;23(7):1143–51.

    Article  PubMed  CAS  Google Scholar 

  37. Suri C, et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell. 1996;87(7):1171–80.

    Article  PubMed  CAS  Google Scholar 

  38. Pfaff D, Fiedler U, Augustin HG. Emerging roles of the Angiopoietin-Tie and the ephrin-Eph systems as regulators of cell trafficking. J Leukoc Biol. 2006;80(4):719–26.

    Article  PubMed  CAS  Google Scholar 

  39. Marti HH, Risau W. Angiogenesis in ischemic disease. Thromb Haemost. 1999;82 Suppl 1:44–52.

    PubMed  Google Scholar 

  40. Nourhaghighi N, et al. Altered expression of angiopoietins during blood–brain barrier breakdown and angiogenesis. Lab Invest. 2003;83(8):1211–22.

    Article  PubMed  CAS  Google Scholar 

  41. Maisonpierre PC, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science. 1997;277(5322):55–60.

    Article  PubMed  CAS  Google Scholar 

  42. Tammela T, et al. Angiopoietin-1 promotes lymphatic sprouting and hyperplasia. Blood. 2005;105(12):4642–8.

    Article  PubMed  CAS  Google Scholar 

  43. Mochizuki Y, et al. Angiopoietin 2 stimulates migration and tube-like structure formation of murine brain capillary endothelial cells through c-Fes and c-Fyn. J Cell Sci. 2002;115(Pt 1):175–83.

    PubMed  CAS  Google Scholar 

  44. Nag S, Kapadia A, Stewart DJ. Review: molecular pathogenesis of blood–brain barrier breakdown in acute brain injury. Neuropathol Appl Neurobiol. 2011;37(1):3–23.

    Article  PubMed  CAS  Google Scholar 

  45. Hori S, et al. A pericyte-derived angiopoietin-1 multimeric complex induces occludin gene expression in brain capillary endothelial cells through Tie-2 activation in vitro. J Neurochem. 2004;89(2):503–13.

    Article  PubMed  CAS  Google Scholar 

  46. Iurlaro M, et al. Rat aorta-derived mural precursor cells express the Tie2 receptor and respond directly to stimulation by angiopoietins. J Cell Sci. 2003;116(Pt 17):3635–43.

    Article  PubMed  CAS  Google Scholar 

  47. Suri C, et al. Increased vascularization in mice overexpressing angiopoietin-1. Science. 1998;282(5388):468–71.

    Article  PubMed  CAS  Google Scholar 

  48. Zhang ZG, et al. Angiopoietin-1 reduces cerebral blood vessel leakage and ischemic lesion volume after focal cerebral embolic ischemia in mice. Neuroscience. 2002;113(3):683–7.

    Article  PubMed  CAS  Google Scholar 

  49. Thurston G, et al. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med. 2000;6(4):460–3.

    Article  PubMed  CAS  Google Scholar 

  50. Shim WS, et al. Angiopoietin-1 promotes functional neovascularization that relieves ischemia by improving regional reperfusion in a swine chronic myocardial ischemia model. J Biomed Sci. 2006;13(4):579–91.

    Article  PubMed  CAS  Google Scholar 

  51. Shyu KG, et al. Direct intramuscular injection of plasmid DNA encoding angiopoietin-1 but not angiopoietin-2 augments revascularization in the rabbit ischemic hindlimb. Circulation. 1998;98(19):2081–7.

    Article  PubMed  CAS  Google Scholar 

  52. Chae JK, et al. Coadministration of angiopoietin-1 and vascular endothelial growth factor enhances collateral vascularization. Arterioscler Thromb Vasc Biol. 2000;20(12):2573–8.

    Article  PubMed  CAS  Google Scholar 

  53. Siddiqui AJ, et al. Combination of angiopoietin-1 and vascular endothelial growth factor gene therapy enhances arteriogenesis in the ischemic myocardium. Biochem Biophys Res Commun. 2003;310(3):1002–9.

    Article  PubMed  CAS  Google Scholar 

  54. Namiecinska M, Marciniak K, Nowak JZ. VEGF as an angiogenic, neurotrophic, and neuroprotective factor. Postepy Hig Med Dosw (Online). 2005;59:573–83.

    Google Scholar 

  55. Ortega N, Hutchings H, Plouet J. Signal relays in the VEGF system. Front Biosci. 1999;4:D141–52.

    Article  PubMed  CAS  Google Scholar 

  56. Zhang Z, et al. VEGF-dependent tumor angiogenesis requires inverse and reciprocal regulation of VEGFR1 and VEGFR2. Cell Death Differ. 2010;17(3):499–512.

    Article  PubMed  CAS  Google Scholar 

  57. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9(6):669–76.

    Article  PubMed  CAS  Google Scholar 

  58. Hess AP, et al. Expression of the vascular endothelial growth factor receptor neuropilin-1 in the human endometrium. J Reprod Immunol. 2009;79(2):129–36.

    Article  PubMed  CAS  Google Scholar 

  59. Banerjee S, et al. VEGF-A165 induces human aortic smooth muscle cell migration by activating neuropilin-1-VEGFR1-PI3K axis. Biochemistry. 2008;47(11):3345–51.

    Article  PubMed  CAS  Google Scholar 

  60. Zhang ZG, et al. VEGF enhances angiogenesis and promotes blood–brain barrier leakage in the ischemic brain. J Clin Invest. 2000;106(7):829–38.

    Article  PubMed  CAS  Google Scholar 

  61. Manoonkitiwongsa PS, et al. Contraindications of VEGF-based therapeutic angiogenesis: effects on macrophage density and histology of normal and ischemic brains. Vascul Pharmacol. 2006;44(5):316–25.

    Article  PubMed  CAS  Google Scholar 

  62. Satchell SC, Anderson KL, Mathieson PW. Angiopoietin 1 and vascular endothelial growth factor modulate human glomerular endothelial cell barrier properties. J Am Soc Nephrol. 2004;15(3):566–74.

    Article  PubMed  CAS  Google Scholar 

  63. Valable S, et al. VEGF-induced BBB permeability is associated with an MMP-9 activity increase in cerebral ischemia: both effects decreased by Ang-1. J Cereb Blood Flow Metab. 2005;25(11):1491–504.

    Article  PubMed  CAS  Google Scholar 

  64. Hattori K, et al. Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med. 2001;193(9):1005–14.

    Article  PubMed  CAS  Google Scholar 

  65. Gluzman Z, et al. Endothelial cells are activated by angiopoeitin-1 gene transfer and produce coordinated sprouting in vitro and arteriogenesis in vivo. Biochem Biophys Res Commun. 2007;359(2):263–8.

    Article  PubMed  CAS  Google Scholar 

  66. Lee PC, et al. Impaired wound healing and angiogenesis in eNOS-deficient mice. Am J Physiol. 1999;277(4 Pt 2):H1600–8.

    PubMed  CAS  Google Scholar 

  67. Yu J, et al. Endothelial nitric oxide synthase is critical for ischemic remodeling, mural cell recruitment, and blood flow reserve. Proc Natl Acad Sci USA. 2005;102(31):10999–1004.

    Article  PubMed  CAS  Google Scholar 

  68. Jozkowicz A, et al. Genetic augmentation of nitric oxide synthase increases the vascular generation of VEGF. Cardiovasc Res. 2001;51(4):773–83.

    Article  PubMed  CAS  Google Scholar 

  69. Rudic RD, et al. Direct evidence for the importance of endothelium-derived nitric oxide in vascular remodeling. J Clin Invest. 1998;101(4):731–6.

    Article  PubMed  CAS  Google Scholar 

  70. Murohara T, et al. Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest. 1998;101(11):2567–78.

    Article  PubMed  CAS  Google Scholar 

  71. Lopez-Farre A, et al. Role of nitric oxide in the control of apoptosis in the microvasculature. Int J Biochem Cell Biol. 1998;30(10):1095–106.

    Article  PubMed  CAS  Google Scholar 

  72. Lee PC, et al. Nitric oxide induces angiogenesis and upregulates alpha(v)beta(3) integrin expression on endothelial cells. Microvasc Res. 2000;60(3):269–80.

    Article  PubMed  CAS  Google Scholar 

  73. Dulak J, et al. Nitric oxide induces the synthesis of vascular endothelial growth factor by rat vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2000;20(3):659–66.

    Article  PubMed  CAS  Google Scholar 

  74. Ziche M, et al. Nitric oxide promotes proliferation and plasminogen activator production by coronary venular endothelium through endogenous bFGF. Circ Res. 1997;80(6):845–52.

    Article  PubMed  CAS  Google Scholar 

  75. Michel JB. Role of endothelial nitric oxide in the regulation of the vasomotor system. Pathol Biol (Paris). 1998;46(3):181–9.

    CAS  Google Scholar 

  76. Kaur S, et al. Genetic engineering with endothelial nitric oxide synthase improves functional properties of endothelial progenitor cells from patients with coronary artery disease: an in vitro study. Basic Res Cardiol. 2009;104(6):739–49.

    Article  PubMed  Google Scholar 

  77. Yang HT, et al. Prior exercise training produces NO-dependent increases in collateral blood flow after acute arterial occlusion. Am J Physiol Heart Circ Physiol. 2002;282(1):H301–10.

    PubMed  CAS  Google Scholar 

  78. Michel JB. Role of endothelial nitric oxide in the regulation of arterial tone. Rev Prat. 1997;47(20):2251–6.

    PubMed  CAS  Google Scholar 

  79. Fulton D, et al. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature. 1999;399(6736):597–601.

    Article  PubMed  CAS  Google Scholar 

  80. Dai X, Faber JE. Endothelial nitric oxide synthase deficiency causes collateral vessel rarefaction and impairs activation of a cell cycle gene network during arteriogenesis. Circ Res. 2010;106(12):1870–81.

    Article  PubMed  CAS  Google Scholar 

  81. Brevetti LS, et al. Overexpression of endothelial nitric oxide synthase increases skeletal muscle blood flow and oxygenation in severe rat hind limb ischemia. J Vasc Surg. 2003;38(4):820–6.

    Article  PubMed  Google Scholar 

  82. Prior BM, et al. Arteriogenesis: role of nitric oxide. Endothelium. 2003;10(4–5):207–16.

    Article  PubMed  CAS  Google Scholar 

  83. Gertz K, et al. Physical activity improves long-term stroke outcome via endothelial nitric oxide synthase-dependent augmentation of neovascularization and cerebral blood flow. Circ Res. 2006;99(10):1132–40.

    Article  PubMed  CAS  Google Scholar 

  84. Cramer SC, Chopp M. Recovery recapitulates ontogeny. Trends Neurosci. 2000;23(6):265–71.

    Article  PubMed  CAS  Google Scholar 

  85. Landers M. Treatment-induced neuroplasticity following focal injury to the motor cortex. Int J Rehabil Res. 2004;27(1):1–5.

    Article  PubMed  Google Scholar 

  86. Cairns K, Finklestein SP. Growth factors and stem cells as treatments for stroke recovery. Phys Med Rehabil Clin N Am. 2003;14(1 Suppl):S135–42.

    Article  PubMed  Google Scholar 

  87. Hurtado O, et al. Neurorepair versus neuroprotection in stroke. Cerebrovasc Dis. 2006;21 Suppl 2:54–63.

    Article  PubMed  Google Scholar 

  88. Jacobson TA. Overcoming ‘ageism’ bias in the treatment of hypercholesterolaemia: a review of safety issues with statins in the elderly. Drug Saf. 2006;29(5):421–48.

    Article  PubMed  CAS  Google Scholar 

  89. Moonis M, et al. HMG-CoA reductase inhibitors improve acute ischemic stroke outcome. Stroke. 2005;36(6):1298–300.

    Article  PubMed  CAS  Google Scholar 

  90. Skaletz-Rorowski A, Walsh K. Statin therapy and angiogenesis. Curr Opin Lipidol. 2003;14(6):599–603.

    Article  PubMed  CAS  Google Scholar 

  91. Chen J, et al. Vascular endothelial growth factor mediates atorvastatin-induced mammalian achaete-scute homologue-1 gene expression and neuronal differentiation after stroke in retired breeder rats. Neuroscience. 2006;141(2):737–44.

    Article  PubMed  CAS  Google Scholar 

  92. Chen J, et al. Statins induce angiogenesis, neurogenesis, and synaptogenesis after stroke. Ann Neurol. 2003;53(6):743–51.

    Article  PubMed  CAS  Google Scholar 

  93. Sata M, et al. Statins augment collateral growth in response to ischemia but they do not promote cancer and atherosclerosis. Hypertension. 2004;43(6):1214–20.

    Article  PubMed  CAS  Google Scholar 

  94. Skaletz-Rorowski A, et al. The pro- and antiangiogenic effects of statins. Semin Vasc Med. 2004;4(4):395–400.

    Article  PubMed  Google Scholar 

  95. Urbich C, et al. Double-edged role of statins in angiogenesis signaling. Circ Res. 2002;90(6):737–44.

    Article  PubMed  CAS  Google Scholar 

  96. Walter DH, et al. Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation. 2002;105(25):3017–24.

    Article  PubMed  CAS  Google Scholar 

  97. Liao JK. Clinical implications for statin pleiotropy. Curr Opin Lipidol. 2005;16(6):624–9.

    Article  PubMed  CAS  Google Scholar 

  98. Chen J, et al. Atorvastatin induction of VEGF and BDNF promotes brain plasticity after stroke in mice. J Cereb Blood Flow Metab. 2005;25(2):281–90.

    Article  PubMed  CAS  Google Scholar 

  99. Dimmeler S, et al. HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest. 2001;108(3):391–7.

    PubMed  CAS  Google Scholar 

  100. Maeda T, Kawane T, Horiuchi N. Statins augment vascular endothelial growth factor expression in osteoblastic cells via inhibition of protein prenylation. Endocrinology. 2003;144(2):681–92.

    Article  PubMed  CAS  Google Scholar 

  101. Walter DH, Zeiher AM, Dimmeler S. Effects of statins on endothelium and their contribution to neovascularization by mobilization of endothelial progenitor cells. Coron Artery Dis. 2004;15(5):235–42.

    Article  PubMed  Google Scholar 

  102. Kureishi Y, et al. The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals. Nat Med. 2000;6(9):1004–10.

    Article  PubMed  CAS  Google Scholar 

  103. Khaidakov M, et al. Statins and angiogenesis: is it about connections? Biochem Biophys Res Commun. 2009;387(3):543–7.

    Article  PubMed  CAS  Google Scholar 

  104. Zacharek A, et al. Simvastatin increases notch signaling activity and promotes arteriogenesis after stroke. Stroke. 2009;40(1):254–60.

    Article  PubMed  CAS  Google Scholar 

  105. Lakhan SE, Bagchi S, Hofer M. Statins and clinical outcome of acute ischemic stroke: a systematic review. Int Arch Med. 2010;3:22.

    Article  PubMed  Google Scholar 

  106. Matsumura M, et al. Effects of atorvastatin on angiogenesis in hindlimb ischemia and endothelial progenitor cell formation in rats. J Atheroscler Thromb. 2009;16(4):319–26.

    Article  PubMed  CAS  Google Scholar 

  107. Llevadot J, et al. HMG-CoA reductase inhibitor mobilizes bone marrow—derived endothelial progenitor cells. J Clin Invest. 2001;108(3):399–405.

    PubMed  CAS  Google Scholar 

  108. Dimmeler S, Dernbach E, Zeiher AM. Phosphorylation of the endothelial nitric oxide synthase at ser-1177 is required for VEGF-induced endothelial cell migration. FEBS Lett. 2000;477(3):258–62.

    Article  PubMed  CAS  Google Scholar 

  109. Vasa M, et al. Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation. 2001;103(24):2885–90.

    Article  PubMed  CAS  Google Scholar 

  110. Newman GC, et al. Association of diabetes, homocysteine, and HDL with cognition and disability after stroke. Neurology. 2007;69(22):2054–62.

    Article  PubMed  CAS  Google Scholar 

  111. Sanossian N, et al. Do high-density lipoprotein cholesterol levels influence stroke severity? J Stroke Cerebrovasc Dis. 2006;15(5):187–9.

    Article  PubMed  Google Scholar 

  112. van Exel E, et al. Association between high-density lipoprotein and cognitive impairment in the oldest old. Ann Neurol. 2002;51(6):716–21.

    Article  PubMed  CAS  Google Scholar 

  113. Tanne D, Yaari S, Goldbourt U. High-density lipoprotein cholesterol and risk of ischemic stroke mortality. A 21-year follow-up of 8586 men from the Israeli Ischemic heart disease study. Stroke. 1997;28(1):83–7.

    Article  PubMed  CAS  Google Scholar 

  114. Zivkovic SA, et al. Rapidly progressive stroke in a young adult with very low high-density lipoprotein cholesterol. J Neuroimaging. 2000;10(4):233–6.

    PubMed  CAS  Google Scholar 

  115. Corti MC, et al. HDL cholesterol predicts coronary heart disease mortality in older persons. JAMA. 1995;274(7):539–44.

    Article  PubMed  CAS  Google Scholar 

  116. Weverling-Rijnsburger AW, et al. High-density vs low-density lipoprotein cholesterol as the risk factor for coronary artery disease and stroke in old age. Arch Intern Med. 2003;163(13):1549–54.

    Article  PubMed  CAS  Google Scholar 

  117. Mineo C, et al. Endothelial and antithrombotic actions of HDL. Circ Res. 2006;98(11):1352–64.

    Article  PubMed  CAS  Google Scholar 

  118. Kuvin JT, et al. A novel mechanism for the beneficial vascular effects of high-density lipoprotein cholesterol: enhanced vasorelaxation and increased endothelial nitric oxide synthase expression. Am Heart J. 2002;144(1):165–72.

    Article  PubMed  CAS  Google Scholar 

  119. Mineo C, et al. High density lipoprotein-induced endothelial nitric-oxide synthase activation is mediated by Akt and MAP kinases. J Biol Chem. 2003;278(11):9142–9.

    Article  PubMed  CAS  Google Scholar 

  120. Assanasen C, et al. Cholesterol binding, efflux, and a PDZ-interacting domain of scavenger receptor-BI mediate HDL-initiated signaling. J Clin Invest. 2005;115(4):969–77.

    PubMed  CAS  Google Scholar 

  121. Nofer JR, et al. HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3. J Clin Invest. 2004;113(4):569–81.

    PubMed  CAS  Google Scholar 

  122. Pu DR, Liu L. HDL slowing down endothelial progenitor cells senescence: a novel anti-atherogenic property of HDL. Med Hypotheses. 2008;70(2):338–42.

    Article  PubMed  CAS  Google Scholar 

  123. Zhang Q, et al. Essential role of HDL on endothelial progenitor cell proliferation with PI3K/Akt/cyclin D1 as the signal pathway. Exp Biol Med (Maywood). 2010;235(9):1082–92.

    Article  CAS  Google Scholar 

  124. Sumi M, et al. Reconstituted high-density lipoprotein stimulates differentiation of endothelial progenitor cells and enhances ischemia-induced angiogenesis. Arterioscler Thromb Vasc Biol. 2007;27(4):813–8.

    Article  PubMed  CAS  Google Scholar 

  125. Elam MB, et al. Effect of niacin on lipid and lipoprotein levels and glycemic control in patients with diabetes and peripheral arterial disease: the ADMIT study: a randomized trial. Arterial disease multiple intervention trial. JAMA. 2000;284(10):1263–70.

    Article  PubMed  CAS  Google Scholar 

  126. Schachter M. Strategies for modifying high-density lipoprotein cholesterol: a role for nicotinic acid. Cardiovasc Drugs Ther. 2005;19(6):415–22.

    Article  PubMed  CAS  Google Scholar 

  127. Shepherd J, Betteridge J, Van Gaal L. Nicotinic acid in the management of dyslipidaemia associated with diabetes and metabolic syndrome: a position paper developed by a European Consensus Panel. Curr Med Res Opin. 2005;21(5):665–82.

    Article  PubMed  CAS  Google Scholar 

  128. Kamanna VS, Kashyap ML. Mechanism of action of niacin. Am J Cardiol. 2008;101(8A):20B–6.

    Article  PubMed  CAS  Google Scholar 

  129. Jin FY, Kamanna VS, Kashyap ML. Niacin accelerates intracellular ApoB degradation by inhibiting triacylglycerol synthesis in human hepatoblastoma (HepG2) cells. Arterioscler Thromb Vasc Biol. 1999;19(4):1051–9.

    Article  PubMed  CAS  Google Scholar 

  130. Jin FY, Kamanna VS, Kashyap ML. Niacin decreases removal of high-density lipoprotein apolipoprotein A-I but not cholesterol ester by Hep G2 cells. Implication for reverse cholesterol transport. Arterioscler Thromb Vasc Biol. 1997;17(10):2020–8.

    Article  PubMed  CAS  Google Scholar 

  131. Rosenson RS. Antiatherothrombotic effects of nicotinic acid. Atherosclerosis. 2003;171(1):87–96.

    Article  PubMed  CAS  Google Scholar 

  132. Chen J, et al. Niaspan increases angiogenesis and improves functional recovery after stroke. Ann Neurol. 2007;62(1):49–58.

    Article  PubMed  CAS  Google Scholar 

  133. Chen J, et al. Niaspan treatment increases tumor necrosis factor-alpha-converting enzyme and promotes arteriogenesis after stroke. J Cereb Blood Flow Metab. 2009;29(5):911–20.

    Article  PubMed  CAS  Google Scholar 

  134. Chapman MJ. Therapeutic elevation of HDL-cholesterol to prevent atherosclerosis and coronary heart disease. Pharmacol Ther. 2006;111(3):893–908.

    Article  PubMed  CAS  Google Scholar 

  135. Toth PP. High-density lipoprotein as a therapeutic target: clinical evidence and treatment strategies. Am J Cardiol. 2005;96(9A):50K–8K; discussion 34K–5K.

    Google Scholar 

  136. Grundmann S, et al. Anti-tumor necrosis factor-{alpha} therapies attenuate adaptive arteriogenesis in the rabbit. Am J Physiol Heart Circ Physiol. 2005;289(4):H1497–505.

    Article  PubMed  CAS  Google Scholar 

  137. Edwards DR, Handsley MM, Pennington CJ. The ADAM metalloproteinases. Mol Aspects Med. 2008;29(5):258–89.

    Article  PubMed  CAS  Google Scholar 

  138. Garton KJ, et al. Stimulated shedding of vascular cell adhesion molecule 1 (VCAM-1) is mediated by tumor necrosis factor-alpha-converting enzyme (ADAM 17). J Biol Chem. 2003;278(39):37459–64.

    Article  PubMed  CAS  Google Scholar 

  139. Krause DS. Plasticity of marrow-derived stem cells. Gene Ther. 2002;9(11):754–8.

    Article  PubMed  CAS  Google Scholar 

  140. Menasche P. Cell transplantation for the treatment of heart failure. Semin Thorac Cardiovasc Surg. 2002;14(2):157–66.

    Article  PubMed  Google Scholar 

  141. Wang JS, et al. Marrow stromal cells for cellular cardiomyoplasty: feasibility and potential clinical advantages. J Thorac Cardiovasc Surg. 2000;120(5):999–1005.

    Article  PubMed  CAS  Google Scholar 

  142. Chen J, et al. Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. J Neurol Sci. 2001;189(1–2):49–57.

    Article  PubMed  CAS  Google Scholar 

  143. Li Y, et al. Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology. 2002;59(4):514–23.

    Article  PubMed  CAS  Google Scholar 

  144. Chen J, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke. 2001;32(4):1005–11.

    Article  PubMed  CAS  Google Scholar 

  145. Wu J, et al. Intravenously administered bone marrow cells migrate to damaged brain tissue and improve neural function in ischemic rats. Cell Transplant. 2008;16(10):993–1005.

    Article  PubMed  Google Scholar 

  146. Riess P, et al. Transplanted neural stem cells survive, differentiate, and improve neurological motor function after experimental traumatic brain injury. Neurosurgery. 2002;51(4):1043–52; discussion 1052–4.

    Google Scholar 

  147. Sanchez-Ramos J, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol. 2000;164(2):247–56.

    Article  PubMed  CAS  Google Scholar 

  148. Tang YL, et al. Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. Ann Thorac Surg. 2005;80(1):229–36; discussion 236–7.

    Google Scholar 

  149. Kinnaird T, et al. Bone marrow-derived cells for enhancing collateral development: mechanisms, animal data, and initial clinical experiences. Circ Res. 2004;95(4):354–63.

    Article  PubMed  CAS  Google Scholar 

  150. Ponte AL, et al. The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells. 2007;25(7):1737–45.

    Article  PubMed  CAS  Google Scholar 

  151. Wu Y, et al. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells. 2007;25(10):2648–59.

    Article  PubMed  CAS  Google Scholar 

  152. Kinnaird T, et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res. 2004;94(5):678–85.

    Article  PubMed  CAS  Google Scholar 

  153. Matsuda-Hashii Y, et al. Hepatocyte growth factor plays roles in the induction and autocrine maintenance of bone marrow stromal cell IL-11, SDF-1 alpha, and stem cell factor. Exp Hematol. 2004;32(10):955–61.

    Article  PubMed  CAS  Google Scholar 

  154. Annabi B, et al. Hypoxia promotes murine bone-marrow-derived stromal cell migration and tube formation. Stem Cells. 2003;21(3):337–47.

    Article  PubMed  CAS  Google Scholar 

  155. Zacharek A, et al. Angiopoietin1/Tie2 and VEGF/Flk1 induced by MSC treatment amplifies angiogenesis and vascular stabilization after stroke. J Cereb Blood Flow Metab. 2007;27(10):1684–91.

    Article  PubMed  CAS  Google Scholar 

  156. Chen J, et al. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res. 2003;73(6):778–86.

    Article  PubMed  CAS  Google Scholar 

  157. Al-Khaldi A, et al. Postnatal bone marrow stromal cells elicit a potent VEGF-dependent neoangiogenic response in vivo. Gene Ther. 2003;10(8):621–9.

    Article  PubMed  CAS  Google Scholar 

  158. Al-Khaldi A, et al. Therapeutic angiogenesis using autologous bone marrow stromal cells: improved blood flow in a chronic limb ischemia model. Ann Thorac Surg. 2003;75(1):204–9.

    Article  PubMed  Google Scholar 

  159. Cui X, et al. Chemokine, vascular and therapeutic effects of combination Simvastatin and BMSC treatment of stroke. Neurobiol Dis. 2009;36(1):35–41.

    Article  PubMed  CAS  Google Scholar 

  160. Eaves CJ, et al. Mechanisms that regulate the cell cycle status of very primitive hematopoietic cells in long-term human marrow cultures. II. Analysis of positive and negative regulators produced by stromal cells within the adherent layer. Blood. 1991;78(1):110–7.

    PubMed  CAS  Google Scholar 

  161. Majumdar MK, et al. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol. 1998;176(1):57–66.

    Article  PubMed  CAS  Google Scholar 

  162. Seshi B, Kumar S, Sellers D. Human bone marrow stromal cell: coexpression of markers specific for multiple mesenchymal cell lineages. Blood Cells Mol Dis. 2000;26(3):234–46.

    Article  PubMed  CAS  Google Scholar 

  163. Bang OY, et al. Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol. 2005;57(6):874–82.

    Article  PubMed  Google Scholar 

  164. Sykova E, et al. Bone marrow stem cells and polymer hydrogels-two strategies for spinal cord injury repair. Cell Mol Neurobiol. 2006;26(7–8):1113–29.

    PubMed  CAS  Google Scholar 

  165. Malgieri A, et al. Bone marrow and umbilical cord blood human mesenchymal stem cells: state of the art. Int J Clin Exp Med. 2010;3(4):248–69.

    PubMed  Google Scholar 

  166. Suarez-Monteagudo C, et al. Autologous bone marrow stem cell neurotransplantation in stroke patients. An open study. Restor Neurol Neurosci. 2009;27(3):151–61.

    PubMed  Google Scholar 

  167. Lee JS, et al. A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells. 2010;28(6):1099–106.

    Article  PubMed  Google Scholar 

  168. Chen J, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke. 2001;32(11):2682–8.

    Article  PubMed  CAS  Google Scholar 

  169. Newcomb JD, et al. Timing of cord blood treatment after experimental stroke determines therapeutic efficacy. Cell Transplant. 2006;15(3):213–23.

    Article  PubMed  Google Scholar 

  170. Zhang L, et al. Delayed administration of human umbilical tissue-derived cells improved neurological functional recovery in a rodent model of focal ischemia. Stroke. 2011;42(5):1437–44.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institute of Aging grant RO1 AG301811 (J.C) and R01-AG037506 (M.C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jieli Chen MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chen, J., Chopp, M. (2012). Angiogenesis and Arteriogenesis as Stroke Targets. In: Lapchak, P., Zhang, J. (eds) Translational Stroke Research. Springer Series in Translational Stroke Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9530-8_11

Download citation

Publish with us

Policies and ethics