Skip to main content

Mechanisms of Memory and Learning in the Auditory System

  • Chapter
  • First Online:
Synaptic Mechanisms in the Auditory System

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 41))

Abstract

What are the cellular mechanisms underlying memory and learning? This question has puzzled scientists and philosophers from Aristotelis, who proposed the hypothesis that the heart is the site of learning (Aristotle 350 B.C.E), to John Locke and his wax tablet analogy (Locke 1689), to contemporary ideas regarding synaptic plasticity (Bliss and Lomo 1973). Indeed, long-term synaptic plasticity of synaptic transmission in the hippocampus is the leading experimental model for the synaptic changes that may underlie learning and memory. Activity-dependent long-lasting enhancement in synaptic strength (long-term potentiation, LTP) requires co-activation of a certain number of inputs (“cooperativity”). In addition, LTP exhibits “associativity,” meaning that when weak stimulation of one input is insufficient for the induction of LTP, simultaneous (associative) strong stimulation of another input will induce LTP in both inputs. Persistence, cooperativity, and associativity have rendered LTP a candidate mechanism supporting learning behaviors, beginning with studies in the 1970s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahissar, E., Vaadia, E., Ahissar, M., Bergman, H., Arieli, A., & Abeles, M. (1992). Dependence of cortical plasticity on correlated activity of single neurons and on behavioral context. Science, 257(5075), 1412–1415.

    PubMed  CAS  Google Scholar 

  • Akhoun, I., Gallego, S., Moulin, A., Menard, M., Veuillet, E., Berger-Vachon, C.,Collet, L., & Thai-Van, H. (2008). The temporal relationship between speech auditory brainstem responses and the acoustic pattern of the phoneme/ba/in normal-hearing adults. Clinical Neurophysiology, 119(4), 922–933.

    PubMed  CAS  Google Scholar 

  • Aristotle (350.B.C.E.) On the soul. The Internet Classics Archive.http://classics.mit.edu/Aristotle/soul.html . Translated by J. A. Smith. Accessed 2 September 2010.

  • Atzori, M., Kanold, P. O., Pineda, J. C., Flores-Hernandez, J., & Paz, R. D. (2005). Dopamine prevents muscarinic-induced decrease of glutamate release in the auditory cortex. Neuroscience, 134(4), 1153–1165.

    PubMed  CAS  Google Scholar 

  • Bakin, J. S., & Weinberger, N. M. (1990). Classical conditioning induces CS-specific receptive field plasticity in the auditory cortex of the guinea pig. Brain Research, 536(1–2), 271–286.

    PubMed  CAS  Google Scholar 

  • Bakin, J. S., & Weinberger, N. M. (1996). Induction of a physiological memory in the cerebral cortex by stimulation of the nucleus basalis. Proceedings of the National Academy of Sciences of the United States of America, 93(20), 11219–11224.

    PubMed  CAS  Google Scholar 

  • Bakin, J. S., Lepan, B., & Weinberger, N. M. (1992). Sensitization induced receptive field plasticity in the auditory cortex is independent of CS-modality. Brain Research, 577(2), 226–235.

    PubMed  CAS  Google Scholar 

  • Banai, K., Hornickel, J., Skoe, E., Nicol, T., Zecker, S., & Kraus, N. (2009). Reading and subcortical auditory function. Cerebral Cortex, 19(11), 2699–2707.

    PubMed  Google Scholar 

  • Bao, S., Chan, V. T., & Merzenich, M. M. (2001). Cortical remodelling induced by activity of ventral tegmental dopamine neurons. Nature, 412(6842), 79–83.

    PubMed  CAS  Google Scholar 

  • Bao, S., Chang, E. F., Woods, J., & Merzenich, M. M. (2004). Temporal plasticity in the primary auditory cortex induced by operant perceptual learning. Nature Neuroscience, 7(9), 974–981.

    PubMed  CAS  Google Scholar 

  • Bell, C. C., Han, V. Z., Sugawara, Y., & Grant, K. (1997). Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature, 387(6630), 278–281.

    PubMed  CAS  Google Scholar 

  • Bell, C. C., Han, V., & Sawtell, N. B. (2008). Cerebellum-like structures and their implications for cerebellar function. Annual Review of Neuroscience, 31, 1–24.

    PubMed  CAS  Google Scholar 

  • Bi, G.Q. & Poo, M.M. (1998). Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience, 18(24):10464–10472.

    PubMed  CAS  Google Scholar 

  • Bjordahl, T. S., Dimyan, M. A., & Weinberger, N. M. (1998). Induction of long-term receptive field plasticity in the auditory cortex of the waking guinea pig by stimulation of the nucleus basalis. Behavioral Neuroscience, 112(3), 467–479.

    PubMed  CAS  Google Scholar 

  • Bliss, T.V., & Gardner-Medwin, A.R. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the unanaestetized rabbit following stimulation of the perforant path. Journal of Physiology, 232(2), 357–374.

    PubMed  CAS  Google Scholar 

  • Bliss, T.V., & Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. Journal of Physiology, 232(2), 331–356.

    PubMed  CAS  Google Scholar 

  • Brown, M., Irvine, D. R., & Park, V. N. (2004). Perceptual learning on an auditory frequency discrimination task by cats: Association with changes in primary auditory cortex. Cerebral Cortex, 14(9), 952–965.

    PubMed  Google Scholar 

  • Butt, A. E., Chavez, C. M., Flesher, M. M., Kinney-Hurd, B. L., Araujo, G. C., Miasnikov, A. A., & Weinberger, N.M.. (2009). Association learning-dependent increases in acetylcholine release in the rat auditory cortex during auditory classical conditioning. Neurobiology of Learning and Memory, 92(3), 400–409.

    PubMed  CAS  Google Scholar 

  • Chang, E. F., & Merzenich, M. M. (2003). Environmental noise retards auditory cortical development. Science, 300(5618), 498–502.

    PubMed  CAS  Google Scholar 

  • Chang, E. H., Kotak, V. C., & Sanes, D. H. (2003). Long-term depression of synaptic inhibition is expressed postsynaptically in the developing auditory system. Journal of Neurophysiology, 90(3), 1479–1488.

    PubMed  CAS  Google Scholar 

  • Condon, C. D., & Weinberger, N. M. (1991). Habituation produces frequency-specific plasticity of receptive fields in the auditory cortex. Behavioral Neuroscience, 105(3), 416–430.

    PubMed  CAS  Google Scholar 

  • Cunningham, J., Nicol, T., Zecker, S. G., Bradlow, A., & Kraus, N. (2001). Neurobiologic responses to speech in noise in children with learning problems: Deficits and strategies for improvement. Clinical Neurophysiology, 112(5), 758–767.

    PubMed  CAS  Google Scholar 

  • Dahmen, J. C., Hartley, D. E., & King, A. J. (2008). Stimulus-timing-dependent plasticity of cortical frequency representation. Journal of Neuroscience, 28(50), 13629–13639.

    PubMed  CAS  Google Scholar 

  • de Boer, J., & Thornton, A. R. (2008). Neural correlates of perceptual learning in the auditory brainstem: efferent activity predicts and reflects improvement at a speech-in-noise discrimination task. Journal of Neuroscience, 28(19), 4929–4937.

    PubMed  Google Scholar 

  • de Villers-Sidani, E., Chang, E. F., Bao, S., & Merzenich, M. M. (2007). Critical period window for spectral tuning defined in the primary auditory cortex (A1) in the rat. Journal of Neuroscience, 27(1), 180–189.

    PubMed  Google Scholar 

  • de Villers-Sidani, E., Simpson, K. L., Lu, Y. F., Lin, R. C., & Merzenich, M. M. (2008). Manipulating critical period closure across different sectors of the primary auditory cortex. Nature Neuroscience, 11(8), 957–965.

    PubMed  Google Scholar 

  • Dimyan, M. A., & Weinberger, N. M. (1999). Basal forebrain stimulation induces discriminative receptive field plasticity in the auditory cortex. Behavioral Neuroscience, 113(4), 691–702.

    PubMed  CAS  Google Scholar 

  • Edeline, J. M. (2003). The thalamo-cortical auditory receptive fields: Regulation by the states of vigilance, learning and the neuromodulatory systems. Experimental Brain Research, 153(4), 554–572.

    Google Scholar 

  • Elhilali, M., Fritz, J. B., Chi, T. S., & Shamma, S. A. (2007) Auditory cortical receptive fields: Stable entities with plastic abilities. Journal of Neuroscience 27(39), 10372–10382.

    PubMed  CAS  Google Scholar 

  • Ellinwood, E. H., Cook, J. D., & Wiilson, W. P. (1968). Habituation of evoked response to uniaural clicks. Brain Research, 7(2), 306–309.

    PubMed  CAS  Google Scholar 

  • Engineer, N. D., Percaccio, C. R., Pandya, P. K., Moucha, R., Rathbun, D. L., & Kilgard, M. P. (2004). Environmental enrichment improves response strength, threshold, selectivity, and latency of auditory cortex neurons. Journal of Neurophysiology, 92(1), 73–82.

    PubMed  Google Scholar 

  • Feldman, D.E. (2000). Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in the rat barrel cortex. Neuron, 27(1):45–56.

    PubMed  CAS  Google Scholar 

  • Feldman, D. E. (2009). Synaptic mechanisms for plasticity in neocortex. Annual Review of Neuroscience, 32, 33–55.

    PubMed  CAS  Google Scholar 

  • Flores-Hernandez, J., Salgado, H., De La Rosa, V., Avila-Ruiz, T., Torres-Ramirez, O., Lopez-Lopez, G., & Atzori, M. (2009). Cholinergic direct inhibition of N-methyl-D aspartate receptor-mediated currents in the rat neocortex. Synapse, 63(4), 308–318.

    PubMed  CAS  Google Scholar 

  • Fritz, J. B., Elhilali, M., David, S. V., & Shamma, S. A. (2007a). Auditory attention – focusing the searchlight on sound. Current Opinion in Neurobiology, 17(4), 437–455.

    PubMed  CAS  Google Scholar 

  • Fritz, J. B., Elhilali, M., & Shamma, S. A. (2007b). Adaptive changes in cortical receptive fields induced by attention to complex sounds. Journal of Neurophysiology, 98(4), 2337–2346.

    PubMed  Google Scholar 

  • Froemke, R.C. & Dan, Y. (2002). Spike-timing-dependent synaptic modification induced by natural spike trains. Nature, 416(6879):433–438.

    PubMed  CAS  Google Scholar 

  • Froemke, R. C., Merzenich, M. M., & Schreiner, C. E. (2007). A synaptic memory trace for cortical receptive field plasticity. Nature, 450(7168), 425–429.

    PubMed  CAS  Google Scholar 

  • Fujino, K., & Oertel, D. (2003). Bidirectional synaptic plasticity in the cerebellum-like mammalian dorsal cochlear nucleus. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 265–270.

    PubMed  CAS  Google Scholar 

  • Galambos, R., Sheatz, G., & Vernier, V. G. (1956). Electrophysiological correlates of a conditioned response in cats. Science, 123(3192), 376–377.

    PubMed  CAS  Google Scholar 

  • Galbraith, G. C., Bhuta, S. M., Choate, A. K., Kitahara, J. M., & Mullen, T. A. Jr. (1998). Brain stem frequency-following response to dichotic vowels during attention. Neuroreport, 9(8), 1889–1893.The title is correct (Brains stem)

    PubMed  CAS  Google Scholar 

  • Galbraith, G. C., Amaya, E. M., de Rivera, J. M., Donan, N. M., Duong, M. T., Hsu, J. N., Tran, K. & Tsang, L.P.. (2004). Brain stem evoked response to forward and reversed speech in humans. Neuroreport, 15(13), 2057–2060. The title is correct (Brains stem)

    PubMed  Google Scholar 

  • Galvan, V. V., Chen, J., & Weinberger, N. M. (2001). Long-term frequency tuning of local field potentials in the auditory cortex of the waking guinea pig. Journal of the Association for Research in Otolaryngology, 2(3), 199–215.

    PubMed  CAS  Google Scholar 

  • Gillespie, D. C., Kim, G., & Kandler, K. (2005). Inhibitory synapses in the developing auditory system are glutamatergic. Nature Neuroscience, 8(3), 332–338.

    PubMed  CAS  Google Scholar 

  • Gustafsson, B., Wigström, H., Abraham, W.C., & Huang, Y.Y. (1987) Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials. Journal of Neuroscience, 7(3):774–80.

    PubMed  CAS  Google Scholar 

  • Harvey-Girard, E., Lewis, J., and Maler, L. (2010) Burst-induced anti-Hebbian depression acts through short-term synaptic dynamics to cancel redundant sensory signals. Journal of Neuroscience, 30(17), 6152–6169

    PubMed  CAS  Google Scholar 

  • Hasselmo, M. E. (2006). The role of acetylcholine in learning and memory. Current Opinion in Neurobiology, 16(6), 710–715.

    PubMed  CAS  Google Scholar 

  • Hermann, J., Pecka, M., von Gersdorff, H., Grothe, B., & Klug, A. (2007). Synaptic transmission at the calyx of Held under in vivo like activity levels. Journal of Neurophysiology, 98(2), 807–820.

    PubMed  Google Scholar 

  • Hogsden, J. L., & Dringenberg, H. C. (2009a). Decline of long-term potentiation (LTP) in the rat auditory cortex in vivo during postnatal life: Involvement of NR2B subunits. Brain Research, 1283, 25–33.

    PubMed  CAS  Google Scholar 

  • Hogsden, J. L., & Dringenberg, H. C. (2009b). NR2B subunit-dependent long-term potentiation enhancement in the rat cortical auditory system in vivo following masking of patterned auditory input by white noise exposure during early postnatal life. European Journal of Neuroscience, 30(3), 376–384.

    PubMed  Google Scholar 

  • Insanally, M. N., Kover, H., Kim, H., & Bao, S. (2009). Feature-dependent sensitive periods in the development of complex sound representation. Journal of Neuroscience, 29(17), 5456–5462.

    PubMed  CAS  Google Scholar 

  • Jacob, V., Brasier, D. J., Erchova, I., Feldman, D., & Shulz, D. E. (2007). Spike timing-dependent synaptic depression in the in vivo barrel cortex of the rat. Journal of Neuroscience, 27(6), 1271–1284.

    PubMed  CAS  Google Scholar 

  • Kaltenbach, J. A., & Godfrey, D. A. (2008). Dorsal cochlear nucleus hyperactivity and tinnitus: Are they related? American Journal of Audiology, 17(2), S148–161.

    PubMed  Google Scholar 

  • Kawai, H., Lazar, R., & Metherate, R. (2007). Nicotinic control of axon excitability regulates thalamocortical transmission. Nature Neuroscience, 10(9), 1168–1175.

    PubMed  CAS  Google Scholar 

  • Keuroghlian, A. S., & Knudsen, E. I. (2007). Adaptive auditory plasticity in developing and adult animals. Progress in Neurobiology, 82(3), 109–121.

    PubMed  Google Scholar 

  • Kilgard, M. P., & Merzenich, M. M. (1998). Cortical map reorganization enabled by nucleus basalis activity. Science, 279(5357), 1714–1718.

    PubMed  CAS  Google Scholar 

  • Kim, G., & Kandler, K. (2003). Elimination and strengthening of glycinergic/GABAergic connections during tonotopic map formation. Nature Neuroscience, 6(3), 282–290.

    PubMed  CAS  Google Scholar 

  • Kisley, M. A., & Gerstein, G. L. (2001). Daily variation and appetitive conditioning-induced plasticity of auditory cortex receptive fields. European Journal of Neuroscience, 13(10), 1993–2003.

    PubMed  CAS  Google Scholar 

  • Knudsen, E. I. (2004). Sensitive periods in the development of the brain and behavior. Journal of Cognitive Neuroscience, 16(8), 1412–1425.

    PubMed  Google Scholar 

  • Kotak, V. C., DiMattina, C., & Sanes, D. H. (2001). GABA(B) and Trk receptor signaling mediates long-lasting inhibitory synaptic depression. Journal of Neurophysiology, 86(1), 536–540.

    PubMed  CAS  Google Scholar 

  • Kotak, V. C., Fujisawa, S., Lee, F. A., Karthikeyan, O., Aoki, C., & Sanes, D. H. (2005). Hearing loss raises excitability in the auditory cortex. Journal of Neuroscience, 25(15), 3908–3918.

    PubMed  CAS  Google Scholar 

  • Kotak, V. C., Breithaupt, A. D., & Sanes, D. H. (2007). Developmental hearing loss eliminates long-term potentiation in the auditory cortex. Proceedings of the National Academy of Sciences of the United States of America, 104(9), 3550–3555.

    PubMed  CAS  Google Scholar 

  • Kraus, N., & Nicol, T. (2005). Brainstem origins for cortical “what” and “where” pathways in the auditory system. Trends in Neurosciences, 28(4), 176–181.

    PubMed  CAS  Google Scholar 

  • Krishnan, A., Xu, Y., Gandour, J., & Cariani, P. (2005). Encoding of pitch in the human brainstem is sensitive to language experience. Brain Research Cognitive Brain Research, 25(1), 161–168.

    PubMed  Google Scholar 

  • Kubota, M., Sugimoto, S., Horikawa, J., Nasu, M., Taniguchi, I. (1997) Optical imaging of dynamic horizontal spread of excitation in rat auditory cortex slices. Neuroscience Letters, 237(2–3):77–80.

    PubMed  CAS  Google Scholar 

  • Kudoh, M., & Shibuki, K. (1994). Long-term potentiation in the auditory cortex of adult rats. Neuroscience Letters, 171(1–2), 21–23.

    PubMed  CAS  Google Scholar 

  • Kudoh, M., & Shibuki, K. (1996). Long-term potentiation of supragranular pyramidal outputs in the rat auditory cortex. Experimental Brain Research, 110(1), 21–27.

    CAS  Google Scholar 

  • Kudoh, M., & Shibuki, K. (1997). Importance of polysynaptic inputs and horizontal connectivity in the generation of tetanus-induced long-term potentiation in the rat auditory cortex. Journal of Neuroscience, 17(24), 9458–9465.

    PubMed  CAS  Google Scholar 

  • Kudoh, M., & Shibuki, K. (2006). Sound sequence discrimination learning motivated by reward requires dopaminergic D2 receptor activation in the rat auditory cortex. Learning and Memory, 13(6), 690–698.

    PubMed  CAS  Google Scholar 

  • Kudoh, M., Sakai, M., & Shibuki, K. (2002). Differential dependence of LTD on glutamate receptors in the auditory cortical synapses of cortical and thalamic inputs. Journal of Neurophysiology, 88(6), 3167–3174.

    PubMed  CAS  Google Scholar 

  • Levy, W.B, & Steward, O. (1983). Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus. Neuroscience, 8(4):791–7.

    PubMed  CAS  Google Scholar 

  • Locke, J. (1689). An Essay Concerning Human Understanding. Nidditch, P.H. (ed.) (1975). New York: Oxford University Press.

    Google Scholar 

  • Lorteije, J.A., Rusu, S.I., Kushmerick, C., & Borst, J.G. (2009). Reliability and precision of the mouse calyx of Held synapse. Journal of Neuroscience, 29(44):13770–13784.

    PubMed  CAS  Google Scholar 

  • Magee, J. C., & Johnston, D. (1997). A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science, 275(5297), 209–213.

    PubMed  CAS  Google Scholar 

  • Malenka, R. C., & Bear, M. F. (2004). LTP and LTD: An embarrassment of riches. Neuron, 44(1), 5–21.

    PubMed  CAS  Google Scholar 

  • Mao, Y., Zang, S., Zhang, J., & Sun, X. (2006). Early chronic blockade of NR2B subunits and transient activation of NMDA receptors modulate LTP in mouse auditory cortex. Brain Research, 1073–1074, 131–138.

    PubMed  Google Scholar 

  • Markram, H., Lubke, J., Frotscher, M., & Sakmann, B. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science, 275(5297), 213–215.

    PubMed  CAS  Google Scholar 

  • McLin, D. E. III, Miasnikov, A. A., & Weinberger, N. M. (2002). Induction of behavioral associative memory by stimulation of the nucleus basalis. Proceedings of the National Academy of Sciences of the United States of America, 99(6), 4002–4007.

    PubMed  CAS  Google Scholar 

  • Meliza, C. D., & Dan, Y. (2006). Receptive-field modification in rat visual cortex induced by paired visual stimulation and single-cell spiking. Neuron, 49(2), 183–189.

    PubMed  CAS  Google Scholar 

  • Metherate, R. (2004). Nicotinic acetylcholine receptors in sensory cortex. Learning and Memory, 11(1), 50–59.

    PubMed  Google Scholar 

  • Metherate, R., & Ashe, J. H. (1993). Ionic flux contributions to neocortical slow waves and nucleus basalis-mediated activation: Whole-cell recordings in vivo. Journal of Neuroscience, 13(12), 5312–5323.

    PubMed  CAS  Google Scholar 

  • Metherate, R., & Ashe, J. H. (1995). Synaptic interactions involving acetylcholine, glutamate, and GABA in rat auditory cortex. Experimental Brain Research, 107(1), 59–72.

    CAS  Google Scholar 

  • Metherate, R., & Hsieh, C.Y.(2003) Regulation of glutamate synapses by nicotinic acetylcholine receptors in auditory cortex. Neurobiology of Learning and Memory, 80(3):285–290

    PubMed  CAS  Google Scholar 

  • Metherate, R., Cox, C. L., & Ashe, J. H. (1992). Cellular bases of neocortical activation: Modulation of neural oscillations by the nucleus basalis and endogenous acetylcholine. Journal of Neuroscience, 12(12), 4701–4711.

    PubMed  CAS  Google Scholar 

  • Metherate, R., Kaur, S., Kawai, H., Lazar, R., Liang, K., & Rose, H. J. (2005). Spectral integration in auditory cortex: Mechanisms and modulation. Hearing Research, 206(1–2), 146–158.

    PubMed  Google Scholar 

  • Miasnikov, A. A., McLin, D. III, & Weinberger, N. M. (2001). Muscarinic dependence of nucleus basalis induced conditioned receptive field plasticity. Neuroreport, 12(7), 1537–1542.

    PubMed  CAS  Google Scholar 

  • Miasnikov, A. A., Chen, J. C., & Weinberger, N. M. (2008). Specific auditory memory induced by nucleus basalis stimulation depends on intrinsic acetylcholine. Neurobiology of Learning and Memory, 90(2), 443–454.

    PubMed  CAS  Google Scholar 

  • Mu, Y., & Poo, M. M. (2006). Spike timing-dependent LTP/LTD mediates visual experience. Neuron, 50(1):115–125.

    PubMed  CAS  Google Scholar 

  • Musacchia, G., Sams, M., Skoe, E., & Kraus, N. (2007). Musicians have enhanced subcortical auditory and audiovisual processing of speech and music. Proceedings of the National Academy of Sciences of the United States of America, 104(40), 15894–15898.

    PubMed  CAS  Google Scholar 

  • Nichols, J. A., Jakkamsetti, V. P., Salgado, H., Dinh, L., Kilgard, M. P., & Atzori, M. (2007). Environmental enrichment selectively increases glutamatergic responses in layer II/III of the auditory cortex of the rat. Neuroscience, 145(3), 832–840.

    PubMed  CAS  Google Scholar 

  • Norena, A. J., Gourevitch, B., Aizawa, N., & Eggermont, J. J. (2006). Spectrally enhanced acoustic environment disrupts frequency representation in cat auditory cortex. Nature Neuroscience, 9(7), 932–939.

    PubMed  CAS  Google Scholar 

  • Ohl, F. W., & Scheich, H. (1996). Differential frequency conditioning enhances spectral contrast sensitivity of units in auditory cortex (field Al) of the alert Mongolian gerbil. European Journal of Neuroscience, 8(5), 1001–1017.

    PubMed  CAS  Google Scholar 

  • Ohl, F. W., & Scheich, H. (1997). Learning-induced dynamic receptive field changes in primary auditory cortex of the unanaesthetized Mongolian gerbil. Journal of Comparative Physiology[A], 181(6), 685–696.

    CAS  Google Scholar 

  • Ohl, F. W., & Scheich, H. (2005). Learning-induced plasticity in animal and human auditory cortex. Current Opinion in Neurobiology, 15(4), 470–477.

    PubMed  CAS  Google Scholar 

  • Ohyama, T., Nores, W. L., Murphy, M., and Mauk, M. D. (2003). What the cerebellum computes. Trends in Neurosciences, 26(4), 222–227.

    PubMed  CAS  Google Scholar 

  • Percaccio, C. R., Pruette, A. L., Mistry, S. T., Chen, Y. H., & Kilgard, M. P. (2007). Sensory experience determines enrichment-induced plasticity in rat auditory cortex. Brain Research, 1174, 76–91.

    PubMed  CAS  Google Scholar 

  • Polley, D. B., Steinberg, E. E., & Merzenich, M. M. (2006). Perceptual learning directs auditory cortical map reorganization through top-down influences. Journal of Neuroscience, 26(18), 4970–4982.

    PubMed  CAS  Google Scholar 

  • Recanzone, G. H., Schreiner, C. E., & Merzenich, M. M. (1993). Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. Journal of Neuroscience, 13(1), 87–103.

    PubMed  CAS  Google Scholar 

  • Rudy, B., & McBain, C. J. (2001). Kv3 channels: Voltage-gated K+  channels designed for high-frequency repetitive firing. Trends in Neurosciences, 24(9), 517–526.

    PubMed  CAS  Google Scholar 

  • Russo, N. M., Nicol, T. G., Zecker, S. G., Hayes, E. A., & Kraus, N. (2005). Auditory training improves neural timing in the human brainstem. Behavioral Brain Research, 156(1), 95–103.

    Google Scholar 

  • Russo, N. M., Skoe, E., Trommer, B., Nicol, T., Zecker, S., Bradlow, A., & Kraus, N.. (2008). Deficient brainstem encoding of pitch in children with Autism Spectrum Disorders. Clinical Neurophysiology, 119(8), 1720–1731.

    PubMed  CAS  Google Scholar 

  • Rutkowski, R. G., & Weinberger, N. M. (2005). Encoding of learned importance of sound by magnitude of representational area in primary auditory cortex. Proceedings of the National Academy of Sciences of the United States of America, 102(38), 13664–13669.

    PubMed  CAS  Google Scholar 

  • Salgado, H., Bellay, T., Nichols, J. A., Bose, M., Martinolich, L., Perrotti, L., & Atzori, M.(2007). Muscarinic M2 and M1 receptors reduce GABA release by Ca2+ channel modulation through activation of PI3K/Ca2+-independent and PLC/Ca2+-dependent PKC. Journal of Neurophysiology, 98(2), 952–965.

    PubMed  CAS  Google Scholar 

  • Sanes, D. H., & Siverls, V. (1991). Development and specificity of inhibitory terminal arborizations in the central nervous system. Journal of Neurobiology, 22(8), 837–854.

    PubMed  CAS  Google Scholar 

  • Sanes, D. H., Song, J., & Tyson, J. (1992). Refinement of dendritic arbors along the tonotopic axis of the gerbil lateral superior olive. Brain Research Developmental Brain Research, 67(1), 47–55. <<au: journal title as meant?>  >  yes

    PubMed  CAS  Google Scholar 

  • Sawtell, N.B. (2010). Multimodal integration in granule cells as a basis for associative plasticity and sensory prediction in a cerebellum-like circuit. Neuron, 66(4):573–584.

    PubMed  CAS  Google Scholar 

  • Schicknick, H., Schott, B. H., Budinger, E., Smalla, K. H., Riedel, A., Seidenbecher, C. I., Scheich, H, Gundelfinger, E. D., & Tischmeyer, W. (2008). Dopaminergic modulation of auditory cortex–dependent memory consolidation through mTOR. Cerebral Cortex, 18(11), 2646–2658.

    PubMed  Google Scholar 

  • Schreiner, C. E., & Winer, J. A. (2007). Auditory cortex mapmaking: Principles, projections, and plasticity. Neuron, 56(2), 356–365.

    PubMed  CAS  Google Scholar 

  • Schultz, W. (2001). Reward signaling by dopamine neurons. Neuroscientist, 7(4), 293–302.

    PubMed  CAS  Google Scholar 

  • Seki, K., Kudoh, M., & Shibuki, K. (2003). Polysynaptic slow depolarization and spiking activity elicited after induction of long-term potentiation in rat auditory cortex. Brain Research, 988(1–2), 114–120.

    PubMed  CAS  Google Scholar 

  • Sjöström, P.J,, Turrigiano, G.G,, & Nelson, S.B.. (2001). Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron, 32(6):1148–1164.

    Google Scholar 

  • Song, P., Yang, Y., Barnes-Davies, M., Bhattacharjee, A., Hamann, M., Forsythe, I. D., Oliver, D.L., & Kaczmarek, L.K. (2005). Acoustic environment determines phosphorylation state of the Kv3.1 potassium channel in auditory neurons. Nature Neuroscience, 8(10), 1335–1342.

    PubMed  CAS  Google Scholar 

  • Song, J. H., Skoe, E., Wong, P. C., & Kraus, N. (2008). Plasticity in the adult human auditory brainstem following short-term linguistic training. Journal of Cognitive Neuroscience, 20(10), 1892–1902.

    PubMed  Google Scholar 

  • Speechley, W. J., Hogsden, J. L., & Dringenberg, H. C. (2007). Continuous white noise exposure during and after auditory critical period differentially alters bidirectional thalamocortical plasticity in rat auditory cortex in vivo. European Journal of Neuroscience, 26(9), 2576–2584.

    PubMed  Google Scholar 

  • Steinert, J. R., Kopp-Scheinpflug, C., Baker, C., Challiss, R. A., Mistry, R., Haustein, M. D., Griffin, S.J., Tong, H., Graham, B. P., & Forsythe, I. D. (2008). Nitric oxide is a volume transmitter regulating postsynaptic excitability at a glutamatergic synapse. Neuron, 60(4), 642–656.

    PubMed  CAS  Google Scholar 

  • Strait, D. L., Kraus, N., Skoe, E., & Ashley, R. (2009). Musical experience and neural efficiency: Effects of training on subcortical processing of vocal expressions of emotion. European Journal of Neuroscience, 29(3), 661–668.

    PubMed  Google Scholar 

  • Talwar, S. K., & Gerstein, G. L. (2001). Reorganization in awake rat auditory cortex by local microstimulation and its effect on frequency-discrimination behavior. Journal of Neurophysiology, 86(4), 1555–1572.

    PubMed  CAS  Google Scholar 

  • Tzounopoulos, T. (2008). Mechanisms of synaptic plasticity in the dorsal cochlear nucleus: Plasticity-induced changes that could underlie tinnitus. American Journal of Audiology, 17(2), S170–175.

    PubMed  Google Scholar 

  • Tzounopoulos, T., & Kraus, N. (2009). Learning to encode timing: mechanisms of plasticity in the auditory brainstem. Neuron, 62(4), 463–469.

    PubMed  CAS  Google Scholar 

  • Tzounopoulos, T., Kim, Y., Oertel, D., & Trussell, L. O. (2004). Cell-specific, spike timing-dependent plasticities in the dorsal cochlear nucleus. Nature Neuroscience, 7(7), 719–725.

    PubMed  CAS  Google Scholar 

  • Tzounopoulos, T., Rubio, M. E., Keen, J. E., & Trussell, L. O. (2007). Coactivation of pre- and postsynaptic signaling mechanisms determines cell-specific spike-timing-dependent plasticity. Neuron, 54(2), 291–301.

    PubMed  CAS  Google Scholar 

  • van Praag, H., Kempermann, G., & Gage, F. H. (2000). Neural consequences of environmental enrichment. Nature Reviews Neuroscience, 1(3), 191–198.

    PubMed  Google Scholar 

  • Wakatsuki, H., Gomi, H., Kudoh, M., Kimura, S., Takahashi, K., Takeda, M., & Shibuki, K. (1998). Layer-specific NO dependence of long-term potentiation and biased NO release in layer V in the rat auditory cortex. Journal of Physiology, 513(1), 71–81.

    PubMed  CAS  Google Scholar 

  • Watanabe, K., Kamatani, D., Hishida, R., Kudoh, M., & Shibuki, K. (2007). Long-term depression induced by local tetanic stimulation in the rat auditory cortex. Brain Research, 1166, 20–28.

    PubMed  CAS  Google Scholar 

  • Weinberger, N. M. (2007a). Associative representational plasticity in the auditory cortex: A synthesis of two disciplines. Learning and Memory, 14(1–2), 1–16.

    PubMed  Google Scholar 

  • Weinberger, N. M. (2007b). Auditory associative memory and representational plasticity in the primary auditory cortex. Hearing Research, 229(1–2), 54–68.

    PubMed  Google Scholar 

  • Wiesel, T.N. (1982). Postnatal development of the visual cortex and the influence of environment. Nature, 299(5884),583–591.

    PubMed  CAS  Google Scholar 

  • Wong, P. C., Skoe, E., Russo, N. M., Dees, T., & Kraus, N. (2007). Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nature Neuroscience, 10(4), 420–422.

    PubMed  CAS  Google Scholar 

  • Yao, H., & Dan, Y. (2001). Stimulus timing-dependent plasticity in cortical processing of orientation. Neuron 32(2), 315–323.

    PubMed  CAS  Google Scholar 

  • Zhang, W., & Linden, D. J. (2003). The other side of the engram: Experience-driven changes in neuronal intrinsic excitability. Nature Reviews Neuroscience, 4(11), 885–900.

    PubMed  CAS  Google Scholar 

  • Zhang, L. I., Bao, S., & Merzenich, M. M. (2001). Persistent and specific influences of early acoustic environments on primary auditory cortex. Nature Neuroscience, 4(11), 1123–1130.

    PubMed  CAS  Google Scholar 

  • Zheng, Y., Baek, J. H., Smith, P. F., & Darlington, C. L. (2007). Cannabinoid receptor down-regulation in the ventral cochlear nucleus in a salicylate model of tinnitus. Hearing Research, 228(1–2), 105–111.

    PubMed  CAS  Google Scholar 

  • Zhou, X., & Merzenich, M. M. (2008). Enduring effects of early structured noise exposure on temporal modulation in the primary auditory cortex. Proceedings of the National Academy of Sciences of the United States of America, 105(11), 4423–4428.

    PubMed  CAS  Google Scholar 

  • Zhou, X., & Merzenich, M. M. (2009). Developmentally degraded cortical temporal processing restored by training. Nature Neuroscience, 12(1), 26–28.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIDCD grant R01DC007905 to TT and by a grant from the American Tinnitus Foundation to TT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanos Tzounopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tzounopoulos, T., Leão, R.M. (2012). Mechanisms of Memory and Learning in the Auditory System. In: Trussell, L., Popper, A., Fay, R. (eds) Synaptic Mechanisms in the Auditory System. Springer Handbook of Auditory Research, vol 41. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9517-9_9

Download citation

Publish with us

Policies and ethics