Skip to main content

The Endbulbs of Held

  • Chapter
  • First Online:
Synaptic Mechanisms in the Auditory System

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 41))

Abstract

A remarkable nerve terminal is present at the endings of the auditory nerve fibers (ANFs) in the anterior ventral cochlear nucleus (AVCN), called the “endbulb of Held.” The endbulbs are complex synaptic endings that provide a coordinated release from multiple presynaptic sites of neurotransmitter onto their target postsynaptic cells, the globular and spherical bushy cells of the cochlear nucleus. These synapses play a key role in bringing a precisely timed representation of sound into the central auditory system. Traditionally, the endbulbs, owing to their large size and the presence of multiple presynaptic release zones, were thought to provide a “secure” synapse between auditory nerve fibers and the target neurons, the globular and spherical bushy cells. However, this view has been strongly challenged by several recent observations. While the endbulbs are indeed a particularly strong synapse, they are subject to dynamic regulation of transmitter release probability and receptor sensitivity, and their ability to initiate action potentials in the postsynaptic cell is not immune to postsynaptic inhibition. Integration by convergence of endbulb synapses onto target cells is an important part of central auditory processing. In particular, cells postsynaptic to the endbulbs can fire more precisely to specific temporal features of acoustic stimuli than their individual auditory nerve fiber inputs. The endbulb synapses are found widely in mammals including humans (Adams 1986), as well as in birds (Carr and Boudreau 1991; Koppl 1994) and reptiles (Browner and Marbey 1988; Szpir et al. 1990), but their presence in amphibians is less clear (Lewis et al. 1980; Feng and Lin 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott, L. F., & Regehr, W. G. (2004). Synaptic computation. Nature, 431(7010), 796–803. doi: 10.1038/nature03010.

    PubMed  CAS  Google Scholar 

  • Abbracchio, M. P., Burnstock, G., Verkhratsky, A., & Zimmermann, H. (2009). Purinergic signalling in the nervous system: An overview. Trends in Neurosciences, 32(1), 19–29. doi: 10.1016/j.tins.2008.10.001.

    PubMed  CAS  Google Scholar 

  • Adams, J. C. (1986). Neuronal morphology in the human cochlear nucleus. Archives of Otolaryngology Head Neck Surgery, 112(12), 1253–1261.

    PubMed  CAS  Google Scholar 

  • Atluri, P. P., & Regehr, W. G. (1996). Determinants of the time course of facilitation at the granule cell to Purkinje cell synapse. Journal of Neuroscience, 16(18), 5661–5671.

    PubMed  CAS  Google Scholar 

  • Baek, J. H., Zheng, Y., Darlington, C. L., & Smith, P. F. (2008). Cannabinoid CB2 receptor expression in the rat brainstem cochlear and vestibular nuclei. Acta Otolaryngologica, 128(9), 961–967.

    CAS  Google Scholar 

  • Bassani, S., Valnegri, P., Beretta, F., & Passafaro, M. (2009). The GLUR2 subunit of AMPA receptors: Synaptic role. Neuroscience, 158(1), 55–61.

    PubMed  CAS  Google Scholar 

  • Bellingham, M. C., Lim, R., & Walmsley, B. (1998). Developmental changes in EPSC quantal size and quantal content at a central glutamatergic synapse in rat. Journal of Physiology, 511(Pt. 3), 861–869.

    PubMed  CAS  Google Scholar 

  • Bellingham, M. C., & Walmsley, B. (1999). A novel presynaptic inhibitory mechanism underlies paired pulse depression at a fast central synapse. Neuron, 23(1), 159–170.

    PubMed  CAS  Google Scholar 

  • Billups, B., & Forsythe, I. D. (2002). Presynaptic mitochondrial calcium sequestration influences transmission at mammalian central synapses. Journal of Neuroscience, 22(14), 5840–5847.

    PubMed  CAS  Google Scholar 

  • Billups, B., Graham, B. P., Wong, A. Y., & Forsythe, I. D. (2005). Unmasking group III metabotropic glutamate autoreceptor function at excitatory synapses in the rat CNS. Journal of Physiology, 565(Pt. 3), 885–896. doi: 10.1113/jphysiol.2005.086736.

    PubMed  CAS  Google Scholar 

  • Blackburn, C. C., & Sachs, M. B. (1989). Classification of unit types in the anteroventral cochlear nucleus: PST histograms and regularity analysis. Journal of Neurophysiology, 62(6), 1303–1329.

    PubMed  CAS  Google Scholar 

  • Bortone, D. S., Mitchell, K., & Manis, P. B. (2006). Developmental time course of potassium channel expression in the rat cochlear nucleus. Hearing Research, 211(1–2), 114–125. doi: 10.1016/j.heares.2005.10.012.

    PubMed  CAS  Google Scholar 

  • Bourk, T. R. (1976). Electrical responses of neural units in the anteroventral cochlear nucleus of the cat. Ph.D. dissertation, Massachussetts Institute of Technology.

    Google Scholar 

  • Bowie, D., & Mayer, M. L. (1995). Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine-mediated ion channel block. Neuron, 15(2), 453–462.

    PubMed  CAS  Google Scholar 

  • Brawer, J. R., & Morest, D. K. (1975). Relations between auditory nerve endings and cell types in the cat’s anteroventral cochlear nucleus seen with the Golgi method and Nomarski optics. Journal of Comparative Neurology, 160(4), 491–506. doi: 10.1002/cne.901600406.

    PubMed  CAS  Google Scholar 

  • Brawer, J. R., Morest, D. K., & Kane, E. C. (1974). The neuronal architecture of the cochlear nucleus of the cat. Journal of Comparative Neurology, 155(3), 251–300. doi: 10.1002/cne.901550302.

    PubMed  CAS  Google Scholar 

  • Brenowitz, S., David, J., & Trussell, L. (1998). Enhancement of synaptic efficacy by presynaptic GABA(B) receptors. Neuron, 20(1), 135–141.

    PubMed  CAS  Google Scholar 

  • Brenowitz, S., & Trussell, L. O. (2001a). Maturation of synaptic transmission at end-bulb synapses of the cochlear nucleus. Journal of Neuroscience, 21(23), 9487–9498.

    PubMed  CAS  Google Scholar 

  • Brenowitz, S., & Trussell, L. O. (2001b). Minimizing synaptic depression by control of release probability. Journal of Neuroscience, 21(6), 1857–1867.

    PubMed  CAS  Google Scholar 

  • Browner, R. H., & Marbey, D. (1988). The nucleus magnocellularis in the red-eared turtle, Chrysemys scripta elegans: Eighth nerve endings and neuronal types. Hearing Research, 33(3), 257–271.

    PubMed  CAS  Google Scholar 

  • Burette, A., Petrusz, P., Schmidt, H. H., & Weinberg, R. J. (2001). Immunohistochemical localization of nitric oxide synthase and soluble guanylyl cyclase in the ventral cochlear nucleus of the rat. Journal of Comparative Neurology, 431(1), 1–10. doi: 10.1002/1096-9861(20010226).

    PubMed  CAS  Google Scholar 

  • Caminos, E., Vale, C., Lujan, R., Martinez-Galan, J. R., & Juiz, J. M. (2005). Developmental regulation and adult maintenance of potassium channel proteins (Kv 1.1 and Kv 1.2) in the cochlear nucleus of the rat. Brain Research, 1056(2), 118–131. doi: 10.1016/j.brainres.2005.07.031.

    PubMed  CAS  Google Scholar 

  • Cant, N. B. (1991). Projections to the lateral and medial superior olivary nuclei from the spherical and globular bushy cells of the anteroventral cochlear nucleus. In Altschuler, R. A., Bobbin, R. P., Clopton, B. M. & Hoffman, D. W. (Eds.), Neurobiology of hearing: The central auditory system (pp. 99–119). New York: Raven Press.

    Google Scholar 

  • Cant, N. B., & Morest, D. K. (1979). The bushy cells in the anteroventral cochlear nucleus of the cat. A study with the electron microscope. Neuroscience, 4(12), 1925–1945.

    PubMed  CAS  Google Scholar 

  • Cao, X. J., & Oertel, D. (2010). Auditory nerve fibers excite targets through synapses that vary in convergence, strength and short-term plasticity. Journal of Neurophysiology.104(5), 2308–2320. doi: 10.1152/jn.00451.2010.

    PubMed  Google Scholar 

  • Cao, X. J., Shatadal, S., & Oertel, D. (2007). Voltage-sensitive conductances of bushy cells of the mammalian ventral cochlear nucleus. Journal of Neurophysiology, 97(6), 3961–3975. doi: 10.1152/jn.00052.2007.

    PubMed  Google Scholar 

  • Carney, L. H. (1990). Sensitivities of cells in anteroventral cochlear nucleus of cat to spatiotemporal discharge patterns across primary afferents. Journal of Neurophysiology, 64(2), 437–456.

    PubMed  CAS  Google Scholar 

  • Carney, L. H. (1992). Modelling the sensitivity of cells in the anteroventral cochlear nucleus to spatiotemporal discharge patterns. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 336(1278), 403–406. doi: 10.1098/rstb.1992.0075.

    PubMed  CAS  Google Scholar 

  • Carr, C. E., & Boudreau, R. E. (1991). Central projections of auditory nerve fibers in the barn owl. Journal of Comparative Neurology, 314(2), 306–318. doi: 10.1002/cne.903140208.

    PubMed  CAS  Google Scholar 

  • Caspary, D. M., Backoff, P. M., Finlayson, P. G., & Palombi, P. S. (1994). Inhibitory inputs modulate discharge rate within frequency receptive fields of anteroventral cochlear nucleus neurons. Journal of Neurophysiology, 72(5), 2124–2133.

    PubMed  CAS  Google Scholar 

  • Caspary, D. M., Rybak, L. P., & Faingold, C. L. (1984). Baclofen reduces tone-evoked activity of cochlear nucleus neurons. Hearing Research, 13(2), 113–122.

    PubMed  CAS  Google Scholar 

  • Chanda, S., & Xu-Friedman, M. A. (2010). A low-affinity antagonist reveals saturation and desensitization in mature synapses in the auditory brainstem. Journal of Neurophysiology, 103, 1915–1926. doi: 10.1152/jn.00751.2009.

    PubMed  Google Scholar 

  • Costalupes, J. A., Young, E. D., & Gibson, D. J. (1984). Effects of continuous noise backgrounds on rate response of auditory nerve fibers in cat. Journal of Neurophysiology, 51(6), 1326–1344.

    PubMed  CAS  Google Scholar 

  • Englitz, B., Tolnai, S., Typlt, M., Jost, J., & Rubsamen, R. (2009). Reliability of synaptic transmission at the synapses of Held in vivo under acoustic stimulation. PLoS One, 4(10), e7014. doi: 10.1371/journal.pone.0007014.

    PubMed  Google Scholar 

  • Farris, H. E., Wells, G. B., & Ricci, A. J. (2006). Steady-state adaptation of mechanotransduction modulates the resting potential of auditory hair cells, providing an assay for endolymph [Ca2+]. Journal of Neuroscience, 26(48), 12526–12536. doi: 10.1523/JNEUROSCI. 3569-06.2006.

    PubMed  CAS  Google Scholar 

  • Fedchyshyn, M. J., & Wang, L. Y. (2005). Developmental transformation of the release modality at the calyx of Held synapse. Journal of Neuroscience, 25(16), 4131–4140. doi: 10.1523/JNEUROSCI.0350-05.2005.

    PubMed  CAS  Google Scholar 

  • Fekete, D. M., Rouiller, E. M., Liberman, M. C., & Ryugo, D. K. (1984). The central projections of intracellularly labeled auditory nerve fibers in cats. Journal of Comparative Neurology, 229(3), 432–450. doi: 10.1002/cne.902290311.

    PubMed  CAS  Google Scholar 

  • Felmy, F., & Schneggenburger, R. (2004). Developmental expression of the Ca2+-binding proteins calretinin and parvalbumin at the calyx of Held of rats and mice. European Journal of Neuroscience, 20(6), 1473–1482. doi: 10.1111/j.1460-9568.2004.03604.x.

    PubMed  Google Scholar 

  • Feng, A. S., & Lin, W. Y. (1996). Neuronal architecture of the dorsal nucleus (cochlear nucleus) of the frog, Rana pipiens pipiens. Journal of Comparative Neurology, 366(2), 320–334. doi: 10.1002/(SICI)1096-9861(19960304)366:2.

    PubMed  CAS  Google Scholar 

  • Feng, J., Bendiske, J., & Morest, D. K. (2009). Postnatal development of NT3 and TrkC in mouse ventral cochlear nucleus. Journal of Neuroscience Research, 88(1), 86–94.

    Google Scholar 

  • Forsythe, I. D., Tsujimoto, T., Barnes-Davies, M., Cuttle, M. F., & Takahashi, T. (1998). Inactivation of presynaptic calcium current contributes to synaptic depression at a fast central synapse. Neuron, 20(4), 797–807.

    PubMed  CAS  Google Scholar 

  • Fukui, I., & Ohmori, H. (2004). Tonotopic gradients of membrane and synaptic properties for neurons of the chicken nucleus magnocellularis. Journal of Neuroscience, 24(34), 7514.

    PubMed  CAS  Google Scholar 

  • Gardner, S. M., Trussell, L. O., & Oertel, D. (2001). Correlation of AMPA receptor subunit composition with synaptic input in the mammalian cochlear nuclei. Journal of Neuroscience, 21(18), 7428–7437.

    PubMed  CAS  Google Scholar 

  • Geiger, J. R., Melcher, T., Koh, D. S., Sakmann, B., Seeburg, P. H., & Jonas, P. (1995). Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron, 15(1), 193–204.

    PubMed  CAS  Google Scholar 

  • Glowatzki, E., & Fuchs, P. A. (2002). Transmitter release at the hair cell ribbon synapse. Nature Neuroscience, 5(2), 147–154. doi: 10.1038/nn796.

    PubMed  CAS  Google Scholar 

  • Goldberg, J. M., & Brownell, W. E. (1973). Discharge characteristics of neurons in anteroventral and dorsal cochlear nuclei of cat. Brain Research, 64, 35–54.

    PubMed  CAS  Google Scholar 

  • Gomez-Nieto, R., & Rubio, M. E. (2009). A bushy cell network in the rat ventral cochlear nucleus. Journal of Comparative Neurology, 516(4), 241–263. doi: 10.1002/cne.22139.

    PubMed  Google Scholar 

  • Grande, L. A., & Spain, W. J. (2005). Synaptic depression as a timing device. Physiology (Bethesda), 20, 201–210. doi: 10.1152/physiol.00006.2005.

    Google Scholar 

  • Guinan, J. J. Jr., & Li, R. Y. (1990). Signal processing in brainstem auditory neurons which receive giant endings (calyces of Held) in the medial nucleus of the trapezoid body of the cat. Hearing Research, 49(1–3), 321–334.

    PubMed  Google Scholar 

  • Hackney, C. M., Osen, K. K., Ottersen, O. P., Storm-Mathisen, J., & Manjaly, G. (1996). Immunocytochemical evidence that glutamate is a neurotransmitter in the cochlear nerve: A quantitative study in the guinea-pig anteroventral cochlear nucleus. European Journal of Neuroscience, 8(1), 79–91.

    PubMed  CAS  Google Scholar 

  • Harrison, J. M., & Irving, R. (1965). The anterior ventral cochlear nucleus. Journal of Comparative Neurology, 124, 15–41.

    PubMed  CAS  Google Scholar 

  • Harrison, J. M., & Warr, W. B. (1962). A study of the cochlear nuclei and ascending auditory pathways of the medulla. Journal of Comparative Neurology, 119, 341–379.

    PubMed  CAS  Google Scholar 

  • Hashisaki, G., & Rubel, E. (1989). Age-related effects of unilateral cochlea removal on anteroventral cochlear nucleus in developing gerbils. Journal of Comparative Neurology, 283, 465–473.

    Google Scholar 

  • Held, H. (1891). Die centralen Bahnen des Nervus acusticus bei der Katze. Archives of Anatomy Physiology Anatomy Abtil, 15, 271–291.

    Google Scholar 

  • Hermann, J., Pecka, M., von Gersdorff, H., Grothe, B., & Klug, A. (2007). Synaptic transmission at the calyx of Held under in vivo like activity levels. Journal of Neurophysiology, 98(2), 807–820. doi: 10.1152/jn.00355.2007.

    PubMed  Google Scholar 

  • Hollmann, M., & Heinemann, S. (1994). Cloned glutamate receptors. Annual Review of Neuroscience, 17(1), 31–108.

    PubMed  CAS  Google Scholar 

  • Hunter, C., Petralia, R. S., Vu, T., & Wenthold, R. J. (1993). Expression of AMPA-selective glutamate receptor subunits in morphologically defined neurons of the mammalian cochlear nucleus. Journal of Neuroscience, 13(5), 1932–1946.

    PubMed  CAS  Google Scholar 

  • Isaacson, J. S., & Walmsley, B. (1995a). Counting quanta: Direct measurements of transmitter release at a central synapse. Neuron, 15(4), 875–884.

    PubMed  CAS  Google Scholar 

  • Isaacson, J. S., & Walmsley, B. (1995b). Receptors underlying excitatory synaptic transmission in slices of the rat anteroventral cochlear nucleus. Journal of Neurophysiology, 73(3), 964–973.

    PubMed  CAS  Google Scholar 

  • Isaacson, J. S., & Walmsley, B. (1996). Amplitude and time course of spontaneous and evoked excitatory postsynaptic currents in bushy cells of the anteroventral cochlear nucleus. Journal of Neurophysiology, 76(3), 1566–1571.

    PubMed  CAS  Google Scholar 

  • Jackson, H., Nemeth, E. F., & Parks, T. N. (1985). Non-N-methyl-D-aspartate receptors mediating synaptic transmission in the avian cochlear nucleus: Effects of kynurenic acid, dipicolinic acid and streptomycin. Neuroscience, 16(1), 171–179.

    PubMed  CAS  Google Scholar 

  • Jackson, H., & Parks, T. N. (1982). Functional synapse elimination in the developing avian cochlear nucleus with simultaneous reduction in cochlear nerve axon branching. Journal of Neuroscience, 2(12), 1736–1743.

    PubMed  CAS  Google Scholar 

  • Jhaveri, S., & Morest, D. K. (1982). Sequential alterations of neuronal architecture in nucleus magnocellularis of the developing chicken: An electron microscope study. Neuroscience, 7(4), 855–870.

    PubMed  CAS  Google Scholar 

  • Joelson, D., & Schwartz, I. R. (1998). Development of N-methyl-D-aspartate receptor subunit immunoreactivity in the neonatal gerbil cochlear nucleus. Microscopy Research and Technique, 41(3), 246–262. doi: 10.1002/(SICI)1097-0029(19980501)41:3.

    PubMed  CAS  Google Scholar 

  • Joris, P. X., Carney, L. H., Smith, P. H., & Yin, T. C. (1994). Enhancement of neural synchronization in the anteroventral cochlear nucleus. I. Responses to tones at the characteristic frequency. Journal of Neurophysiology, 71(3), 1022–1036.

    PubMed  CAS  Google Scholar 

  • Kato, B., & Rubel, E. (1999). Glutamate regulates IP3-type and CICR stores in the avian cochlear nucleus. Journal of Neurophysiology, 81(4), 1587.

    PubMed  CAS  Google Scholar 

  • Kiang, N. Y.-S. (1965). Discharge patterns of single fibers in the cat’s auditory nerve. Cambridge: MIT Press.

    Google Scholar 

  • Kiang, N. Y.-S., Pfeiffer, R. R., Warr, W. B., & Backus, A. S. (1965). Stimulus coding in the cochlear nucleus. Annals of Otology Rhinology and Laryngology, 74, 463–485.

    CAS  Google Scholar 

  • Koike-Tani, M., Kanda, T., Saitoh, N., Yamashita, T., & Takahashi, T. (2008). Involvement of AMPA receptor desensitization in short-term synaptic depression at the calyx of Held in developing rats. Journal of Physiology, 586(9), 2263–2275. doi: 10.1113/jphysiol.2007.142547.

    PubMed  CAS  Google Scholar 

  • Kolliker, A. (1896). Handbuch der Gewebelehre des Menschem Bd. 2. Leipzig: Wilhelm Engelman.

    Google Scholar 

  • Kopp-Scheinpflug, C., Dehmel, S., Dorrscheidt, G. J., & Rubsamen, R. (2002). Interaction of excitation and inhibition in anteroventral cochlear nucleus neurons that receive large endbulb synaptic endings. Journal of Neuroscience, 22(24), 11004–1018.

    PubMed  CAS  Google Scholar 

  • Kopp-Scheinpflug, C., Lippe, W. R., Dorrscheidt, G. J., & Rubsamen, R. (2003). The medial nucleus of the trapezoid body in the gerbil is more than a relay: Comparison of pre- and postsynaptic activity. JARO: Journal of the Association for Research in Otolaryngology, 4(1), 1–23. doi: 10.1007/s10162-002-2010-5.

    PubMed  Google Scholar 

  • Koppl, C. (1994). Auditory nerve terminals in the cochlear nucleus magnocellularis: Differences between low and high frequencies. Journal of Comparative Neurology, 339(3), 438–446. doi: 10.1002/cne.903390310.

    PubMed  CAS  Google Scholar 

  • Kuhlmann, L., Burkitt, A. N., Paolini, A., & Clark, G. M. (2002). Summation of spatiotemporal input patterns in leaky integrate-and-fire neurons: Application to neurons in the cochlear nucleus receiving converging auditory nerve fiber input. Journal of Computational Neuroscience, 12(1), 55–73.

    PubMed  Google Scholar 

  • Lachica, E., Rubsamen, R., Zirpel, L., & Rubel, E. (1995). Glutamatergic inhibition of voltage-operated calcium channels in the avian cochlear nucleus. Journal of Neuroscience, 15(3), 1724.

    PubMed  CAS  Google Scholar 

  • Lawrence, J. J., Brenowitz, S., & Trussell, L. O. (2003). The mechanism of action of aniracetam at synaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors: Indirect and direct effects on desensitization. Molecular Pharmacology, 64(2), 269–278. doi: 10.1124/mol.64.2.269.

    PubMed  CAS  Google Scholar 

  • Lawrence, J. J., & Trussell, L. O. (2000). Long-term specification of AMPA receptor properties after synapse formation. Journal of Neuroscience, 20(13), 4864–4870.

    PubMed  CAS  Google Scholar 

  • Leão, R. N., Oleskevich, S., Sun, H., Bautista, M., Fyffe, R. E., & Walmsley, B. (2004). Differences in glycinergic mIPSCs in the auditory brain stem of normal and congenitally deaf neonatal mice. Journal of Neurophysiology, 91(2), 1006–1012. doi: 10.1152/jn.00771.2003.

    PubMed  Google Scholar 

  • Lewis, E. R., Leverenz, E. L., & Koyama, H. (1980). Mapping functionally identified auditory afferents from their peripheral origins to their central terminations. Brain Research, 197(1), 223–229.

    PubMed  CAS  Google Scholar 

  • Li, G. L., Keen, E., Andor-Ardo, D., Hudspeth, A. J., & von Gersdorff, H. (2009). The unitary event underlying multiquantal EPSCs at a hair cell’s ribbon synapse. Journal of Neuroscience, 29(23), 7558–7568. doi: 10.1523/JNEUROSCI.0514-09.2009.

    PubMed  CAS  Google Scholar 

  • Li, J., & Young, E. D. (1993). Discharge-rate dependence of refractory behavior of cat auditory-nerve fibers. Hearing Research, 69(1–2), 151–162.

    PubMed  CAS  Google Scholar 

  • Liberman, M. C. (1978). Auditory-nerve response from cats raised in a low-noise chamber. Journal of the Acoustic Society of America, 63(2), 442–455.

    CAS  Google Scholar 

  • Liberman, M. C. (1982). The cochlear frequency map for the cat: Labeling auditory-nerve fibers of known characteristic frequency. Journal of the Acoustic Society of America, 72(5), 1441–1449.

    CAS  Google Scholar 

  • Liberman, M. C. (1991). Central projections of auditory-nerve fibers of differing spontaneous rate. I. Anteroventral cochlear nucleus. Journal of Comparative Neurology, 313(2), 240–258. doi: 10.1002/cne.903130205.

    PubMed  CAS  Google Scholar 

  • Liberman, M. C., & Oliver, M. E. (1984). Morphometry of intracellularly labeled neurons of the auditory nerve: Correlations with functional properties. Journal of Comparative Neurology, 223(2), 163–176. doi: 10.1002/cne.902230203.

    PubMed  CAS  Google Scholar 

  • Lim, R., Alvarez, F. J., & Walmsley, B. (2000). GABA mediates presynaptic inhibition at glycinergic synapses in a rat auditory brainstem nucleus. Journal of Physiology, 525(Pt. 2), 447–459.

    PubMed  CAS  Google Scholar 

  • Limb, C. J., & Ryugo, D. K. (2000). Development of primary axosomatic endings in the anteroventral cochlear nucleus of mice. JARO: Journal of the Association for Research in Otolaryngology, 1(2), 103–119.

    PubMed  CAS  Google Scholar 

  • Lorente de Nó, R. (1981). The primary acoustic nuclei. New York: Raven Press.

    Google Scholar 

  • Lorteije, J. A., Rusu, S. I., Kushmerick, C., & Borst, J. G. (2009). Reliability and precision of the mouse calyx of Held synapse. Journal of Neuroscience, 29(44), 13770–13784. doi: 10.1523/JNEUROSCI.3285-09.2009.

    PubMed  CAS  Google Scholar 

  • Lu, T., & Trussell, L. O. (2007). Development and elimination of endbulb synapses in the chick cochlear nucleus. Journal of Neuroscience, 27(4), 808–817. doi: 10.1523/JNEUROSCI.4871-06.2007.

    PubMed  CAS  Google Scholar 

  • Lu, Y., Harris, J. A., & Rubel, E. W. (2007). Development of spontaneous miniature EPSCs in mouse AVCN neurons during a critical period of afferent-dependent neuron survival. Journal of Neurophysiology, 97(1), 635–646. doi: 10.1152/jn.00915.2006.

    PubMed  Google Scholar 

  • Lu, Y., & Rubel, E. W. (2005). Activation of metabotropic glutamate receptors inhibits high-voltage-gated calcium channel currents of chicken nucleus magnocellularis neurons. Journal of Neurophysiology, 93(3), 1418.

    PubMed  CAS  Google Scholar 

  • Manis, P. B. (2008). Biophysical specializations of neurons that encode timing. In Bausbaum, A.I., Akimichi, K., Shepherd, G. M., & Westheimer, G. (Eds.), The senses: A comphrehensive reference (Vol. 3, pp. 565–586). San Diego: Academic Press.

    Google Scholar 

  • Manis, P. B., & Marx, S. O. (1991). Outward currents in isolated ventral cochlear nucleus neurons. Journal of Neuroscience, 11(9), 2865–2880.

    PubMed  CAS  Google Scholar 

  • Martin, M. R. (1981). Morphology of the cochlear nucleus of the normal and reeler mutant mouse. Journal of Comparative Neurology, 197(1), 141–152. doi: 10.1002/cne.901970111.

    PubMed  CAS  Google Scholar 

  • Martin, M. R. (1985). Evidence for an excitatory amino acid as the transmitter of the auditory nerve in the in vitro mouse cochlear nucleus. Hearing Research, 20(3), 215–220.

    PubMed  CAS  Google Scholar 

  • Mattox, D. E., Neises, G. R., & Gulley, R. L. (1982). A freeze-fracture study of the maturation of synapses in the anteroventral cochlear nucleus of the developing rat. Anatomical Record, 204(3), 281–287. doi: 10.1002/ar.1092040313.

    PubMed  CAS  Google Scholar 

  • Milenkovic, I., Rinke, I., Witte, M., Dietz, B., & Rubsamen, R. (2009). P2 receptor-mediated signaling in spherical bushy cells of the mammalian cochlear nucleus. Journal of Neurophysiology, 102(3), 1821–1833. doi: 10.1152/jn.00186.2009.

    PubMed  CAS  Google Scholar 

  • Mosbacher, J., Schoepfer, R., Monyer, H., Burnashev, N., Seeburg, P. H., & Ruppersberg, J. P. (1994). A molecular determinant for submillisecond desensitization in glutamate receptors. Science, 266(5187), 1059–1062.

    PubMed  CAS  Google Scholar 

  • Moskowitz, N., & Liu, J. C. (1972). Central projections of the spiral ganglion of the squirrel monkey. Journal of Comparative Neurology, 144(3), 335–344. doi: 10.1002/cne.901440305.

    PubMed  CAS  Google Scholar 

  • Murthy, V. N., Sejnowski, T. J., & Stevens, C. F. (1997). Heterogeneous release properties of visualized individual hippocampal synapses. Neuron, 18(4), 599–612.

    PubMed  CAS  Google Scholar 

  • Neises, G. R., Mattox, D. E., & Gulley, R. L. (1982). The maturation of the end bulb of Held in the rat anteroventral cochlear nucleus. Anatatomical Record, 204(3), 271–279. doi: 10.1002/ar.1092040312.

    CAS  Google Scholar 

  • Nicol, M. J., & Walmsley, B. (2002). Ultrastructural basis of synaptic transmission between endbulbs of Held and bushy cells in the rat cochlear nucleus. Journal of Physiology, 539(Pt. 3), 713–723.

    PubMed  CAS  Google Scholar 

  • Noda, Y., & Pirsig, W. (1974). Anatomical projection of the cochlea to the cochlear nuclei of the guinea pig. Archives of Otorhinolaryngology, 208(2), 107–120.

    CAS  Google Scholar 

  • O’Neil, J. N., Limb, C. J., Baker, C. A., & Ryugo, D. K. (2010). Bilateral effects of unilateral cochlear implantation in congenitally deaf cats. Journal of Comparative Neurology, 518(12), 2382–2404. doi: 10.1002/cne.22339.

    PubMed  Google Scholar 

  • Oertel, D. (1983). Synaptic responses and electrical properties of cells in brain slices of the mouse anteroventral cochlear nucleus. Journal of Neuroscience, 3(10), 2043–2053.

    PubMed  CAS  Google Scholar 

  • Oertel, D., Shatadal, S., & Cao, X. J. (2008). In the ventral cochlear nucleus Kv1. 1 and subunits of HCN1 are colocalized at surfaces of neurons that have low-voltage-activated and hyperpolarization-activated conductances. Neuroscience, 154(1), 77–86.

    PubMed  CAS  Google Scholar 

  • Ohlemiller, K. K., Echteler, S. M., & Siegel, J. H. (1991). Factors that influence rate-versus-intensity relations in single cochlear nerve fibers of the gerbil. Journal of the Acoustic Society of America, 90(1), 274–287.

    CAS  Google Scholar 

  • Oleskevich, S., Clements, J., & Walmsley, B. (2000). Release probability modulates short-term plasticity at a rat giant terminal. Journal of Physiology, 524(Pt. 2), 513–523.

    PubMed  CAS  Google Scholar 

  • Oleskevich, S., & Walmsley, B. (2002). Synaptic transmission in the auditory brainstem of normal and congenitally deaf mice. Journal of Physiology, 540(Pt. 2), 447–455.

    PubMed  CAS  Google Scholar 

  • Osen, K. K. (1969a). Cytoarchitecture of the cochlear nuclei in the cat. Journal of Comparative Neurology, 136(4), 453–484. doi: 10.1002/cne.901360407.

    PubMed  CAS  Google Scholar 

  • Osen, K. K. (1969b). The intrinsic organization of the cochlear nuclei. Acta Otolaryngologica, 67(2), 352–359.

    CAS  Google Scholar 

  • Osen, K. K. (1970). Course and termination of the primary afferents in the cochlear nuclei of the cat. An experimental anatomical study. Archives Italiennes de Biologie, 108(1), 21–51.

    PubMed  CAS  Google Scholar 

  • Ostapoff, E. M., & Morest, D. K. (1991). Synaptic organization of globular bushy cells in the ventral cochlear nucleus of the cat: A quantitative study. Journal of Comparative Neurology, 314(3), 598–613. doi: 10.1002/cne.903140314.

    PubMed  CAS  Google Scholar 

  • Otis, T. S., & Trussell, L. O. (1996). Inhibition of transmitter release shortens the duration of the excitatory synaptic current at a calyceal synapse. Journal of Neurophysiology, 76(5), 3584–3588.

    PubMed  CAS  Google Scholar 

  • Otis, T. S., Wu, Y. C., & Trussell, L. O. (1996). Delayed clearance of transmitter and the role of glutamate transporters at synapses with multiple release sites. Journal of Neuroscience, 16(5), 1634–1644.

    PubMed  CAS  Google Scholar 

  • Parks, T. N. (1979). Afferent influences on the development of the brain stem auditory nuclei of the chicken: Otocyst ablation. Journal of Comparative Neurology, 183, 665–677.

    PubMed  CAS  Google Scholar 

  • Perez-Otano, I., & Ehlers, M. (2004). Learning from NMDA receptor trafficking: Clues to the development and maturation of glutamatergic synapses. Neurosignals, 13, 175–189.

    PubMed  CAS  Google Scholar 

  • Perkins, G. A., Tjong, J., Brown, J. M., Poquiz, P. H., Scott, R. T., Kolson, D. R. (2010). The micro-architecture of mitochondria at active zones: Electron tomography reveals novel anchoring scaffolds and cristae structured for high-rate metabolism. Journal of Neuroscience, 30(3), 1015–1026. doi: 10.1523/JNEUROSCI.1517-09.2010.

    PubMed  CAS  Google Scholar 

  • Pfeiffer, R. R. (1966). Anteroventral cochlear nucleus: Wave forms of extracellularly recorded spike potentials. Science, 154(749), 667–668.

    PubMed  CAS  Google Scholar 

  • Pliss, L., Yang, H., & Xu-Friedman, M. A. (2009). Context-dependent effects of NMDA receptors on precise timing information at the endbulb of Held in the cochlear nucleus. Journal of Neurophysiology, 102(5), 2627–2637. doi: 10.1152/jn.00111.2009.

    PubMed  CAS  Google Scholar 

  • Raman, I. M., & Trussell, L. O. (1992). The kinetics of the response to glutamate and kainate in neurons of the avian cochlear nucleus. Neuron, 9(1), 173–186.

    PubMed  CAS  Google Scholar 

  • Ramon y Cajal, S. (1896). Beitrag zum Studium der Medulla oblongata, des Kleinhirns und des Ursprungs der Gehirnnerven: Verlag von Johann Ambrosius Barth.

    Google Scholar 

  • Ramon y Cajal, S. (1995). Histology of the Nervous System of Man and Vertebrates (Swanson, N., & Swanson, L., trans. Vol. 1). New York: Oxford University Press.

    Google Scholar 

  • Rathouz, M., & Trussell, L. (1998). Characterization of outward currents in neurons of the avian nucleus magnocellularis. Journal of Neurophysiology, 80(6), 2824.

    PubMed  CAS  Google Scholar 

  • Ravindranathan, A., Donevan, S. D., Sugden, S. G., Greig, A., Rao, M. S., & Parks, T. N. (2000). Contrasting molecular composition and channel properties of AMPA receptors on chick auditory and brainstem motor neurons. Journal of Physiology, 523(Pt. 3), 667–684.

    PubMed  CAS  Google Scholar 

  • Reyes, A. D., Rubel, E. W., & Spain, W. J. (1994). Membrane properties underlying the firing of neurons in the avian cochlear nucleus. Journal of Neuroscience, 14(9), 5352.

    PubMed  CAS  Google Scholar 

  • Rhode, W. S. (2008). Response patterns to sound associated with labeled globular/bushy cells in cat. Neuroscience, 154(1), 87–98.

    PubMed  CAS  Google Scholar 

  • Rhode, W. S., & Smith, P. H. (1985). Characteristics of tone-pip response patterns in relationship to spontaneous rate in cat auditory nerve fibers. Hearing Research, 18(2), 159–168.

    PubMed  CAS  Google Scholar 

  • Rothman, J. S., & Manis, P. B. (2003a). Kinetic analyses of three distinct potassium conductances in ventral cochlear nucleus neurons. Journal of Neurophysiology, 89(6), 3083–3096. doi: 10.1152/jn.00126.2002.

    PubMed  CAS  Google Scholar 

  • Rothman, J. S., & Manis, P. B. (2003b). The roles potassium currents play in regulating the electrical activity of ventral cochlear nucleus neurons. Journal of Neurophysiology, 89(6), 3097–3113. doi: 10.1152/jn.00127.2002.

    PubMed  CAS  Google Scholar 

  • Rothman, J. S., & Young, E. D. (1996). Enhancement of neural synchronization in computational models of ventral cochlear nucleus bushy cells. Auditory Neuroscience, 2, 47–62.

    Google Scholar 

  • Rothman, J. S., Young, E. D., & Manis, P. B. (1993). Convergence of auditory nerve fibers onto bushy cells in the ventral cochlear nucleus: Implications of a computational model. Journal of Neurophysiology, 70(6), 2562.

    PubMed  CAS  Google Scholar 

  • Rouiller, E. M., Cronin-Schreiber, R., Fekete, D. M., & Ryugo, D. K. (1986). The central projections of intracellularly labeled auditory nerve fibers in cats: An analysis of terminal morphology. Journal of Comparative Neurology, 249(2), 261–278. doi: 10.1002/cne.902490210.

    PubMed  CAS  Google Scholar 

  • Rowland, K. C., Irby, N. K., & Spirou, G. A. (2000). Specialized synapse-associated structures within the calyx of Held. Journal of Neuroscience, 20(24), 9135–9144.

    PubMed  CAS  Google Scholar 

  • Rozov, A., Burnashev, N., Sakmann, B., & Neher, E. (2001). Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell-specific difference in presynaptic calcium dynamics. Journal of Physiology, 531(Pt, 3), 807–826.

    PubMed  CAS  Google Scholar 

  • Ryugo, D. K., Montey, K. L., Wright, A. L., Bennett, M. L., & Pongstaporn, T. (2006). Postnatal development of a large auditory nerve terminal: The endbulb of Held in cats. Hearing Research, 216–217, 100–115. doi: 10.1016/j.heares.2006.01.007.

    PubMed  Google Scholar 

  • Ryugo, D. K., Pongstaporn, T., Huchton, D. M., & Niparko, J. K. (1997). Ultrastructural analysis of primary endings in deaf white cats: Morphologic alterations in endbulbs of Held. Journal of Comparative Neurology, 385(2), 230–244. doi: 10.1002/(SICI)1096-9861(19970825)385:2.

    PubMed  CAS  Google Scholar 

  • Ryugo, D. K., & Rouiller, E. M. (1988). Central projections of intracellularly labeled auditory nerve fibers in cats: Morphometric correlations with physiological properties. Journal of Comparative Neurology, 271(1), 130–142. doi: 10.1002/cne.902710113.

    PubMed  CAS  Google Scholar 

  • Ryugo, D. K., & Sento, S. (1991). Synaptic connections of the auditory nerve in cats: Relationship between endbulbs of Held and spherical bushy cells. Journal of Comparative Neurology, 305(1), 35–48. doi: 10.1002/cne.903050105.

    PubMed  CAS  Google Scholar 

  • Ryugo, D. K., Wu, M. M., & Pongstaporn, T. (1996). Activity-related features of synapse morphology: A study of endbulbs of Held. Journal of Comparative Neurology, 365(1), 141–158. doi: 10.1002/(SICI)1096-9861(19960129)365:1.

    PubMed  CAS  Google Scholar 

  • Sachs, M. B., & Abbas, P. J. (1974). Rate versus level functions for auditory-nerve fibers in cats: Tone-burst stimuli. Journal of the Acoustic Society of America, 56(6), 1835–1847.

    CAS  Google Scholar 

  • Sakaba, T., & Neher, E. (2001). Calmodulin mediates rapid recruitment of fast-releasing synaptic vesicles at a calyx-type synapse. Neuron, 32(6), 1119–1131.

    PubMed  CAS  Google Scholar 

  • Sando, I. (1965). The anatomical interrelationships of the cochlear nerve fibers. Acta Otolaryngo­logica, 59, 417–436.

    Google Scholar 

  • Sanes, D. H., McGee, J. A., & Walsh, E. J. (1998). Metabotropic glutamate receptor activation modulates sound level processing in the cochlear nucleus. Journal of Neurophysiology, 80(1), 209.

    PubMed  CAS  Google Scholar 

  • Schalk, T. B., & Sachs, M. B. (1980). Nonlinearities in auditory-nerve fiber responses to bandlimited noise. Journal of the Acoustic Society of America, 67(3), 903–913.

    CAS  Google Scholar 

  • Schwarz, D. W. F., & Puil, E. (1997). Firing properties of spherical bushy cells in the anteroventral cochlear nucleus of the gerbil. Hearing Research, 114(1–2), 127–138.

    PubMed  CAS  Google Scholar 

  • Sento, S., & Ryugo, D. K. (1989). Endbulbs of Held and spherical bushy cells in cats: Morphological correlates with physiological properties. Journal of Comparative Neurology, 280(4), 553–562. doi: 10.1002/cne.902800406.

    PubMed  CAS  Google Scholar 

  • Sewell, W. F. (1984). The relation between the endocochlear potential and spontaneous activity in auditory nerve fibres of the cat. Journal of Physiology, 347, 685–696.

    PubMed  CAS  Google Scholar 

  • Shepherd, J. D., & Huganir, R. L. (2007). The cell biology of synaptic plasticity: AMPA receptor trafficking. Annual Review of Cell and Developmental Biology, 23, 613–643.

    PubMed  CAS  Google Scholar 

  • Sivaramakrishnan, S., & Laurent, G. (1995). Pharmacological characterization of presynaptic calcium currents underlying glutamatergic transmission in the avian auditory brainstem. Journal of Neuroscience, 15(10), 6576–6585.

    PubMed  CAS  Google Scholar 

  • Smith, P. H., & Rhode, W. S. (1987). Characterization of HRP-labeled globular bushy cells in the cat anteroventral cochlear nucleus. Journal of Comparative Neurology, 266, 360–375.

    PubMed  CAS  Google Scholar 

  • Spirou, G. A., Brownell, W. E., & Zidanic, M. (1990). Recordings from cat trapezoid body and HRP labeling of globular bushy cell axons. Journal of Neurophysiology, 63(5), 1169–1190.

    PubMed  CAS  Google Scholar 

  • Spirou, G. A., Rager, J., & Manis, P. B. (2005). Convergence of auditory-nerve fiber projections onto globular bushy cells. Neuroscience, 136(3), 843–863. doi: 10.1016/j.neuroscience.2005.08.068.

    PubMed  CAS  Google Scholar 

  • Sugden, S. G., Zirpel, L., Dietrich, C. J., & Parks, T. N. (2002). Development of the specialized AMPA receptors of auditory neurons. Journal of Neurobiology, 52(3), 189–202. doi: 10.1002/neu.10078.

    PubMed  CAS  Google Scholar 

  • Suneja, S. K., Yan, L., & Potashner, S. J. (2005). Regulation of NT-3 and BDNF levels in guinea pig auditory brain stem nuclei after unilateral cochlear ablation. Journal of Neuroscience Research, 80(3), 381–390.

    PubMed  CAS  Google Scholar 

  • Szpir, M. R., Sento, S., & Ryugo, D. K. (1990). Central projections of cochlear nerve fibers in the alligator lizard. Journal of Comparative Neurology, 295(4), 530–547. doi: 10.1002/cne.902950403.

    PubMed  CAS  Google Scholar 

  • Taberner, A. M., & Liberman, M. C. (2005). Response properties of single auditory nerve fibers in the mouse. Journal of Neurophysiology, 93(1), 557–569. doi: 10.1152/jn.00574.2004.

    PubMed  Google Scholar 

  • Takago, H., Nakamura, Y., & Takahashi, T. (2005). G protein-dependent presynaptic inhibition mediated by AMPA receptors at the calyx of Held. Proceedings of the National Academy of Sciences of the United States of America, 102(20), 7368–7373. doi: 10.1073/pnas. 0408514102.

    PubMed  CAS  Google Scholar 

  • Tang, Y. Z., & Carr, C. E. (2004). Development of NMDA R1 expression in chicken auditory brainstem. Hearing Research, 191(1–2), 79–89. doi: 10.1016/j.heares.2004.01.007.

    PubMed  CAS  Google Scholar 

  • Tierney, T. S., Doubell, T. P., Xia, G., & Moore, D. R. (2001). Development of brain-derived neurotrophic factor and neurotrophin-3 immunoreactivity in the lower auditory brainstem of the postnatal gerbil. European Journal of Neuroscience, 14(5), 785–793.

    PubMed  CAS  Google Scholar 

  • Tolbert, L. P., & Morest, D. K. (1982). The neuronal architecture of the anteroventral cochlear nucleus of the cat in the region of the cochlear nerve root: Electron microscopy. Neuroscience, 7(12), 3053–3067.

    PubMed  CAS  Google Scholar 

  • Trussell, L. O. (1999). Synaptic mechanisms for coding timing in auditory neurons. Annual Review of Physiology, 61, 477–496. doi: 10.1146/annurev.physiol.61.1.477.

    PubMed  CAS  Google Scholar 

  • Trussell, L. O., & Fischbach, G. D. (1989). Glutamate receptor desensitization and its role in synaptic transmission. Neuron, 3(2), 209–218.

    PubMed  CAS  Google Scholar 

  • Trussell, L. O., Zhang, S., & Raman, I. M. (1993). Desensitization of AMPA receptors upon multiquantal neurotransmitter release. Neuron, 10(6), 1185–1196.

    PubMed  CAS  Google Scholar 

  • Tsuji, J., & Liberman, M. C. (1997). Intracellular labeling of auditory nerve fibers in guinea pig: central and peripheral projections. Journal of Comparative Neurology, 381(2), 188–202. doi: 10.1002/(SICI)1096-9861(19970505)381:2.

    PubMed  CAS  Google Scholar 

  • Turecek, R., & Trussell, L. O. (2000). Control of synaptic depression by glutamate transporters. Journal of Neuroscience, 20(5), 2054.

    PubMed  CAS  Google Scholar 

  • Turecek, R., & Trussell, L. O. (2001). Presynaptic glycine receptors enhance transmitter release at a mammalian central synapse. Nature, 411(6837), 587–590. doi: 10.1038/35079084.

    PubMed  CAS  Google Scholar 

  • Typlt, M., Haustein, M. D., Dietz, B., Steinert, J. R., Witte, M., & Englitz, B. (2010). Presynaptic and postsynaptic origin of multicomponent extracellular waveforms at the endbulb of Held–spherical bushy cell synapse. European Journal of Neuroscience, 31(9), 1574–1581. doi: 10.1111/j.1460-9568.2010.07188.x.

    PubMed  Google Scholar 

  • Verstreken, P., Ly, C. V., Venken, K. J., Koh, T. W., Zhou, Y., & Bellen, H. J. (2005). Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron, 47(3), 365–378. doi: 10.1016/j.neuron.2005.06.018.

    PubMed  CAS  Google Scholar 

  • von Gersdorff, H., Schneggenburger, R., Weis, S., & Neher, E. (1997). Presynaptic depression at a calyx synapse: The small contribution of metabotropic glutamate receptors. Journal of Neuroscience, 17(21), 8137–8146.

    Google Scholar 

  • Wang, L. Y., & Kaczmarek, L. K. (1998). High-frequency firing helps replenish the readily releasable pool of synaptic vesicles. Nature, 394(6691), 384–388. doi: 10.1038/28645.

    PubMed  CAS  Google Scholar 

  • Wang, Y., & Manis, P. B. (2005). Synaptic transmission at the cochlear nucleus endbulb synapse during age-related hearing loss in mice. Journal of Neurophysiology, 94(3), 1814–1824. doi: 10.1152/jn.00374.2005.

    PubMed  Google Scholar 

  • Wang, Y., & Manis, P. B. (2006). Temporal coding by cochlear nucleus bushy cells in DBA/2J mice with early onset hearing loss. Journal of the Association for Research in Otolaryngology, 7(4), 412–424. doi: 10.1007/s10162-006-0052-9.

    PubMed  Google Scholar 

  • Wang, Y., & Manis, P. B. (2008). Short-term synaptic depression and recovery at the mature mammalian endbulb of Held synapse in mice. Journal of Neurophysiology, 100(3), 1255–1264. doi: 10.1152/jn.90715.2008.

    PubMed  CAS  Google Scholar 

  • Wang, Y., Ren, C., & Manis, P. B. (2010). Endbulb synaptic depression within the range of presynaptic spontaneous firing and its impact on the firing reliability of cochlear nucleus bushy neurons. Hearing Research, 270(1–2), 101–109. doi: 10.1016/j.heares.2010.09.003.

    PubMed  Google Scholar 

  • Wang, Y. X., Wenthold, R. J., Ottersen, O. P., & Petralia, R. S. (1998). Endbulb synapses in the anteroventral cochlear nucleus express a specific subset of AMPA-type glutamate receptor subunits. Journal of Neuroscience, 18(3), 1148–1160.

    PubMed  CAS  Google Scholar 

  • Webster, D. B. (1983). Late onset of auditory deprivation does not affect brainstem auditory neuron soma size. Hearing Research, 12(1), 145–147.

    PubMed  CAS  Google Scholar 

  • Webster, D. B., & Trune, D. R. (1982). Cochlear nuclear complex of mice. American Journal of Anatomy, 163(2), 103–130. doi: 10.1002/aja.1001630202.

    PubMed  CAS  Google Scholar 

  • Wenthold, R. J., & Gulley, R. L. (1977). Aspartic acid and glutamic acid levels in the cochlear nucleus after auditory nerve lesion. Brain Research, 138(1), 111–123.

    PubMed  CAS  Google Scholar 

  • Winter, I. M., & Palmer, A. R. (1990). Responses of single units in the anteroventral cochlear nucleus of the guinea pig. Hearing Research, 44(2–3), 161–178.

    PubMed  Google Scholar 

  • Winter, I. M., Robertson, D., & Yates, G. K. (1990). Diversity of characteristic frequency rate-intensity functions in guinea pig auditory nerve fibres. Hearing Research, 45(3), 191–202.

    PubMed  CAS  Google Scholar 

  • Wong, A. Y., Graham, B. P., Billups, B., & Forsythe, I. D. (2003). Distinguishing between presynaptic and postsynaptic mechanisms of short-term depression during action potential trains. Journal of Neuroscience, 23(12), 4868–4877.

    PubMed  CAS  Google Scholar 

  • Wu, S. H., & Oertel, D. (1987). Maturation of synapses and electrical properties of cells in the cochlear nuclei. Hearing Research, 30(1), 99–110.

    PubMed  CAS  Google Scholar 

  • Xu, J., & Wu, L. G. (2005). The decrease in the presynaptic calcium current is a major cause of short-term depression at a calyx-type synapse. Neuron, 46(4), 633–645. doi: 10.1016/j.neuron.2005.03.024.

    PubMed  CAS  Google Scholar 

  • Yang, H., & Xu-Friedman, M. A. (2008). Relative roles of different mechanisms of depression at the mouse endbulb of Held. Journal of Neurophysiology, 99(5), 2510–2521. doi: 10.1152/jn.01293.2007.

    PubMed  CAS  Google Scholar 

  • Yang, H., & Xu-Friedman, M. A. (2009). Impact of synaptic depression on spike timing at the endbulb of Held. Journal of Neurophysiology, 102(3), 1699–1710. doi: 10.1152/jn.00072.2009.

    PubMed  CAS  Google Scholar 

  • Young, E. D., & Barta, P. E. (1986). Rate responses of auditory nerve fibers to tones in noise near masked threshold. Journal of the Acoustic Society of America, 79(2), 426–442.

    CAS  Google Scholar 

  • Zhang, S., & Trussell, L. O. (1994a). A characterization of excitatory postsynaptic potentials in the avian nucleus magnocellularis. Journal of Neurophysiology, 72(2), 705–718.

    PubMed  CAS  Google Scholar 

  • Zhang, S., & Trussell, L. O. (1994b). Voltage clamp analysis of excitatory synaptic transmission in the avian nucleus magnocellularis. Journal of Physiology, 480(Pt. 1), 123–136.

    PubMed  CAS  Google Scholar 

  • Zheng, Y., Baek, J. H., Smith, P. F., & Darlington, C. L. (2007). Cannabinoid receptor down-regulation in the ventral cochlear nucleus in a salicylate model of tinnitus. Hearing Research, 228(1–2), 105–111. doi: 10.1016/j.heares.2007.01.028.

    PubMed  CAS  Google Scholar 

  • Zirpel, L., Lippe, W. R., & Rubel, E. W. (1998). Activity-dependent regulation of [Ca2+] i in avian cochlear nucleus neurons: Roles of protein kinases A and C and relation to cell death. Journal of Neurophysiology, 79(5), 2288.

    PubMed  CAS  Google Scholar 

  • Zirpel, L., & Rubel, E. W. (1996). Eighth nerve activity regulates intracellular calcium concentration of avian cochlear nucleus neurons via a metabotropic glutamate receptor. Journal of Neurophysiology, 76(6), 4127.

    PubMed  CAS  Google Scholar 

  • Zucker, R. S., & Regehr, W. G. (2002). Short-term synaptic plasticity. Annual Reviews of Physiology, 64, 355–405. doi: 10.1146/annurev.physiol.64.092501.114547.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIDCD grant R01DC004551 to PBM (PBM, RX); a grant from the Deafness Research Foundation to RX; NIDCD grant R03DC008190 to YW; grants P20 RR015774 to the Sensory Neuroscience Research Center at WVU and R01 DC007695 to GAS; and F32 DC010546 to GSM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul B. Manis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Manis, P.B., Xie, R., Wang, Y., Marrs, G.S., Spirou, G.A. (2012). The Endbulbs of Held. In: Trussell, L., Popper, A., Fay, R. (eds) Synaptic Mechanisms in the Auditory System. Springer Handbook of Auditory Research, vol 41. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9517-9_4

Download citation

Publish with us

Policies and ethics