Skip to main content

Synaptic Mechanisms of Coincidence Detection

  • Chapter
  • First Online:
Synaptic Mechanisms in the Auditory System

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 41))

Abstract

Localization of sounds in space is a capability crucial to an animal’s survival in a world full of predators, scarce of prey, and with heavy selection pressures for mates. For neuroscientists, sound localization offers an opportunity to ask precise questions relating sensory stimuli to their neural representation and the computation of sensory percepts. Both monaural and binaural cues are used to generate a sense of auditory spatial location, but the most thorough analysis of localization has focused on the use of binaural temporal cues. The study of the binaural cues allows the investigation of the neural mechanisms of sensory integration as the brain combines information from the left and right ears. The field has been enriched by studying animals that have highly developed capabilities to localize sound, such as the barn owl (Tyto alba), which hunts its prey in complete darkness (Payne 1971; Konishi 1973a, b). When combined with cellular and anatomical studies in the chicken and several other avian species, a remarkable confluence of evidence has emerged to reveal the synaptic and biophysical mechanisms that combine to create specialized brainstem neural circuits that perform coincidence detection on the temporal information and encode sound location, as described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott, L. F., & Regehr, W. G. (2004). Synaptic computation. Nature, 431(7010), 796–803.

    PubMed  CAS  Google Scholar 

  • Agmon-Snir, H., Carr, C. E., & Rinzel, J. (1998). The role of dendrites in auditory coincidence detection. Nature, 393(6682), 268–272.

    PubMed  CAS  Google Scholar 

  • Ashida, G., Abe, K., Funabiki, K., & Konishi, M. (2007). Passive soma facilitates submillisecond coincidence detection in the owl’s auditory system. Journal of Neurophysiology, 97(3), 2267–2282.

    PubMed  Google Scholar 

  • Bala, A. D., & Takahashi, T. T. (2000). Pupillary dilation response as an indicator of auditory discrimination in the barn owl. Journal of Comparative Physiology [A], 186(5), 425–434.

    CAS  Google Scholar 

  • Batra, R., & Yin, T. C. (2004). Cross correlation by neurons of the medial superior olive: A reexamination. JARO: Journal of the Association for Research Otolaryngology, 5(3), 238–252.

    Google Scholar 

  • Batra, R., Kuwada, S., & Fitzpatrick, D. C. (1997). Sensitivity to interaural temporal disparities of low- and high-frequency neurons in the superior olivary complex. I. Heterogeneity of responses. Journal of Neurophysiology, 78(3), 1222–1236.

    PubMed  CAS  Google Scholar 

  • Beckius, G. E., Batra, R., & Oliver, D. L. (1999). Axons from anteroventral cochlear nucleus that terminate in medial superior olive of cat: Observations related to delay lines. Journal of Neuroscience, 19(8), 3146–3161.

    PubMed  CAS  Google Scholar 

  • Brand, A., Behrend, O., Marquardt, T., McAlpine, D., & Grothe, B. (2002). Precise inhibition is essential for microsecond interaural time difference coding. Nature, 417(6888), 543–547.

    PubMed  CAS  Google Scholar 

  • Brenowitz, S., & Trussell, L. O. (2001). Maturation of synaptic transmission at end-bulb synapses of the cochlear nucleus. Journal of Neuroscience, 21(23), 9487–9498.

    PubMed  CAS  Google Scholar 

  • Brew, H. M., & Forsythe, I. D. (1995). Two voltage-dependent K  +  conductances with complementary functions in postsynaptic integration at a central auditory synapse. Journal of Neuroscience, 15(12), 8011–8022.

    PubMed  CAS  Google Scholar 

  • Burger, R. M., & Rubel, E. W. (2008). Encoding of interaural timing for binaural hearing. In P. Dallos & D. Oertel (Eds.), The Senses: A Comprehensive Reference (pp 613–630). San Diego: Academic Press.

    Google Scholar 

  • Burger, R. M., Cramer, K. S., Pfeiffer, J. D., & Rubel, E. W. (2005). Avian superior olivary nucleus provides divergent inhibitory input to parallel auditory pathways. Journal of Comparative Neurology, 481(1), 6–18.

    PubMed  Google Scholar 

  • Cao, X. J., McGinley, M. J., & Oertel, D. (2008). Connections and synaptic function in the posteroventral cochlear nucleus of deaf jerker mice. Journal of Comparative Neurology, 510(3), 297–308.

    PubMed  Google Scholar 

  • Carr, C. E., & Boudreau, R. E. (1993a). An axon with a myelinated initial segment in the bird auditory system. Brain Research, 628, 330–334.

    PubMed  CAS  Google Scholar 

  • Carr, C. E., & Boudreau, R. E. (1993b). Organization of the nucleus magnocellularis and the nucleus laminaris in the barn owl: Encoding and measuring interaural time differences. Journal of Comparative Neurology, 334(3), 337–355.

    PubMed  CAS  Google Scholar 

  • Carr, C. E., & Code, R. A. (2000). The central auditory system of reptiles and birds. In R. J. Dooling, R. R. Fay, & A. N. Popper (Eds.), Comparative Hearing: Birds and Reptiles (pp 197–248). New York: Springer.

    Google Scholar 

  • Carr, C. E., & Konishi, M. (1988). Axonal delay lines for time measurement in the owl’s brainstem. Proceedings of the National Academy of Sciences of the United States of America, 85(21), 8311–8315.

    PubMed  CAS  Google Scholar 

  • Carr, C. E., & Konishi, M. (1990). A circuit for detection of interaural time differences in the brainstem of the barn owl. Journal of Neuroscience, 10, 3227–3246.

    PubMed  CAS  Google Scholar 

  • Carr, C. E., & Soares, D. (2002). Evolutionary convergence and shared computational principles in the auditory system. Brain, Behavior and Evolution, 59(5–6), 294–311.

    PubMed  CAS  Google Scholar 

  • Carr, C., Heiligenberg, W., & Rose, G. (1986a). A time-comparison circuit in the electric fish midbrain. I. Behavior and physiology. Journal of Neuroscience, 6, 107–119.

    PubMed  CAS  Google Scholar 

  • Carr, C. E., Maler, L., & Taylor, B. (1986b). A time comparison circuit in the electric fish midbrain. II. Functional morphology. Journal of Neuroscience, 6, 1372–1383.

    PubMed  CAS  Google Scholar 

  • Carr, C. E., Fujita, I., & Konishi, M. (1989). Distribution of GABAergic neurons and terminals in the auditory system of the barn owl. Journal of Comparative Neurology, 286(2), 190–207.

    PubMed  CAS  Google Scholar 

  • Carr, C. E., Kubke, M. F., Massoglia, D. P., Cheng, S. M., Rigby, L. L., & Moiseff, A. (1997). Development of temporal coding circuits in the barn owl. In A. R. Palmer, A. Rees, Q. Summerfield, & R. Meddis (Eds.), Psychophysical and Physiological Advances in Hearing (pp 344–351). London: Whurr.

    Google Scholar 

  • Carr, C. E., Soares, D., Parameshwaran, S., & Perney, T. (2001). Evolution and development of time coding systems. Current Opinion in Neurobiology, 11(6), 727–733.

    PubMed  CAS  Google Scholar 

  • Carr, C., Soares, D., Simon, J., & Smolders, J. (2009). Detection of interaural time differences in the alligator. Journal of Neuroscience, 29(25), 7978–7990.

    PubMed  CAS  Google Scholar 

  • Colburn, H. S., Han, Y. A., & Culotta, C. P. (1990). Coincidence model of MSO responses. Hearing Research, 49(1–3), 335–346.

    PubMed  CAS  Google Scholar 

  • Cook, D. L., Schwindt, P. C., Grande, L. A., & Spain, W. J. (2003). Synaptic depression in the localization of sound. Nature, 421(6918), 66–70.

    PubMed  CAS  Google Scholar 

  • Dingledine, R., Borges, K., Bowie, D., & Traynelis, S. F. (1999). The glutamate receptor ion channels. Pharmacology Reviews and Communications, 51(1), 7–61.

    CAS  Google Scholar 

  • Edwards, D. H., Yeh, S. R., & Krasne, F. B. (1998). Neuronal coincidence detection by voltage-sensitive electrical synapses. Proceedings of the National Academy of Sciences of the United States of America, 95(12), 7145–7150.

    PubMed  CAS  Google Scholar 

  • Fettiplace, R., & Fuchs, P. A. (1999). Mechanisms of hair cell tuning. Annual Review of Physiology, 61, 809–834.

    PubMed  CAS  Google Scholar 

  • Fischer, B. J., Christianson, G. B., & Pena, J. L. (2008). Cross-correlation in the auditory coincidence detectors of owls. Journal of Neuroscience, 28(32), 8107–8115.

    PubMed  CAS  Google Scholar 

  • Fukui, I., & Ohmori, H. (2003). Developmental changes in membrane excitability and morphology of neurons in the nucleus angularis of the chicken. Journal of Physiology (London), 548(Pt. 1), 219–232.

    CAS  Google Scholar 

  • Funabiki, K., Koyano, K., & Ohmori, H. (1998). The role of GABAergic inputs for coincidence detection in the neurones of nucleus laminaris of the chick. Journal of Physiology (London), 508(3), 851–869.

    CAS  Google Scholar 

  • Geiger, J. R., Melcher, T., Koh, D. S., Sakmann, B., Seeburg, P. H., Jonas, P., & Monyer, H. (1995). Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron, 15(1), 193–204.

    PubMed  CAS  Google Scholar 

  • Goldberg, J. M., & Brown, P. B. (1969). Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: Some physiological mechanisms of sound localization. Journal of Neurophysiology, 32, 613–636.

    PubMed  CAS  Google Scholar 

  • Grau-Serrat, V., Carr, C. E., & Simon, J. Z. (2003). Modeling coincidence detection in nucleus laminaris. Biological Cybernetics, 89(5), 388–396.

    PubMed  Google Scholar 

  • Grigg, J. J., Brew, H. M., & Tempel, B. L. (2000). Differential expression of voltage-gated potassium channel genes in auditory nuclei of the mouse brainstem. Hearing Research, 140(1–2), 77–90.

    PubMed  CAS  Google Scholar 

  • Grun, S., Aertsen, A., Wagner, H., & Carr, C. (1992). Binaural interaction in the nucleus laminaris of the barn owl: A quantitative model. BrainWorks v1991-01, http://www.brainworks.uni-freiburg.de, Albert-Ludwigs-University, Freiburg.

  • Han, Y., & Colburn, H. S. (1993). Point-neuron model for binaural interaction in MSO. Hearing Research, 68(1), 115–130.

    PubMed  CAS  Google Scholar 

  • Hancock, K. E., & Delgutte, B. (2004). A physiologically based model of interaural time difference discrimination. Journal of Neuroscience, 24(32), 7110–7117.

    PubMed  CAS  Google Scholar 

  • Higgs, M. H., Slee, S. J., & Spain, W. J. (2006). Diversity of gain modulation by noise in neocortical neurons: Regulation by the slow afterhyperpolarization conductance. Journal of Neuroscience, 26(34), 8787–8799.

    PubMed  CAS  Google Scholar 

  • Hyson, R. L., Reyes, A. D., & Rubel, E. W. (1995). A depolarizing inhibitory response to GABA in brainstem auditory neurons of the chick. Brain Research, 677(1), 117–126.

    PubMed  CAS  Google Scholar 

  • Jeffress, L. (1948). A place theory of sound localization. Journal of Comparative Physiology and Psychology, 41, 35–39.

    CAS  Google Scholar 

  • Jhaveri, S., & Morest, D. K. (1982). Sequential alterations of neuronal architecture in nucleus magnocellularis of the developing chicken: A Golgi study. Neuroscience, 7(4), 837–853.

    PubMed  CAS  Google Scholar 

  • Joris, P., & Yin, T. C. (2007). A matter of time: Internal delays in binaural processing. Trends in Neurosciences, 30(2), 70–78.

    PubMed  CAS  Google Scholar 

  • Joris, P. X., Smith, P. H., & Yin, T. C. (1998). Coincidence detection in the auditory system: 50 years after Jeffress. Neuron, 21(6), 1235–1238.

    PubMed  CAS  Google Scholar 

  • Joseph, A. W., & Hyson, R. L. (1993). Coincidence detection by binaural neurons in the chick brain stem. Journal of Neurophysiology, 69(4), 1197–1211.

    PubMed  CAS  Google Scholar 

  • Kawasaki, M. (1993). Independently evolved jamming avoidance responses employ identical computational algorithms: A behavioral study of the African electric fish, Gymnarchus niloticus. Journal of Comparative Physiology [A], 173(1), 9–22.

    CAS  Google Scholar 

  • Klump, G. M. (2000). Sound localization in birds. In R. J. Dooling, R. R. Fay, & A. N. Popper (Eds.), Comparative Hearing: Birds and Reptiles (pp. 249–307). New York: Springer.

    Google Scholar 

  • Knudsen, E. I. (2002). Instructed learning in the auditory localization pathway of the barn owl. Nature, 417(6886), 322–328.

    PubMed  CAS  Google Scholar 

  • Knudsen, E. I., & Konishi, M. (1978a). A neural map of auditory space in the owl. Science, 200, 795–797.

    PubMed  CAS  Google Scholar 

  • Knudsen, E. I., & Konishi, M. (1978b). Space and frequency are represented separately in the auditory midbrain of the owl. Journal of Neurophysiology, 41, 870–884.

    PubMed  CAS  Google Scholar 

  • Knudsen, E. I., Blasdel, G. G., & Konishi, M. (1979). Sound localization by the barn owl (Tyto alba) measured with the search coil technique. Journal of Comparative Physiology, 133, 1–11.

    Google Scholar 

  • Konishi, M. (1973a). How the owl tracks its prey. American Scientist, 61, 414–424.

    Google Scholar 

  • Konishi, M. (1973b). Locatable and nonlocatable acoustic signals for barn owls. American Naturalist, 107, 775–785.

    Google Scholar 

  • Konishi, M. (1993). Listening with two ears. Scientific American, 268(4), 66–73.

    PubMed  CAS  Google Scholar 

  • Köppl, C. (1997). Phase locking to high frequencies in the auditory nerve and cochlear nucleus magnocellularis of the barn owl, Tyto alba. Journal of Neuroscience, 17(9), 3312–3321.

    PubMed  Google Scholar 

  • Köppl, C. (2009). Evolution of sound localisation in land vertebrates. Current Biology, 19(15), R635–639.

    PubMed  Google Scholar 

  • Köppl, C., & Carr, C. E. (2008). Maps of interaural time difference in the chicken’s brainstem nucleus laminaris. Biological Cybernetics, 98(6), 541–559.

    PubMed  Google Scholar 

  • Kuba, H. (2007). Cellular and molecular mechanisms of avian auditory coincidence detection. Neuroscience Research, 59(4), 370–376.

    PubMed  CAS  Google Scholar 

  • Kuba, H., Koyano, K., & Ohmori, H. (2002a). Development of membrane conductance improves coincidence detection in the nucleus laminaris of the chicken. Journal of Physiology (London), 540(Pt. 2), 529–542.

    CAS  Google Scholar 

  • Kuba, H., Koyano, K., & Ohmori, H. (2002b). Synaptic depression improves coincidence detection in the nucleus laminaris in brainstem slices of the chick embryo. European Journal of Neuroscience, 15(6), 984–990.

    PubMed  Google Scholar 

  • Kuba, H., Yamada, R., & Ohmori, H. (2003). Evaluation of the limiting acuity of coincidence detection in nucleus laminaris of the chicken. Journal of Physiology (London), 552(Pt. 2), 611–620.

    CAS  Google Scholar 

  • Kuba, H., Yamada, R., Fukui, I., & Ohmori, H. (2005). Tonotopic specialization of auditory coincidence detection in nucleus laminaris of the chick. Journal of Neuroscience, 25(8), 1924–1934.

    PubMed  CAS  Google Scholar 

  • Kuba, H., Ishii, T., & Ohmori, H. (2006). Axonal site of spike initiation enhances auditory coincidence detection. Nature, 444, 1069–1072.

    PubMed  CAS  Google Scholar 

  • Kuba, H., Oichi, Y., & Ohmori, H. (2010). Presynaptic activity regulates Na(+) channel distribution at the axon initial segment. Nature, 465(7301), 1075–1078.

    PubMed  CAS  Google Scholar 

  • Kubke, M. F., & Carr, C. E. (2000). Development of the auditory brainstem of birds: Comparison between barn owls and chickens. Hearing Research 147(1–2), 1–20.

    PubMed  CAS  Google Scholar 

  • Kubke, M. F., & Carr, C. E. (2005). Development of sound localization. In A. N. Popper & R. Fay (Eds.), Sound Source Localization, 179–237 New York: Springer.

    Google Scholar 

  • Kubke, M. F., Gauger, B., Basu, L., Wagner, H., & Carr, C. E. (1999). Development of calretinin immunoreactivity in the brainstem auditory nuclei of the barn owl (Tyto alba). Journal of Comparative Neurology, 415(2), 189–203.

    PubMed  CAS  Google Scholar 

  • Kubke, M. F., Massoglia, D. P., & Carr, C. E. (2002). Developmental changes underlying the formation of the specialized time coding circuits in barn owls (Tyto alba). Journal of Neuroscience, 22(17), 7671–7679.

    PubMed  CAS  Google Scholar 

  • Kubke, M. F., Massoglia, D. P., & Carr, C. E. (2004). Bigger brains or bigger nuclei? Regulating the size of auditory structures in birds. Brain, Behavior and Evolution, 63(3), 169–180.

    PubMed  Google Scholar 

  • Kuo, S. P., Bradley, L. A., & Trussell, L. O. (2009). Heterogeneous kinetics and pharmacology of synaptic inhibition in the chick auditory brainstem. Journal of Neuroscience, 29(30), 9625–9634.

    PubMed  CAS  Google Scholar 

  • Lachica, E. A., Rubsamen, R., & Rubel, E. W. (1994). GABAergic terminals in nucleus magnocellularis and laminaris originate from the superior olivary nucleus. Journal of Comparative Neurology, 348(3), 403–418.

    PubMed  CAS  Google Scholar 

  • Levin, M. D., Kubke, M. F., Schneider, M., Wenthold, R., & Carr, C. E. (1997). Localization of AMPA-selective glutamate receptors in the auditory brainstem of the barn owl. Journal of Comparative Neurology, 378(2), 239–253.

    PubMed  CAS  Google Scholar 

  • Lippe, W., & Rubel, E. W. (1983). Development of the place principle: Tonotopic organization. Science, 219(4584), 514–516.

    PubMed  CAS  Google Scholar 

  • Lu, T., & Trussell, L. O. (2001). Mixed excitatory and inhibitory GABA-mediated transmission in chick cochlear nucleus. Journal of Physiology (London), 535(Pt. 1), 125–131.

    CAS  Google Scholar 

  • MacLeod, K. M., & Carr, C. E. (2007). Beyond timing in the auditory brainstem: Intensity coding in the avian cochlear nucleus angularis. Progress in Brain Research, 165, 123–133.

    PubMed  Google Scholar 

  • MacLeod, K. M., Soares, D., & Carr, C. E. (2006). Interaural timing difference circuits in the auditory brainstem of the emu (Dromaius novaehollandiae). Journal of Comparative Neurology, 495(2), 185–201.

    PubMed  Google Scholar 

  • MacLeod, K. M., Horiuchi, T. K., & Carr, C. E. (2007). A role for short-term synaptic facilitation and depression in the processing of intensity information in the auditory brain stem. Journal of Neurophysiology, 97(4), 2863–2874.

    PubMed  CAS  Google Scholar 

  • Manis, P. B., & Marx, S. O. (1991). Outward currents in isolated ventral cochlear nucleus neurons. Journal of Neuroscience, 11(9), 2865–2880.

    PubMed  CAS  Google Scholar 

  • Marsalek, P., Koch, C., & Maunsell, J. (1997). On the relationship between synaptic input and spike output jitter in individual neurons. Proceedings of the National Academy of Sciences of the United States of America, 94(2), 735–740.

    PubMed  CAS  Google Scholar 

  • Matsushita, A., & Kawasaki, M. (2004). Unitary giant synapses embracing a single neuron at the convergent site of time-coding pathways of an electric fish, Gymnarchus niloticus. Journal of Comparative Neurology, 472, 140–155.

    PubMed  Google Scholar 

  • McAlpine, D., & Grothe, B. (2003). Sound localization and delay lines – do mammals fit the model? Trends in Neurosciences, 26(7), 347–350.

    PubMed  CAS  Google Scholar 

  • McAlpine, D., Jiang, D., & Palmer, A. R. (2001). A neural code for low-frequency sound localization in mammals. Nature Neuroscience, 4(4), 396–401.

    PubMed  CAS  Google Scholar 

  • Mittmann, W., Koch, U., & Hausser, M. (2005). Feed-forward inhibition shapes the spike output of cerebellar Purkinje cells. Journal of Physiology (London), 563(Pt. 2), 369–378.

    CAS  Google Scholar 

  • Moiseff, A., & Konishi, M. (1983). Binaural characteristics of units in the owl’s brainstem auditory pathway: Precursors of restricted spatial receptive fields Journal of Neuroscience, 3, 2553–2562.

    PubMed  CAS  Google Scholar 

  • Monsivais, P., Yang, L., & Rubel, E. W. (2000). GABAergic inhibition in nucleus magnocellularis: Implications for phase locking in the avian auditory brainstem. Journal of Neuroscience, 20(8), 2954–2963.

    PubMed  CAS  Google Scholar 

  • Mosbacher, J., Schoepfer, R., Monyer, H., Burnashev, N., Seeburg, P. H., & Ruppersberg, J. P. (1994). A molecular determinant for submillisecond desensitization in glutamate receptors. Science, 266(5187), 1059–1062.

    PubMed  CAS  Google Scholar 

  • Nishino, E., Yamada, R., Kuba, H., Hioki, H., Furuta, T., Kaneko, T., & Ohmori, H. (2008). Sound-intensity-dependent compensation for the small interaural time difference cue for sound source localization. Journal of Neuroscience, 28(28), 7153–7164.

    PubMed  CAS  Google Scholar 

  • Oertel, D. (1991). The role of intrinsic neuronal properties in the encoding of auditory information in the cochlear nuclei. Current Opinion in Neurobiology, 1(2), 221–228.

    PubMed  CAS  Google Scholar 

  • Oertel, D. (1999). The role of timing in the brain stem auditory nuclei of vertebrates. Annual Review of Physiology, 61, 497–519.

    PubMed  CAS  Google Scholar 

  • Overholt, E. M., Rubel, E. W., & Hyson, R. L. (1992). A circuit for coding interaural time differences in the chick brainstem. Journal of Neuroscience, 12(5), 1698–1708.

    PubMed  CAS  Google Scholar 

  • Parameshwaran, S., Carr, C. E., & Perney, T. M. (2001). Expression of the Kv3.1 potassium channel in the avian auditory brainstem. Journal of Neuroscience, 21(2), 485–494.

    PubMed  CAS  Google Scholar 

  • Parameshwaran-Iyer, S., Carr, C. E., & Perney, T. M. (2003). Localization of KCNC1 (Kv3.1) potassium channel subunits in the avian auditory nucleus magnocellularis and nucleus laminaris during development. Journal of Neurobiology, 55(2), 165–178.

    PubMed  CAS  Google Scholar 

  • Parks, T. N. (2000). The AMPA receptors of auditory neurons. Hearing Research, 147(1–2), 77–91.

    PubMed  CAS  Google Scholar 

  • Parks, T. N., & Rubel, E. W. (1975). Organization and development of brain stem auditory nucleus of the chicken: Organization of projections from N. magnocellularis to N. laminaris. Journal of Comparative Neurology, 164, 435–448.

    PubMed  CAS  Google Scholar 

  • Payne, R. (1971). Acoustic localization of prey by barn owls (Tyto alba). Journal of Experimental Biology, 54, 535–573.

    PubMed  CAS  Google Scholar 

  • Pecka, M., Brand, A., Behrend, O., & Grothe, B. (2008). Interaural time difference processing in the mammalian medial superior olive: The role of glycinergic inhibition. Journal of Neuroscience, 28(27), 6914–6925.

    PubMed  CAS  Google Scholar 

  • Pena, J. L., Viete, S., Albeck, Y., & Konishi, M. (1996). Tolerance to sound intensity of binaural coincidence detection in the nucleus laminaris of the owl. Journal of Neuroscience, 16(21), 7046–7054.

    PubMed  CAS  Google Scholar 

  • Pena, J. L., Viete, S., Funabiki, K., Saberi, K., & Konishi, M. (2001). Cochlear and neural delays for coincidence detection in owls. Journal of Neuroscience, 21(23), 9455–9459.

    PubMed  CAS  Google Scholar 

  • Raman, I. M., Zhang, S., & Trussell, L. O. (1994). Pathway-specific variants of AMPA receptors and their contribution to neuronal signaling. Journal of Neuroscience, 14(8), 4998–5010.

    PubMed  CAS  Google Scholar 

  • Ramon y Cajal, S. (1908). Les ganlions terminaux du nerf acoustique des oiseaux.Trabajos del Instituto Cajal de investigaciones biológicas, 6, 195–225.

    Google Scholar 

  • Rathouz, M., & Trussell, L. (1998). Characterization of outward currents in neurons of the avian nucleus magnocellularis. Journal of Neurophysiology, 80(6), 2824–2835.

    PubMed  CAS  Google Scholar 

  • Reyes, A. D., Rubel, E. W., & Spain, W. J. (1994). Membrane properties underlying the firing of neurons in the avian cochlear nucleus. Journal of Neuroscience, 14(9), 5352–5364.

    PubMed  CAS  Google Scholar 

  • Reyes, A. D., Rubel, E. W., & Spain, W. J. (1996). In vitro analysis of optimal stimuli for phase-locking and time-delayed modulation of firing in avian nucleus laminaris neurons. Journal of Neuroscience, 16(3), 993–1007.

    PubMed  CAS  Google Scholar 

  • Rubel, E. W., & Parks, T. N. (1975). Organization and development of brain stem auditory nuclei of the chicken: Tonotopic organization of n. magnocellularis and n. laminaris. Journal of Comparative Neurology, 164(4), 411–434.

    PubMed  CAS  Google Scholar 

  • Schneggenburger, R., & Forsythe, I. D. (2006). The calyx of Held. Cell and Tissue Research, 326(2), 311–337.

    PubMed  Google Scholar 

  • Schwartzkopff, J., & Winter, P. (1960). Zur Anatomie der Vogel-Cochlea unter naturlichen Bedingungen. Biologisches Zentralblatt, 79, 607–625.

    Google Scholar 

  • Scott, L. L., Mathews, P. J., & Golding, N. L. (2005). Posthearing developmental refinement of temporal processing in principal neurons of the medial superior olive. Journal of Neuroscience, 25(35), 7887–7895.

    PubMed  CAS  Google Scholar 

  • Simon, J. Z., Carr, C. E., & Shamma, S. A. (1999). A dendritic model of coincidence detection in the avian brainstem. Neurocomputing, 26–27, 263–269.

    Google Scholar 

  • Smith, Z. D. (1981). Organization and development of brain stem auditory nuclei of the chicken: Dendritic development in N. laminaris. Journal of Comparative Neurology, 203(3), 309–333.

    PubMed  CAS  Google Scholar 

  • Smith, P. H. (1995). Structural and functional differences distinguish principal from nonprincipal cells in the guinea pig MSO slice. Journal of Neurophysiology, 73(4), 1653–1667.

    PubMed  CAS  Google Scholar 

  • Smith, D. J., & Rubel, E. W. (1979). Organization and development of brain stem auditory nuclei of the chicken: Dendritic gradients in nucleus laminaris. Journal of Comparative Neurology, 186(2), 213–239.

    PubMed  CAS  Google Scholar 

  • Smith, P. H., Joris, P. X., & Yin, T. C. (1993). Projections of physiologically characterized spherical bushy cell axons from the cochlear nucleus of the cat: evidence for delay lines to the medial superior olive. Journal of Comparative Neurology, 331(2), 245–260.

    PubMed  CAS  Google Scholar 

  • Smith, A. J., Owens, S., & Forsythe, I. D. (2000). Characterisation of inhibitory and excitatory postsynaptic currents of the rat medial superior olive. Journal of Physiology, 529(Pt. 3), 681–698.

    PubMed  CAS  Google Scholar 

  • Soares, D., Chitwood, R. A., Hyson, R. L., & Carr, C. E. (2002). Intrinsic neuronal properties of the chick nucleus angularis. Journal of Neurophysiology, 88(1), 152–162.

    PubMed  Google Scholar 

  • Stotler, W. A. (1953). An experimental study of the cells and connections of the superior olivary complex of the cat. Journal of Comparative Neurology, 98, 401–432.

    PubMed  CAS  Google Scholar 

  • Sugden, S. G., Zirpel, L., Dietrich, C. J., & Parks, T. N. (2002). Development of the specialized AMPA receptors of auditory neurons. Journal of Neurobiology, 52(3), 189–202.

    PubMed  CAS  Google Scholar 

  • Sullivan, W. E., & Konishi, M. (1984). Segregation of stimulus phase and intensity coding in the cochlear nucleus of the barn owl. Journal of Neuroscience, 4(7), 1787–1799.

    PubMed  CAS  Google Scholar 

  • Sullivan, W. E., & Konishi, M. (1986). Neural map of interaural phase difference in the owl’s brainstem. Proceedings of the National Academy of Science of the United States of America, 83, 8400–8404.

    CAS  Google Scholar 

  • Takahashi, T. T., Carr, C. E., Brecha, N., & Konishi, M. (1987). Calcium binding protein-like immunoreactivity labels the terminal field of nucleus laminaris of the barn owl. Journal of Neuroscience, 7(6), 1843–1856.

    PubMed  CAS  Google Scholar 

  • Takahashi, T. T., Bala, A. D., Spitzer, M. W., Euston, D. R., Spezio, M. L., & Keller, C. H. (2003). The synthesis and use of the owl’s auditory space map. Biological Cybernetics, 89(5), 378–387.

    PubMed  CAS  Google Scholar 

  • Trussell, L. O. (1999). Synaptic mechanisms for coding timing in auditory neurons. Annual Review of Physiology, 61, 477–496.

    PubMed  CAS  Google Scholar 

  • Viete, S., Pena, J. L., & Konishi, M. (1997). Effects of interaural intensity difference on the processing of interaural time difference in the owl’s nucleus laminaris. Journal of Neuroscience, 17(5), 1815–1824.

    PubMed  CAS  Google Scholar 

  • Wang, L. Y., Gan, L., Forsythe, I. D., & Kaczmarek, L. K. (1998). Contribution of the Kv3.1 potassium channel to high-frequency firing in mouse auditory neurones. Journal of Physiology (London), 509(Pt. 1), 183–194.

    CAS  Google Scholar 

  • Weiss, S. A., Preuss, T., & Faber, D. S. (2008). A role of electrical inhibition in sensorimotor integration. Proceedings of the National Academy of Sciences of the United States of America, 105(46), 18047–18052.

    PubMed  CAS  Google Scholar 

  • Wild, J. M., Krutzfeldt, N. O., & Kubke, M. F. (2009). Afferents to the cochlear nuclei and nucleus laminaris from the ventral nucleus of the lateral lemniscus in the zebra finch (Taeniopygia guttata). Hearing Research, 257(1–2), 1–7.

    PubMed  CAS  Google Scholar 

  • Woodworth, R. S. (1954). Experimental Psychology. New York: Holt, Rinehart and Winston.

    Google Scholar 

  • Wu, S. H., & Oertel, D. (1984). Intracellular injection with horseradish peroxidase of physiologically characterized stellate and bushy cells in slices of mouse anteroventral cochlear nucleus. Journal of Neuroscience, 4(6), 1577–1588.

    PubMed  CAS  Google Scholar 

  • Yang, L., Monsivais, P., & Rubel, E. W. (1999). The superior olivary nucleus and its influence on nucleus laminaris: A source of inhibitory feedback for coincidence detection in the avian auditory brainstem. Journal of Neuroscience, 19(6), 2313–2325.

    PubMed  CAS  Google Scholar 

  • Yin, T. C., & Chan, J. C. (1990). Interaural time sensitivity in medial superior olive of cat. Journal of Neurophysiology, 64(2), 465–488.

    PubMed  CAS  Google Scholar 

  • Zhang, S., & Trussell, L. O. (1994). Voltage clamp analysis of excitatory synaptic transmission in the avian nucleus magnocellularis. Journal of Physiology (London), 480(1), 123–136.

    CAS  Google Scholar 

  • Zhou, Y., Carney, L. H., & Colburn, H. S. (2005). A model for interaural time difference sensitivity in the medial superior olive: Interaction of excitatory and inhibitory synaptic inputs, channel dynamics, and cellular morphology. Journal of Neuroscience, 25(12), 3046–3058.

    PubMed  CAS  Google Scholar 

  • Zucker, R. S., & Regehr, W. G. (2002). Short-term synaptic plasticity. Annual Review of Physiology, 64, 355–405.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors received support for their work from the National Institutes of Health grants R01DC000436 (C.E.C.) and R03DC007972 (K.M.M.) and a grant from the National Organization for Hearing Research (K.M.M.) The authors thank C. Köppl and H. Kuba for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrina M. MacLeod .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

MacLeod, K.M., Carr, C.E. (2012). Synaptic Mechanisms of Coincidence Detection. In: Trussell, L., Popper, A., Fay, R. (eds) Synaptic Mechanisms in the Auditory System. Springer Handbook of Auditory Research, vol 41. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9517-9_6

Download citation

Publish with us

Policies and ethics