Skip to main content

The Hair Cell Synapse

  • Chapter
  • First Online:
Synaptic Mechanisms in the Auditory System

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 41))

Abstract

The sensory cells of the auditory/vestibular system rely on two highly specialized structures to transmit information to the brain: hair bundles and ribbon synapses. Hair bundles transduce sound and head movements into changes in membrane potential, which in turn stimulate ribbon synapses to release neurotransmitter. As opposed to the all-or-none firing of neurons, both mechanotransduction and release of neurotransmitter occur in a graded fashion. When hair bundles are deflected, cations flow through transduction channels, initiating a change in membrane potential. Stronger deflections result in greater changes in receptor potential, which in turn lead to graded gating of L-type calcium channels. These basally located channels mediate calcium influx and subsequent fusion of synaptic vesicles. After vesicle release, sufficient amounts of neurotransmitter cause an action potential to fire in afferent neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beutner, D., Voets, T., Neher, E., & Moser, T. (2001). Calcium dependence of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse. Neuron, 29(3), 681–690.

    Article  PubMed  CAS  Google Scholar 

  • Brandt, A., Striessnig, J., & Moser, T. (2003). CaV1.3 channels are essential for development and presynaptic activity of cochlear inner hair cells. Journal of Neuroscience, 23(34), 10832–10840.

    PubMed  CAS  Google Scholar 

  • Brandt, A., Khimich, D., & Moser, T. (2005). Few CaV1.3 channels regulate the exocytosis of a synaptic vesicle at the hair cell ribbon synapse. Journal of Neuroscience, 25(50), 11577–11585.

    Article  PubMed  CAS  Google Scholar 

  • Bunt, A. H. (1971). Enzymatic digestion of synaptic ribbons in amphibian retinal photoreceptors. Brain Research, 25(3), 571–577.

    Article  PubMed  CAS  Google Scholar 

  • Buran, B. N., Strenzke, N., Neef, A., Gundelfinger, E. D., Moser, T., & Liberman, M. C. (2010). Onset coding is degraded in auditory nerve fibers from mutant mice lacking synaptic ribbons. Journal of Neuroscience, 30(22), 7587–7597.

    Article  PubMed  CAS  Google Scholar 

  • Darrow, K. N., Simons, E. J., Dodds, L., & Liberman, M. C. (2006). Dopaminergic innervation of the mouse inner ear: evidence for a separate cytochemical group of cochlear efferent fibers. Journal of Comparative Neurology, 498(3), 403–414.

    Article  PubMed  CAS  Google Scholar 

  • Zorrilla de San Martín, J., Ballestero, J., Katz, E., Elgoyhen, A. B., & Fuchs, P. A. (2007). Ryanodine is a positive modulator of acetylcholine receptor gating in cochlear hair cells. JARO: Journal of the Association for Research in Otolaryngology, 8(4), 474–483.

    Article  Google Scholar 

  • Dean, C., Liu, H., Dunning, F. M., Chang, P. Y., Jackson, M. B., & Chapman, E. R. (2009). Synaptotagmin-IV modulates synaptic function and long-term potentiation by regulating BDNF release. Nature Neuroscience, 12(6), 767–776.

    Article  PubMed  CAS  Google Scholar 

  • Desai, S. S., Zeh, C., & Lysakowski, A. (2005). Comparative morphology of rodent vestibular periphery. I: Saccular and utricular maculae. Journal of Neurophysiology, 93(1), 251–266.

    Article  PubMed  Google Scholar 

  • Dick, O., Tom Dieck, S., Altrock, W. D., Ammermüller, J., Weiler, R., Garner, C. C., Gundelfinger, E. D., & Brandstätter, J. H. (2003). The presynaptic active zone protein bassoon is essential for photoreceptor ribbon synapse formation in the retina. Neuron, 37(5), 775–786.

    Article  PubMed  CAS  Google Scholar 

  • Dulon, D., Safieddine, S., Jones, S. M., & Petit, C. (2009). Otoferlin is critical for a highly sensitive and linear calcium-dependent exocytosis at vestibular hair cell ribbon synapses. Journal of Neuroscience, 29(34), 10474–10487.

    Article  PubMed  CAS  Google Scholar 

  • Edmonds, B. W., Gregory, F. D., & Schweizer, F. E. (2004). Evidence that fast exocytosis can be predominantly mediated by vesicles not docked at active zones in frog saccular hair cells. Journal of Physiology, 560(Pt 2), 439–450.

    Article  PubMed  CAS  Google Scholar 

  • Eisen, M. D., Spassova, M., & Parsons, T. D. (2004). Large releasable pool of synaptic vesicles in chick cochlear hair cells. Journal of Neurophysiology, 91(6), 2422–242.

    Article  PubMed  Google Scholar 

  • Ferguson, G. D., Herschman, H. R., & Storm, D. R. (2004a). Reduced anxiety and depression-like behavior in synaptotagmin IV (−/−) mice. Neuropharmacology, 47(4), 604–611.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson, G. D., Wang, H., Herschman, H. R., & Storm, D. R. (2004b). Altered hippocampal short-term plasticity and associative memory in synaptotagmin IV (−/−) mice. Hippocampus, 14(8), 964–974.

    Article  PubMed  CAS  Google Scholar 

  • Fernández, C., Baird, R. A., & Goldberg, J. M. (1988). The vestibular nerve of the chinchilla. I. Peripheral innervation patterns in the horizontal and superior semicircular canals. Journal of Neurophysiology, 60(1), 167–181.

    PubMed  Google Scholar 

  • Fernández, C., Lysakowski, A., & Goldberg, J. M. (1995). Hair-cell counts and afferent innervation patterns in the cristae ampullares of the squirrel monkey with a comparison to the chinchilla. Journal of Neurophysiology, 73(3), 1253–1269.

    PubMed  Google Scholar 

  • Furukawa, T., & Matsuura, S. (1978). Adaptive rundown of excitatory post-synaptic potentials at synapses between hair cells and eight nerve fibres in the goldfish. Journal of Physiology, 276, 193–209.

    PubMed  CAS  Google Scholar 

  • Glowatzki, E., & Fuchs, P. A. (2002). Transmitter release at the hair cell ribbon synapse. Nature Neuroscience, 5(2), 147–154.

    Article  PubMed  CAS  Google Scholar 

  • Glowatzki, E., Grant, L., & Fuchs, P. (2008). Hair cell afferent synapses. Current Opinion in Neurobiology, 18(4), 389–395.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, J. M., Lysakowski, A., & Fernández, C. (1990). Morphophysiological and ultrastructural studies in the mammalian cristae ampullares. Hearing Research, 49(1–3), 89–102.

    Article  PubMed  CAS  Google Scholar 

  • Goutman, J. D., & Glowatzki, E. (2007). Time course and calcium dependence of transmitter release at a single ribbon synapse. Proceedings of the National Academy of Sciences of the United States of America, 104(41), 16341–1634.

    Article  PubMed  CAS  Google Scholar 

  • Griesinger, C. B., Richards, C. D., & Ashmore, J. F. (2005). Fast vesicle replenishment allows indefatigable signalling at the first auditory synapse. Nature, 435(7039), 212–215.

    Article  PubMed  CAS  Google Scholar 

  • Heidrych, P., Zimmermann, U., Bress, A., Pusch, C. M., Ruth, P., Pfister, M., Knipper, M., & Blin, N. (2008). Rab8b GTPase, a protein transport regulator, is an interacting partner of otoferlin, defective in a human autosomal recessive deafness form. Human Molecular Genetics, 17(23), 3814–3821.

    Article  PubMed  CAS  Google Scholar 

  • Heidrych, P., Zimmermann, U., Kuhn, S., Franz, C., Engel, J., Duncker, S. V., Hirt, B., Pusch, C. M., Ruth, P., Pfister, M., Marcotti, W., Blin, N., & Knipper, M. (2009). Otoferlin interacts with myosin VI: Implications for maintenance of the basolateral synaptic structure of the inner hair cell. Human Molecular Genetics, 18(15), 2779–2790.

    Article  PubMed  CAS  Google Scholar 

  • Heil, P., Neubauer, H., Irvine, D. R. F., & Brown, M. (2007). Spontaneous activity of auditory-nerve fibers: insights into stochastic processes at ribbon synapses. Journal of Neuroscience, 27(31), 8457–8474.

    Article  PubMed  CAS  Google Scholar 

  • Highstein, S. M. (1991). The central nervous system efferent control of the organs of balance and equilibrium. Neuroscience Research, 12(1), 13–30.

    Article  PubMed  CAS  Google Scholar 

  • Issa, N. P. & Hudspeth, A. J. (1994). Clustering of Ca2+ channels and Ca(2+)-activated K  +  channels at fluorescently labeled presynaptic active zones of hair cells. Proceedings of the National Academy of Sciences of the United States of America, 91(16), 7578–7582.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, S. L., & Marcotti, W. (2008). Biophysical properties of CaV1.3 calcium channels in gerbil inner hair cells. Journal of Physiology, 586(4), 1029–1042.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, S. L., Marcotti, W., & Kros, C. J. (2005). Increase in efficiency and reduction in Ca2+ dependence of exocytosis during development of mouse inner hair cells. Journal of Physiology, 563(Pt 1), 177–191.

    PubMed  CAS  Google Scholar 

  • Johnson, S. L., Franz, C., Kuhn, S., Furness, D. N., Rüttiger, L., Münkner, S., Rivolta, M. N., Seward, E. P., Herschman, H. R., Engel, J., Knipper, M., & Marcotti, W. (2010). Synaptotagmin IV determines the linear Ca2+ dependence of vesicle fusion at auditory ribbon synapses. Nature Neuroscience, 13(1), 45–52.

    Article  PubMed  CAS  Google Scholar 

  • Keen, E. C., & Hudspeth, A. J. (2006). Transfer characteristics of the hair cell’s afferent synapse. Proceedings of the National Academy of Sciences of the United States of America, 103(14), 5537–5542.

    Article  PubMed  CAS  Google Scholar 

  • Khimich, D., Nouvian, R., Pujol, R., Tom Dieck, S., Egner, A., Gundelfinger, E. D., & Moser, T. (2005). Hair cell synaptic ribbons are essential for synchronous auditory signalling. Nature, 434(7035), 889–894.

    Article  PubMed  CAS  Google Scholar 

  • Klinke, R., & Galley, N. (1974). Efferent innervation of vestibular and auditory receptors. Physiological Reviews, 54(2), 316–357.

    PubMed  CAS  Google Scholar 

  • Kong, W.-J., Cheng, H.-M., & van Cauwenberge, P. (2006). Expression of nicotinic acetylcholine receptor subunit alpha9 in type II vestibular hair cells of rats. Acta Pharmacologica Sinica, 27(11), 1509–1514.

    Article  PubMed  CAS  Google Scholar 

  • Kong, J.-H., Adelman, J. P., & Fuchs, P. A. (2008). Expression of the SK2 calcium-activated potassium channel is required for cholinergic function in mouse cochlear hair cells. Journal of Physiology, 586(Pt 22), 5471–5485.

    Article  PubMed  CAS  Google Scholar 

  • Lenzi, D., Runyeon, J. W., Crum, J., Ellisman, M. H., & Roberts, W. M. (1999). Synaptic vesicle populations in saccular hair cells reconstructed by electron tomography. Journal of Neuroscience, 19(1), 119–132.

    PubMed  CAS  Google Scholar 

  • Lenzi, D., Crum, J., Ellisman, M. H., & Roberts, W. M. (2002). Depolarization redistributes synaptic membrane and creates a gradient of vesicles on the synaptic body at a ribbon synapse. Neuron, 36(4), 649–659.

    Article  PubMed  CAS  Google Scholar 

  • Li, G.-L., Keen, E., Andor-Ardó, D., Hudspeth, A. J., & von Gersdorff, H. (2009). The unitary event underlying multiquantal EPSCs at a hair cell’s ribbon synapse. Journal of Neuroscience, 29(23), 7558–7568.

    Article  PubMed  CAS  Google Scholar 

  • Liberman, M. C. (1980). Morphological differences among radial afferent fibers in the cat cochlea: An electron-microscopic study of serial sections. Hearing Research, 3(1), 45–63.

    Article  PubMed  CAS  Google Scholar 

  • Liberman, M. C. (1982). Single-neuron labeling in the cat auditory nerve. Science, 216(4551), 1239–1241.

    Article  PubMed  CAS  Google Scholar 

  • Lioudyno, M., Hiel, H., Kong, J.-H., Katz, E., Waldman, E., Parameshwaran-Iyer, S., Glowatzki, E., & Fuchs, P. A. (2004). A “synaptoplasmic cistern” mediates rapid inhibition of cochlear hair cells. Journal of Neuroscience, 24(49), 11160–11164.

    Article  PubMed  CAS  Google Scholar 

  • Lysakowski, A., & Goldberg, J. M. (1997). A regional ultrastructural analysis of the cellular and synaptic architecture in the chinchilla cristae ampullares. Journal of Comparative Neurology, 389(3), 419–443.

    Article  PubMed  CAS  Google Scholar 

  • Lysakowski, A., & Goldberg, J. M. (2008). Ultrastructural analysis of the cristae ampullares in the squirrel monkey (Saimiri sciureus). Journal of Comparative Neurology, 511(1), 47–64.

    Article  PubMed  Google Scholar 

  • Magupalli, V. G., Schwarz, K., Alpadi, K., Natarajan, S., Seigel, G. M., & Schmitz, F. (2008). Multiple RIBEYE-RIBEYE interactions create a dynamic scaffold for the formation of synaptic ribbons. Journal of Neuroscience, 28(32), 7954–7967.

    Article  PubMed  CAS  Google Scholar 

  • Matsusaka, T. (1967). Lamellar bodies in the synaptic cytoplasm of the accessory cone from the chick retina as revealed by electron microscopy. Journal of Ultrastructure Research, 18(1), 55–70.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, G., & Sterling, P. (2008). Evidence that vesicles undergo compound fusion on the synaptic ribbon. Journal of Neuroscience, 28(21), 5403–5411.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, A. C., Frank, T., Khimich, D., Hoch, G., Riedel, D., Chapochnikov, N. M., Yarin, Y. M., Harke, B., Hell, S. W., Egner, A., & Moser, T. (2009). Tuning of synapse number, structure and function in the cochlea. Nature Neuroscience, 12(4), 444–453.

    Article  PubMed  CAS  Google Scholar 

  • Moser, T., & Beutner, D. (2000). Kinetics of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse of the mouse. Proceedings of the National Academy of Sciences of the United States of America, 97(2), 883–888.

    Article  PubMed  CAS  Google Scholar 

  • Nouvian, R., Beutner, D., Parsons, T. D., & Moser, T. (2006). Structure and function of the hair cell ribbon synapse. Journal of Membrane Biology, 209(2–3), 153–165.

    Article  PubMed  CAS  Google Scholar 

  • Obholzer, N., Wolfson, S., Trapani, J. G., Mo, W., Nechiporuk, A., Busch-Nentwich, E., Seiler, C., Sidi, S., Söllner, C., Duncan, R. N., Boehland, A., & Nicolson, T. (2008). Vesicular glutamate transporter 3 is required for synaptic transmission in zebrafish hair cells. Journal of Neuroscience, 28(9), 2110–2118.

    Article  PubMed  CAS  Google Scholar 

  • Osman, A. A., Schrader, A. D., Hawkes, A. J., Akil, O., Bergeron, A., Lustig, L. R., & Simmons, D. D. (2008). Muscle-like nicotinic receptor accessory molecules in sensory hair cells of the inner ear. Molecular and Cellular Neurosciences, 38(2), 153–169.

    Article  PubMed  CAS  Google Scholar 

  • Pangrsic, T., Lasarow, L., Reuter, K., Takago, H., Schwander, M., Riedel, D., Frank, T., Tarantino, L. M., Bailey, J. S., Strenzke, N., Brose, N., Müller, U., Reisinger, E., & Moser, T. (2010). Hearing requires otoferlin-dependent efficient replenishment of synaptic vesicles in hair cells. Nature Neuroscience, 13(7), 869–876.

    Article  PubMed  CAS  Google Scholar 

  • Parsons, T. D., Lenzi, D., Almers, W., & Roberts, W. M. (1994). Calcium-triggered exocytosis and endocytosis in an isolated presynaptic cell: capacitance measurements in saccular hair cells. Neuron, 13(4), 875–883.

    Article  PubMed  CAS  Google Scholar 

  • Platzer, J., Engel, J., Schrott-Fischer, A., Stephan, K., Bova, S., Chen, H., Zheng, H., & Striessnig, J. (2000). Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell, 102(1), 89–97.

    Article  PubMed  CAS  Google Scholar 

  • Ramakrishnan, N. A., Drescher, M. J., & Drescher, D. G. (2009). Direct interaction of otoferlin with syntaxin 1A, SNAP-25, and the L-type voltage-gated calcium channel Cav1.3. Journal of Biological Chemistry, 284(3), 1364–1372.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, W. M. (1993). Spatial calcium buffering in saccular hair cells. Nature, 363(6424), 74–76.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, W. M., Jacobs, R. A., & Hudspeth, A. J. (1990). Colocalization of ion channels involved in frequency selectivity and synaptic transmission at presynaptic active zones of hair cells. Journal of Neuroscience, 10(11), 3664–3684.

    PubMed  CAS  Google Scholar 

  • Roux, I., Safieddine, S., Nouvian, R., Grati, M., Simmler, M.-C., Bahloul, A., Perfettini, I., Le Gall, M., Rostaing, P., Hamard, G., Triller, A., Avan, P., Moser, T., & Petit, C. (2006). Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse. Cell, 127(2), 277–289.

    Article  PubMed  CAS  Google Scholar 

  • Ruel, J., Bobbin, R. P., Vidal, D., Pujol, R., & Puel, J. L. (2000). The selective AMPA receptor antagonist GYKI 53784 blocks action potential generation and excitotoxicity in the guinea pig cochlea. Neuropharmacology, 39(11), 1959–1973.

    Article  PubMed  CAS  Google Scholar 

  • Ruel, J., Wang, J., Rebillard, G., Eybalin, M., Lloyd, R., Pujol, R., & Puel, J.-L. (2007). Physiology, pharmacology and plasticity at the inner hair cell synaptic complex. Hearing Research, 227(1–2), 19–27.

    Article  PubMed  CAS  Google Scholar 

  • Ruel, J., Emery, S., Nouvian, R., Bersot, T., Amilhon, B., Van Rybroek, J. M., Rebillard, G., Lenoir, M., Eybalin, M., Delprat, B., Sivakumaran, T. A., Giros, B., El Mestikawy, S., Moser, T., Smith, R. J. H., Lesperance, M. M., & Puel, J.-L. (2008). Impairment of SLC17A8 encoding vesicular glutamate transporter-3, VGLUT3, underlies nonsyndromic deafness DFNA25 and inner hair cell dysfunction in null mice. American Journal of Human Genetics, 83(2), 278–292.

    Article  PubMed  CAS  Google Scholar 

  • Safieddine, S., & Wenthold, R. J. (1999). SNARE complex at the ribbon synapses of cochlear hair cells: Analysis of synaptic vesicle- and synaptic membrane-associated proteins. European Journal of Neuroscience, 11(3), 803–812.

    Article  PubMed  CAS  Google Scholar 

  • Schmitz, F., Königstorfer, A., & Südhof, T. C. (2000). RIBEYE, a component of synaptic ribbons: A protein’s journey through evolution provides insight into synaptic ribbon function. Neuron, 28(3), 857–872.

    Article  PubMed  CAS  Google Scholar 

  • Schnee, M. E., Lawton, D. M., Furness, D. N., Benke, T. A., & Ricci, A. J. (2005). Auditory hair cell–afferent fiber synapses are specialized to operate at their best frequencies. Neuron, 47(2), 243–254.

    Article  PubMed  CAS  Google Scholar 

  • Schug, N., Braig, C., Zimmermann, U., Engel, J., Winter, H., Ruth, P., Blin, N., Pfister, M., Kalbacher, H., & Knipper, M. (2006). Differential expression of otoferlin in brain, vestibular system, immature and mature cochlea of the rat. European Journal of Neuroscience, 24(12), 3372–3380.

    Article  PubMed  Google Scholar 

  • Seal, R. P., Akil, O., Yi, E., Weber, C. M., Grant, L., Yoo, J., Clause, A., Kandler, K., Noebels, J. L., Glowatzki, E., Lustig, L. R., & Edwards, R. H. (2008). Sensorineural deafness and seizures in mice lacking vesicular glutamate transporter 3. Neuron, 57(2), 263–275.

    Article  PubMed  CAS  Google Scholar 

  • Sidi, S., Busch-Nentwich, E., Friedrich, R., Schoenberger, U., & Nicolson, T. (2004). Gemini encodes a zebrafish L-type calcium channel that localizes at sensory hair cell ribbon synapses. Journal of Neuroscience, 24(17), 4213–4223.

    Article  PubMed  CAS  Google Scholar 

  • Siegel, J. H. (1992). Spontaneous synaptic potentials from afferent terminals in the guinea pig cochlea. Hearing Research, 59(1), 85–92.

    Article  PubMed  CAS  Google Scholar 

  • Sjostrand, F. S. (1953). The ultrastructure of the inner segments of the retinal rods of the guinea pig eye as revealed by electron microscopy. Journal of Cellular Physiology, 42(1), 45–70.

    Article  PubMed  CAS  Google Scholar 

  • Sobkowicz, H. M., Rose, J. E., Scott, G. E., & Slapnick, S. M. (1982). Ribbon synapses in the developing intact and cultured organ of Corti in the mouse. Journal of Neuroscience, 2(7), 942–957.

    PubMed  CAS  Google Scholar 

  • Spassova, M., Eisen, M. D., Saunders, J. C., & Parsons, T. D. (2001). Chick cochlear hair cell exocytosis mediated by dihydropyridine-sensitive calcium channels. Journal of Physiology, 535(Pt 3), 689–696.

    Article  PubMed  CAS  Google Scholar 

  • Sridhar, T. S., Brown, M. C., & Sewell, W. F. (1997). Unique postsynaptic signaling at the hair cell efferent synapse permits calcium to evoke changes on two time scales. Journal of Neuroscience, 17(1), 428–437.

    PubMed  CAS  Google Scholar 

  • Starr, P. A., & Sewell, W. F. (1991). Neurotransmitter release from hair cells and its blockade by glutamate-receptor antagonists. Hearing Research, 52(1), 23–41.

    Article  PubMed  CAS  Google Scholar 

  • Taberner, A. M., & Liberman, M. C. (2005). Response properties of single auditory nerve fibers in the mouse. Journal of Neurophysiology, 93(1), 557–569.

    Article  PubMed  Google Scholar 

  • Trapani, J. G., Obholzer, N., Mo, W., Brockerhoff, S. E., & Nicolson, T. (2009). Synaptojanin1 is required for temporal fidelity of synaptic transmission in hair cells. PloS Genetics, 5(5), e1000480.

    Article  PubMed  Google Scholar 

  • Varga, R., Kelley, P. M., Keats, B. J., Starr, A., Leal, S. M., Cohn, E., & Kimberling, W. J. (2003). Non-syndromic recessive auditory neuropathy is the result of mutations in the otoferlin (OTOF) gene. Journal of Medical Genetics, 40(1), 45–50.

    Article  PubMed  CAS  Google Scholar 

  • Weisz, C., Glowatzki, E., & Fuchs, P. (2009). The postsynaptic function of type II cochlear afferents. Nature, 461(7267), 1126–1129.

    Article  PubMed  CAS  Google Scholar 

  • Westerman, L. A., & Smith, R. L. (1984). Rapid and short-term adaptation in auditory nerve responses. Hearing Research, 15(3), 249–260.

    Article  PubMed  CAS  Google Scholar 

  • Yasunaga, S., Grati, M., Chardenoux, S., Smith, T. N., Friedman, T. B., Lalwani, A. K., Wilcox, E. R., & Petit, C. (2000). OTOF encodes multiple long and short isoforms: Genetic evidence that the long ones underlie recessive deafness DFNB9. American Journal of Human Genetics, 67(3), 591–600.

    Article  PubMed  CAS  Google Scholar 

  • Zenisek, D., Horst, N. K., Merrifield, C., Sterling, P., & Matthews, G. (2004). Visualizing synaptic ribbons in the living cell. Journal of Neuroscience, 24(44), 9752–9759.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Z., Bhalla, A., Dean, C., Chapman, E. R., & Jackson, M. B. (2009). Synaptotagmin IV: A multifunctional regulator of peptidergic nerve terminals. Nature Neuroscience, 12(2), 163–171.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I wish to thank Elisabeth Glowatzki, Josef Trapani, and Laurence Trussell for their helpful suggestions and comments on this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Nicolson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nicolson, T. (2012). The Hair Cell Synapse. In: Trussell, L., Popper, A., Fay, R. (eds) Synaptic Mechanisms in the Auditory System. Springer Handbook of Auditory Research, vol 41. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9517-9_3

Download citation

Publish with us

Policies and ethics