Skip to main content

Green Electronics

  • Chapter
  • First Online:
  • 1925 Accesses

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

Abstract

Each chapter should be preceded by an abstract (10–15 lines long) that summarizes the content. The abstract will appear online at www.SpringerLink.com and be available with unrestricted access. This allows unregistered users to read the abstract as a teaser for the complete chapter. As a general rule the abstracts will not appear in the printed version of your book unless it is the style of your particular book or that of the series to which your book belongs. Please use the ‘starred’ version of the new Springer abstract command for typesetting the text of the online abstracts (cf. source file of this chapter template abstract) and include them with the source files of your manuscript. Use the plain abstract command if the abstract is also to appear in the printed version of the book.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Zeb (2004) The zebranet wildlife tracker. URL http://www.princeton.edu/~mrm/zebranet.html

  • OMA (2008) OMAP3430 Multimedia Applications Processor. Texas Instruments, URL http://focus.ti.com/pdfs/wtbu/ti_omap3430.pdf

  • TIC (2009) A USB enabled system-on-chip solution for 2.4-GHz IEEE 802.15.4 and Zigbee Applications. Texas Instruments, URL http://focus.ti.com/lit/ds/symlink/cc2531.pdf

  • MC1 (2010) Advanced Zigbee-compliant Platform-in-Package (PiP) for the 2.4 GHz IEEE 802.15.4 Standard. Freescale Semiconductor, URL http://www.freescale.com/files/rf_if/doc/data_sheet/MC1322x.pdf

  • Vit (2010) Global environment outlook: environment for development (geo-4). URL www.unep.org

  • EPA (2010) Green electronics. URL http://www.epa.gov/oaintrnt/practices/electronics.htm

  • STM (2010) High-performance, IEEE 802.15.4 wireless system-on-chip. STMicroelectronics, URL http://www.st.com/stonline/products/literature/ds/16252/stm32%w108cb.pdf

    Google Scholar 

  • NRE (2010) National renewable energy laboratory. URL www.nrel.gov

  • EER (2010) The office of energy efficiency and renewable energy. URL www.eere.energy.gov

  • TPS (2010) Power Management IC for Li-Ion Powered Systems. Texas Instruments, URL http://focus.ti.com/lit/ds/symlink/tps65023.pdf

  • Ene (2010) U.s. epa energy star program. URL http://www.energystar.gov/

  • Abedinpour S, Bakkaloglu B, Kiaei S (2007) A multistage interleaved synchronous buck converter with integrated output filter in 0.18 um SiGe process. IEEE Trans Power Electron 22(6): 2164–2175, DOI 10.1109/TPEL.2007.909288

    Google Scholar 

  • Al-Shyoukh M, Lee H, Perez R (2007) A transient-enhanced low-quiescent current low-dropout regulator with buffer impedance attenuation. IEEE J Solid-State Circuits 42(8):1732–1742, DOI 10.1109/JSSC.2007.900281

    Article  Google Scholar 

  • Allen PE, Holberg DR (2002) CMOS Analog Circuit Design, 2nd edn. Oxford University Press, USA

    Google Scholar 

  • Carlson E, Strunz K, Otis B (2010) A 20 mv input boost converter with efficient digital control for thermoelectric energy harvesting. IEEE J Solid-State Circuits 45(4):741–750, DOI 10.1109/JSSC.2010.2042251

    Article  Google Scholar 

  • Dayal R, Dwari S, Parsa L (2010) Design and implementation of a direct ac-dc boost converter for low voltage energy harvesting. IEEE Trans Ind Electron PP(99):1–1, DOI 10.1109/TIE.2010.2069074

    Google Scholar 

  • Erickson R, Maksimović D (2001) Fundamentals of power electronics, 2nd edn. Springer Netherlands

    Google Scholar 

  • Filani D, He J, Gao S, Rajappa M, Kumar A, Shah P, Nagappan R (2008) Dynamic data center power management: Trends, issues, and solutions. Intel Technology Journal 12(1):59–68

    Article  Google Scholar 

  • Gray PR, Hurst PJ, Lewis SH, Meyer RG (2001) Analysis and Design of Analog Integrated Circuits, 4th edn. John Wiley & Sons, Inc.

    Google Scholar 

  • Guilar N, Kleeburg T, Chen A, Yankelevich D, Amirtharajah R (2009) Integrated solar energy harvesting and storage. IEEE Trans VLSI Syst 17(5):627–637, DOI 10.1109/ TVLSI.2008.2006792

    Article  Google Scholar 

  • Hazucha P, Schrom G, Hahn J, Bloechel B, Hack P, Dermer G, Narendra S, Gardner D, Karnik T, De V, Borkar S (2005) A 233-mhz 80%-87% efficient four-phase dc-dc converter utilizing air-core inductors on package. IEEE J Solid-State Circuits 40(4):838–845, DOI 10.1109/JSSC.2004.842837

    Article  Google Scholar 

  • Huang MH, Chen KH (2009) Single-inductor multi-output (simo) dc-dc converters with high light-load efficiency and minimized cross-regulation for portable devices. IEEE J Solid-State Circuits 44(4):1099–1111, DOI 10.1109/JSSC.2009.2014726

    Article  Google Scholar 

  • Ipakchi A, Albuyeh F (2009) Grid of the future. IEEE Power Energy Mag 7(2):52–62, DOI 10.1109/MPE.2008.931384

    Article  Google Scholar 

  • Johns DA, Martin K (1997) Analog Integrated Circuit Design, 1st edn. John Wiley & Sons, Inc.

    Google Scholar 

  • Juang P, Oki H, Wang Y, Martonosi M, Peh L, Rubenstein D (2002) Energy-efficient computing for wildlife tracking: Design tradeoffs and early experiences with zebranet. In: Int. Conf. Architectural Support Programming Languages Operating Syst., DOI 10. 1109/ISCE.2009.5156963

    Google Scholar 

  • Kim S, Rincon-Mora G (2009) Single-inductor dual-input dual-output buck-boost fuel-cell-li-ion charging dc-dc converter supply. In: IEEE ISSCC Dig. Tech. Papers, pp 444–445,445a, DOI 10.1109/ISSCC.2009.4977499

    Google Scholar 

  • Le HP, Chae CS, Lee KC, Wang SW, Cho GH, Cho GH (2007) A single-inductor switching dc-dc converter with five outputs and ordered power-distributive control. IEEE J Solid-State Circuits 42(12):2706–2714, DOI 10.1109/JSSC.2007.908767

    Article  Google Scholar 

  • Le T, Mayaram K, Fiez T (2008) Efficient far-field radio frequency energy harvesting for passively powered sensor networks. IEEE J Solid-State Circuits 43(5):1287–1302, DOI 10.1109/JSSC.2008.920318

    Article  Google Scholar 

  • Lee CF, Mok P (2004) A monolithic current-mode cmos dc-dc converter with on-chip current-sensing technique. IEEE J Solid-State Circuits 39(1):3–14, DOI 10.1109/JSSC. 2003.820870

    Article  Google Scholar 

  • Lee TH (2003) The Design of CMOS Radio-Frequency Integrated Circuits, 2nd edn. Cambridge University Press

    Google Scholar 

  • Leung KN, Mok P (2003) A capacitor-free cmos low-dropout regulator with damping-factor-control frequency compensation. IEEE J Solid-State Circuits 38(10):1691–1702, DOI 10.1109/JSSC.2003.817256

    Article  Google Scholar 

  • Liserre M, Sauter T, Hung J (2010) Future energy systems: Integrating renewable energy sources into the smart power grid through industrial electronics. IEEE Ind Electron Mag 4(1):18–37, DOI 10.1109/MIE.2010.935861

    Article  Google Scholar 

  • Ma D, Ki WH, Tsui CY, Mok P (2003) Single-inductor multiple-output switching converters with time-multiplexing control in discontinuous conduction mode. IEEE J Solid-State Circuits 38(1):89–100, DOI 10.1109/JSSC.2002.806279

    Article  Google Scholar 

  • Martonosi M (2002) The wireless revolution. Tech. rep., Department of Electrical Engineering, Princeton University

    Google Scholar 

  • Meehan A, Gao H, Lewandowski Z (2010) Energy harvesting with microbial fuel cell and power management system. IEEE Trans Power Electron PP(99):1–1, DOI 10.1109/ TPEL.2010.2054114

    Google Scholar 

  • Milliken R, Silva-Martinez J, Sanchez-Sinencio E (2007) Full on-chip cmos low-dropout voltage regulator. IEEE Trans Circuits Syst I, Reg Papers 54(9):1879–1890, DOI 10. 1109/TCSI.2007.902615

    Article  Google Scholar 

  • Mohan N, Undeland TM, Robbins WP (2003) Power Electronics: Converters, Applications and Design, 3rd edn. John Wiley & Sons, Inc.

    Google Scholar 

  • MOSIS (2011) On semiconductor c5 process. URL http://www.mosis.com/on_semi/c5/

  • Murugesan S (2008) Harnessing green it: Principles and practices. IT Professional 10(1):24–33, DOI 10.1109/MITP.2008.10

    Article  Google Scholar 

  • Ogunseitan O, Schoenung J, Saphores J, Shapiro A (2009) The electronics revolution: from e-wonderland to e-wasteland. Science 326(5953):670

    Article  Google Scholar 

  • Patounakis G, Li Y, Shepard K (2004) A fully integrated on-chip dc-dc conversion and power management system. IEEE J Solid-State Circuits 39(3):443–451, DOI 10.1109/ JSSC.2003.822773

    Article  Google Scholar 

  • Ramadass Y, Chandrakasan A (2010) An efficient piezoelectric energy harvesting interface circuit using a bias-flip rectifier and shared inductor. IEEE J Solid-State Circuits 45(1):189–204, DOI 10.1109/JSSC.2009.2034442

    Article  Google Scholar 

  • Razavi B (1997) RF Microelectronics, 1st edn. Prentice Hall

    Google Scholar 

  • Razavi B (2001) Design of Analog CMOS Integrated Circuits, 1st edn. McGraw-Hill

    Google Scholar 

  • Reiter U (2009) Perceived quality in consumer electronics - from quality of service to quality of experience. In: Proc. IEEE Int. Symp. Consumer Electron. (ISCE), pp 958–961, DOI 10.1109/ISCE.2009.5156963

    Google Scholar 

  • Riley T, Copeland M, Kwasniewski T (1993) Delta-sigma modulation in fractional-n frequency synthesis. IEEE J Solid-State Circuits 28(5):553–559, DOI 10.1109/4.229400

    Article  Google Scholar 

  • Rincon-Mora G, Allen P (1998) A low-voltage, low quiescent current, low drop-out regulator. IEEE J Solid-State Circuits 33(1):36–44, DOI 10.1109/4.654935

    Article  Google Scholar 

  • Sahu B, Rincon-Mora G (2007) An accurate, low-voltage, cmos switching power supply with adaptive on-time pulse-frequency modulation (pfm) control. IEEE Trans Circuits Syst I, Reg Papers 54(2):312–321, DOI 10.1109/TCSI.2006.887472

    Article  Google Scholar 

  • Salerno DC, Jordan MG (2006) Methods and circuits for programmable automatic burst mode control using average output current

    Google Scholar 

  • Saphores J, Nixon H (2007) California households’ willingness to pay for greenelectronics. J Environmental Planning & Management 50(1):113–133

    Article  Google Scholar 

  • Schneiderman R (2010) Smart grid represents a potentially huge market for the electronics industry [special reports]. IEEE Sig Process Mag 27(5):8–15, DOI 10.1109/MSP.2010. 937501

    Article  MathSciNet  Google Scholar 

  • Shi C, Walker B, Zeisel E, Hu B, McAllister G (2007) A highly integrated power management ic for advanced mobile applications. IEEE J Solid-State Circuits 42(8):1723–1731, DOI 10.1109/JSSC.2007.900284

    Article  Google Scholar 

  • Shina SG (2008) Green Electronics Design and Manufacturing : Implementing Lead-Free and RoHS-Compliant Global Products. McGraw-Hill

    Google Scholar 

  • Staszewski R, Wallberg J, Rezeq S, Hung CM, Eliezer O, Vemulapalli S, Fernando C, Maggio K, Staszewski R, Barton N, Lee MC, Cruise P, Entezari M, Muhammad K, Leipold D (2005) All-digital pll and transmitter for mobile phones. IEEE J Solid-State Circuits 40(12):2469–2482, DOI 10.1109/JSSC.2005.857417

    Article  Google Scholar 

  • Torres EOT, Rincon-Mora GA (2010) A 0.7- m bicmos electrostatic energy-harvesting system ic. IEEE J Solid-State Circuits 45(2):483–496, DOI 10.1109/JSSC.2009.2038431

    Google Scholar 

  • de Vries RP (2010) Green chips: A new era for the semiconductor industry. In: Proc. IEEE 2010 Custom Integrated Circuits Conf., pp 1–2

    Google Scholar 

  • Wu R, Makinwa K, Huijsing J (2009) A chopper current-feedback instrumentation amplifier with a 1 mhz 1/f noise corner and an ac-coupled ripple reduction loop. IEEE J Solid-State Circuits 44(12):3232–3243, DOI 10.1109/JSSC.2009.2032710

    Article  Google Scholar 

  • Xiao J, Peterchev A, Zhang J, Sanders S (2004) A 4-ua quiescent-current dual-mode digitally controlled buck converter IC for cellular phone applications. IEEE J Solid-State Circuits 39(12):2342–2348, DOI 10.1109/JSSC.2004.836353

    Article  Google Scholar 

  • Yoo J, Yan L, Lee S, Kim Y, Yoo HJ (2010) A 5.2 mw self-configured wearable body sensor network controller and a 12 uw wirelessly powered sensor for a continuous health monitoring system. IEEE J Solid-State Circuits 45(1):178–188, DOI 10.1109/JSSC. 2009.2034440

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Hu .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer New York

About this chapter

Cite this chapter

Hu, J., Ismail, M. (2012). Green Electronics. In: CMOS High Efficiency On-chip Power Management. Analog Circuits and Signal Processing. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9526-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9526-1_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9525-4

  • Online ISBN: 978-1-4419-9526-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics