Skip to main content

Neuronal Response Properties and Voltage-Gated Ion Channels in the Auditory System

  • Chapter
  • First Online:
Synaptic Mechanisms in the Auditory System

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 41))

Abstract

One of the central challenges to auditory neuroscience is to understand how sound information is processed and transformed as it ascends to different levels in the brain. One way that the central auditory system is distinct from other sensory areas of the brain is the extent to which sound information is segregated at the earliest subcortical areas into different ascending pathways encoding different aspects of sound. For example, in the visual system, the first stage of information processing in the brain takes place in the lateral geniculate nucleus of the thalamus before proceeding directly to the primary visual cortex, where many of the major transformations in visual receptive fields occur. In olfaction, although extensive processing occurs in the olfactory bulb prior to the cortex, it is not apparent that there are topographic differences in how olfactory information is processed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam, T. J., Finlayson, P. G., & Schwarz, D. W. (2001). Membrane properties of principal neurons of the lateral superior olive. Journal of Neurophysiology, 86(2), 922–934.

    PubMed  CAS  Google Scholar 

  • Bal, R., & Oertel, D. (2000). Hyperpolarization-activated, mixed-cation current (I(h)) in octopus cells of the mammalian cochlear nucleus. Journal of Neurophysiology, 84(2), 806–817. doi:10938307.

    PubMed  CAS  Google Scholar 

  • Bal, R., & Oertel, D. (2001). Potassium currents in octopus cells of the mammalian cochlear nucleus. Journal of Neurophysiology, 86(5), 2299–2311.

    PubMed  CAS  Google Scholar 

  • Banks, M. I., & Sachs, M. B. (1991). Regularity analysis in a compartmental model of chopper units in the anteroventral cochlear nucleus. Journal of Neurophysiology, 65(3), 606–629.

    PubMed  CAS  Google Scholar 

  • Banks, M. I., & Smith, P. H. (1992). Intracellular recordings from neurobiotin-labeled cells in brain slices of the rat medial nucleus of the trapezoid body. Journal of Neuroscience, 12, 2819–2837.

    PubMed  CAS  Google Scholar 

  • Barnes-Davies, M., Barker, M. C., Osmani, F., & Forsythe, I. D. (2004). Kv1 currents mediate a gradient of principal neuron excitability across the tonotopic axis in the rat lateral superior olive. European Journal of Neuroscience, 19(2), 325–333.

    PubMed  Google Scholar 

  • Beckius, G. E., Batra, R., & Oliver, D. L. (1999). Axons from anteroventral cochlear nucleus that terminate in medial superior olive of cat: Observations related to delay lines. Journal of Neuroscience, 19(8), 3146–3161.

    PubMed  CAS  Google Scholar 

  • Bender, K. J., & Trussell, L. O. (2009). Axon initial segment Ca2+ channels influence action potential generation and timing. Neuron, 61(2), 259–271. doi:10.1016/j.neuron.2008.12.004.

    PubMed  CAS  Google Scholar 

  • Berntson, A. K., & Walmsley, B. (2008). Characterization of a potassium-based leak conductance in the medial nucleus of the trapezoid body. Hearing Research, 244(1–2), 98–106. doi:10.1016/j.heares.2008.08.003.

    PubMed  CAS  Google Scholar 

  • Blackburn, C. C., & Sachs, M. B. (1989). Classification of unit types in the anteroventral cochlear nucleus: PST histograms and regularity analysis. Journal of Neurophysiology, 62(6), 1303–1329.

    PubMed  CAS  Google Scholar 

  • Blackmer, T., Kuo, S. P., Bender, K. J., Apostolides, P. F., & Trussell, L. O. (2009). Dendritic calcium channels and their activation by synaptic signals in auditory coincidence detector neurons. Journal of Neurophysiology, 102(2), 1218–1226. doi:10.1152/jn.90513.2008.

    PubMed  CAS  Google Scholar 

  • Brew, H. M., & Forsythe, I. D. (1995). Two voltage-dependent K  +  conductances with complementary functions in postsynaptic integration at a central auditory synapse. Journal of Neuroscience, 15(12), 8011–8022.

    PubMed  CAS  Google Scholar 

  • Cant, N. B., & Casseday, J. H. (1986). Projections from the anteroventral cochlear nucleus to the lateral and medial superior olivary nuclei. Journal of Comparative Neurology, 247(4), 457–476. doi:10.1002/cne.902470406.

    PubMed  CAS  Google Scholar 

  • Cao, X. J., & Oertel, D. (2010). Auditory nerve fibers excite targets through synapses that vary in convergence, strength, and short-term plasticity. Journal of Neurophysiology, 104(5), 2308–2320. doi:10.1152/jn.00451.2010.

    PubMed  Google Scholar 

  • Cao, X. J., Shatadal, S., & Oertel, D. (2007). Voltage-sensitive conductances of bushy cells of the mammalian ventral cochlear nucleus. Journal of Neurophysiology, 97(6), 3961–3975. doi:10.1152/jn.00052.2007.

    PubMed  Google Scholar 

  • Connor, J. A., & Stevens, C. F. (1971). Voltage clamp studies of a transient outward membrane current in gastropod neural somata. Journal of Physiology, 213(1), 21–30.

    PubMed  CAS  Google Scholar 

  • Dodson, P. D., Barker, M. C., & Forsythe, I. D. (2002). Two heteromeric kv1 potassium channels differentially regulate action potential firing. Journal of Neuroscience, 22(16), 6953–6961. doi:20026709.

    PubMed  CAS  Google Scholar 

  • Doucet, J. R., & Ryugo, D. K. (1997). Projections from the ventral cochlear nucleus to the dorsal cochlear nucleus in rats. Journal of Comparative Neurology, 385(2), 245–264.

    PubMed  CAS  Google Scholar 

  • Ferragamo, M. J., & Oertel, D. (2002). Octopus cells of the mammalian ventral cochlear nucleus sense the rate of depolarization. Journal of Neurophysiology, 87(5), 2262–2270. doi:10.1152/jn.00587.2001.

    PubMed  Google Scholar 

  • Ferragamo, M. J., Golding, N. L., & Oertel, D. (1998). Synaptic inputs to stellate cells in the ventral cochlear nucleus. Journal of Neurophysiology, 79(1), 51–63.

    PubMed  CAS  Google Scholar 

  • Fitzakerley, J. L., Star, K. V., Rinn, J. L., & Elmquist, B. J. (2000). Expression of shal potassium channel subunits in the adult and developing cochlear nucleus of the mouse. Hearing Research, 147(1–2), 31–45.

    PubMed  CAS  Google Scholar 

  • Gardner, S. M., Trussell, L. O., & Oertel, D. (1999). Time course and permeation of synaptic AMPA receptors in cochlear nuclear neurons correlate with input. Journal of Neuroscience, 19(20), 8721–8729.

    PubMed  CAS  Google Scholar 

  • Gardner, S. M., Trussell, L. O., & Oertel, D. (2001). Correlation of AMPA receptor subunit composition with synaptic input in the mammalian cochlear nuclei. Journal of Neuroscience, 21(18), 7428–7437.

    PubMed  CAS  Google Scholar 

  • Geiger, J. R., Melcher, T., Koh, D. S., Sakmann, B., Seeburg, P. H., Jonas, P., & Monyer, H. (1995). Relative abundance of subunit mrnas determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron, 15(1), 193–204.

    PubMed  CAS  Google Scholar 

  • Gittelman, J. X., & Tempel, B. L. (2006). Kv1.1-containing channels are critical for temporal precision during spike initiation. Journal of Neurophysiology, 96(3), 1203–1214. doi:10.1152/jn.00092.2005.

    PubMed  CAS  Google Scholar 

  • Godfrey, D. A., Kiang, N. Y., & Norris, B. E. (1975). Single unit activity in the posteroventral cochlear nucleus of the cat. Journal of Comparative Neurology, 162(2), 247–268. doi:10.1002/cne.901620206.

    PubMed  CAS  Google Scholar 

  • Golding, N. L., & Oertel, D. (1996). Context-dependent synaptic action of glycinergic and gabaergic inputs in the dorsal cochlear nucleus. Journal of Neuroscience, 16(7), 2208–2219.

    PubMed  CAS  Google Scholar 

  • Golding, N. L., & Oertel, D. (1997). Physiological identification of the targets of cartwheel cells in the dorsal cochlear nucleus. Journal of Neurophysiology, 78(1), 248.

    PubMed  CAS  Google Scholar 

  • Golding, N. L., Robertson, D., & Oertel, D. (1995). Recordings from slices indicate that octopus cells of the cochlear nucleus detect coincident firing of auditory nerve fibers with temporal precision. Journal of Neuroscience, 15(4), 3138–3153.

    PubMed  CAS  Google Scholar 

  • Grigg, J. J., Brew, H. M., & Tempel, B. L. (2000). Differential expression of voltage-gated potassium channel genes in auditory nuclei of the mouse brainstem. Hearing Research, 140(1–2), 77–90.

    PubMed  CAS  Google Scholar 

  • Guinan, J. J., Norris, B. E., & Guinan, S. S. (1972). Single auditory units in the superior olivary complex. II: Locations of unit categories and tonotopic organization. International Journal of Neuroscience, 4, 147–166.

    Google Scholar 

  • Hassfurth, B., Magnusson, A. K., Grothe, B., & Koch, U. (2009). Sensory deprivation regulates the development of the hyperpolarization-activated current in auditory brainstem neurons. European Journal of Neuroscience, 30(7), 1227–1238. doi:10.1111/j.1460-9568.2009.06925.x.

    PubMed  Google Scholar 

  • Henkel, C. K., & Spangler, K. M. (1983). Organization of the efferent projections of the medial superior olivary nucleus in the cat as revealed by HRP and autoradiographic tracing methods. Journal of Comparative Neurology, 221(4), 416–428. doi:10.1002/cne.902210405.

    PubMed  CAS  Google Scholar 

  • Hopkins, W. F., Allen, M. L., Houamed, K. M., & Tempel, B. L. (1994). Properties of voltage-gated K+ currents expressed in xenopus oocytes by mkv1.1, mkv1.2 and their heteromultimers as revealed by mutagenesis of the dendrotoxin-binding site in mkv1.1. Pflügers Archiv: European Journal of Physiology, 428(3–4), 382–390.

    PubMed  CAS  Google Scholar 

  • Hunter, C., Petralia, R. S., Vu, T., & Wenthold, R. J. (1993). Expression of AMPA-selective glutamate receptor subunits in morphologically defined neurons of the mammalian cochlear nucleus. Journal of Neuroscience, 13(5), 1932–1946.

    PubMed  CAS  Google Scholar 

  • Isaacson, J. S., & Walmsley, B. (1995). Counting quanta: Direct measurements of transmitter release at a central synapse. Neuron, 15(4), 875–884.

    PubMed  CAS  Google Scholar 

  • Johnson, D. H. (1980). The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. Journal of the Acoustic Society of America, 68, 1115–1122.

    CAS  Google Scholar 

  • Kane, E. C. (1973). Octopus cells in the cochlear nucleus of the cat: Heterotypic synapses upon homeotypic neurons. International Journal of Neuroscience, 5(6), 251–279.

    PubMed  CAS  Google Scholar 

  • Kanold, P. O., & Manis, P. B. (1999). Transient potassium currents regulate the discharge patterns of dorsal cochlear nucleus pyramidal cells. Journal of Neuroscience, 19(6), 2195–2208.

    PubMed  CAS  Google Scholar 

  • Kim, Y., & Trussell, L. O. (2007). Ion channels generating complex spikes in cartwheel cells of the dorsal cochlear nucleus. Journal of Neurophysiology, 97(2), 1705–1725. doi:10.1152/jn.00536.2006.

    PubMed  CAS  Google Scholar 

  • Kim, Y., & Trussell, L. O. (2009). Negative shift in the glycine reversal potential mediated by a ca2  +  − and ph-dependent mechanism in interneurons. Journal of Neuroscience, 29(37), 11495–11510. doi:10.1523/JNEUROSCI.1086-09.2009.

    PubMed  CAS  Google Scholar 

  • Klug, A., & Trussell, L. O. (2006). Activation and deactivation of voltage-dependent K  +  channels during synaptically driven action potentials in the MNTB. Journal of Neurophysiology, 96(3), 1547–1555. doi:10.1152/jn.01381.2005.

    PubMed  CAS  Google Scholar 

  • Kole, M. H., Letzkus, J. J., & Stuart, G. J. (2007). Axon initial segment kv1 channels control axonal action potential waveform and synaptic efficacy. Neuron, 55(4), 633–647. doi:10.1016/j.neuron.2007.07.031.

    PubMed  CAS  Google Scholar 

  • Köppl, C. (1997). Phase locking to high frequencies in the auditory nerve and cochlear nucleus magnocellularis of the barn owl, tyto alba. Journal of Neuroscience, 17(9), 3312.

    PubMed  Google Scholar 

  • Kopp-Scheinpflug, C., Fuchs, K., Lippe, W. R., Tempel, B. L., & Rübsamen, R. (2003). Decreased temporal precision of auditory signaling in kcna1-null mice: An electrophysiological study in vivo. Journal of Neuroscience, 23(27), 9199–9207.

    PubMed  CAS  Google Scholar 

  • Kuba, H., & Ohmori, H. (2009). Roles of axonal sodium channels in precise auditory time coding at nucleus magnocellularis of the chick. Journal of Physiology, 587(Pt 1), 87–100. doi:10.1113/jphysiol.2008.162651.

    PubMed  CAS  Google Scholar 

  • Kuba, H., Ishii, T., & Ohmori, H. (2006). Axonal site of spike initiation enhances auditory coincidence detection. Nature, 444(7122), 1069–1072. doi:10.1038/nature05347.

    PubMed  CAS  Google Scholar 

  • Kuba, H., Oichi, Y., & Ohmori, H. (2010). Presynaptic activity regulates na(+) channel distribution at the axon initial segment. Nature, 465(7301), 1075–1078. doi:10.1038/nature09087.

    PubMed  CAS  Google Scholar 

  • Kullmann, P. H., & Kandler, K. (2008). Dendritic Ca2+ responses in neonatal lateral superior olive neurons elicited by glycinergic/gabaergic synapses and action potentials. Neuroscience, 154(1), 338–345. doi:10.1016/j.neuroscience.2008.02.026.

    PubMed  CAS  Google Scholar 

  • Leão, R. N., Sun, H., Svahn, K., Berntson, A., Youssoufian, M., Paolini, A. G., Fyffe, R. E., & Walmsley, B. (2006). Topographic organization in the auditory brainstem of juvenile mice is disrupted in congenital deafness. Journal of Physiology, 571(Pt 3), 563–578. doi:10.1113/jphysiol.2005.098780.

    PubMed  Google Scholar 

  • Li, W., Kaczmarek, L. K., & Perney, T. M. (2001). Localization of two high-threshold potassium channel subunits in the rat central auditory system. Journal of Comparative Neurology, 437(2), 196–218.

    PubMed  CAS  Google Scholar 

  • Lindsey, B. G. (1975). Fine structure and distribution of axon terminals from the cochlear nucleus on neurons in the medial superior olivary nucleus of the cat. Journal of Comparative Neurology, 160(1), 81–103. doi:10.1002/cne.901600106.

    PubMed  CAS  Google Scholar 

  • Liu, S. J., & Kaczmarek, L. K. (1998). The expression of two splice variants of the kv3.1 potassium channel gene is regulated by different signaling pathways. Journal of Neuroscience, 18(8), 2881–2890.

    PubMed  CAS  Google Scholar 

  • Loftus, W. C., Bishop, D. C., Saint Marie, R. L., & Oliver, D. L. (2004). Organization of binaural excitatory and inhibitory inputs to the inferior colliculus from the superior olive. Journal of Comparative Neurology, 472(3), 330–344. doi:10.1002/cne.20070.

    PubMed  Google Scholar 

  • Lorteije, J. A., Rusu, S. I., Kushmerick, C., & Borst, J. G. (2009). Reliability and precision of the mouse calyx of held synapse. Journal of Neuroscience, 29(44), 13770–13784. doi:10.1523/JNEUROSCI.3285-09.2009.

    PubMed  CAS  Google Scholar 

  • Lu, B., Su, Y., Das, S., Liu, J., Xia, J., & Ren, D. (2007). The neuronal channel NALCN contributes resting sodium permeability and is required for normal respiratory rhythm. Cell, 129(2), 371–383. doi:10.1016/j.cell.2007.02.041.

    PubMed  CAS  Google Scholar 

  • Macica, C. M., von Hehn, C. A., Wang, L. Y., Ho, C. S., Yokoyama, S., Joho, R. H., & Kaczmarek, L. K. (2003). Modulation of the kv3.1B potassium channel isoform adjusts the fidelity of the firing pattern of auditory neurons. Journal of Neuroscience, 23(4), 1133–1141.

    PubMed  CAS  Google Scholar 

  • Manis, P. B., & Marx, S. O. (1991). Outward currents in isolated ventral cochlear nucleus neurons. Journal of Neuroscience, 11(9), 2865–2880.

    PubMed  CAS  Google Scholar 

  • Manis, P. B., Spirou, G. A., Wright, D. D., Paydar, S., & Ryugo, D. K. (1994). Physiology and morphology of complex spiking neurons in the guinea pig dorsal cochlear nucleus. Journal of Comparative Neurology, 348(2), 261–276. doi:10.1002/cne.903480208.

    PubMed  CAS  Google Scholar 

  • Mathews, P. J., Jercog, P. E., Rinzel, J., Scott, L. L., & Golding, N. L. (2010). Control of submillisecond synaptic timing in binaural coincidence detectors by K(v)1 channels. Nature Neuroscience, 13, 601–609. doi:10.1038/nn.2530.

    PubMed  CAS  Google Scholar 

  • McLaughlin, M., van der Heijden, M., & Joris, P. X. (2008). How secure is in vivo synaptic transmission at the calyx of held? Journal of Neuroscience, 28(41), 10206–10219. doi:10.1523/JNEUROSCI.2735-08.2008.

    CAS  Google Scholar 

  • Molitor, S. C., & Manis, P. B. (2003). Dendritic Ca2+ transients evoked by action potentials in rat dorsal cochlear nucleus pyramidal and cartwheel neurons. Journal of Neurophysiology, 89(4), 2225–2237. doi:10.1152/jn.00709.2002.

    PubMed  CAS  Google Scholar 

  • Nordeen, K. W., Killackey, H. P., & Kitzes, L. M. (1983). Ascending auditory projections to the inferior colliculus in the adult gerbil, meriones unguiculatus. Journal of Comparative Neurology, 214(2), 131–143. doi:10.1002/cne.902140203.

    PubMed  CAS  Google Scholar 

  • Oertel, D. (1983). Synaptic responses and electrical properties of cells in brain slices of the mouse anteroventral cochlear nucleus. Journal of Neuroscience, 3(10), 2043–2053.

    PubMed  CAS  Google Scholar 

  • Oertel, D. (1999). The role of timing in the brain stem auditory nuclei of vertebrates. Annual Review of Physiology, 61, 497–519. doi:10.1146/annurev.physiol.61.1.497.

    PubMed  CAS  Google Scholar 

  • Oertel, D., & Young, E. D. (2004). What’s a cerebellar circuit doing in the auditory system? Trends in Neurosciences, 27(2), 104–110. doi:10.1016/j.tins.2003.12.001.

    PubMed  CAS  Google Scholar 

  • Oertel, D., Wu, S. H., Garb, M. W., & Dizack, C. (1990). Morphology and physiology of cells in slice preparations of the posteroventral cochlear nucleus of mice. Journal of Comparative Neurology, 295(1), 136–154. doi:10.1002/cne.902950112.

    PubMed  CAS  Google Scholar 

  • Oertel, D., Bal, R., Gardner, S. M., Smith, P. H., & Joris, P. X. (2000). Detection of synchrony in the activity of auditory nerve fibers by octopus cells of the mammalian cochlear nucleus. Proceedings of the National Academy of Sciences of the United States of America, 97(22), 11773–11779. doi:10.1073/pnas.97.22.11773.

    PubMed  CAS  Google Scholar 

  • Oertel, D., Wright, S., Cao, X. J., Ferragamo, M., & Bal, R. (2010). The multiple functions of T stellate/multipolar/chopper cells in the ventral cochlear nucleus. Hearing Research. doi:10.1016/j.heares.2010.10.018.

    Google Scholar 

  • Osen, K. K. (1969). The intrinsic organization of the cochlear nuclei. Acta Otolaryngol, 67(2), 352–359.

    PubMed  CAS  Google Scholar 

  • Otis, T. S., Raman, I. M., & Trussell, L. O. (1995). AMPA receptors with high Ca2+ permeability mediate synaptic transmission in the avian auditory pathway. Journal of Physiology, 482 (Pt 2), 309–315.

    PubMed  CAS  Google Scholar 

  • Paolini, A. G., Clarey, J. C., Needham, K., & Clark, G. M. (2005). Balanced inhibition and excitation underlies spike firing regularity in ventral cochlear nucleus chopper neurons. European Journal of Neuroscience, 21(5), 1236–1248. doi:10.1111/j.1460-9568.2005.03958.x.

    PubMed  Google Scholar 

  • Parameshwaran, S., Carr, C. E., & Perney, T. M. (2001). Expression of the kv3.1 potassium channel in the avian auditory brainstem. Journal of Neuroscience, 21(2), 485–494.

    PubMed  CAS  Google Scholar 

  • Parham, K., & Kim, D. O. (1995). Spontaneous and sound-evoked discharge characteristics of complex-spiking neurons in the dorsal cochlear nucleus of the unanesthetized decerebrate cat. Journal of Neurophysiology, 73(2), 550–561.

    PubMed  CAS  Google Scholar 

  • Perney, T. M., & Kaczmarek, L. K. (1997). Localization of a high threshold potassium channel in the rat cochlear nucleus. Journal of Comparative Neurology, 386(2), 178–202.

    PubMed  CAS  Google Scholar 

  • Perney, T. M., Marshall, J., Martin, K. A., Hockfield, S., & Kaczmarek, L. K. (1992). Expression of the mrnas for the kv3.1 potassium channel gene in the adult and developing rat brain. Journal of Neurophysiology, 68(3), 756–766.

    PubMed  CAS  Google Scholar 

  • Raman, I. M., Zhang, S., & Trussell, L. O. (1994). Pathway-specific variants of AMPA receptors and their contribution to neuronal signaling. Journal of Neuroscience, 14(8), 4998–5010.

    PubMed  CAS  Google Scholar 

  • Rees, A., Sarbaz, A., Malmierca, M. S., & Le Beau, F. E. (1997). Regularity of firing of neurons in the inferior colliculus. Journal of Neurophysiology, 77(6), 2945–2965.

    PubMed  CAS  Google Scholar 

  • Rhode, W. S., & Smith, P. H. (1986). Encoding timing and intensity in the ventral cochlear nucleus of the cat. Journal of Neurophysiology, 56(2), 261–286.

    PubMed  CAS  Google Scholar 

  • Rhode, W. S., Oertel, D., & Smith, P. H. (1983). Physiological response properties of cells labeled intracellularly with horseradish peroxidase in cat ventral cochlear nucleus. Journal of Comparative Neurology, 213(4), 448–463. doi:10.1002/cne.902130408.

    PubMed  CAS  Google Scholar 

  • Roberts, M. T., Bender, K. J., & Trussell, L. O. (2008). Fidelity of complex spike-mediated synaptic transmission between inhibitory interneurons. Journal of Neuroscience, 28(38), 9440–9450. doi:10.1523/JNEUROSCI.2226-08.2008.

    PubMed  CAS  Google Scholar 

  • Rodrigues, A. (2005). Hyperpolarization-activated currents regulate excitability in stellate cells of the mammalian ventral cochlear nucleus. Journal of Neurophysiology, 95(1), 76–87. doi:10.1152/jn.00624.2005.

    PubMed  Google Scholar 

  • Scott, L. L., Mathews, P. J., & Golding, N. L. (2005). Posthearing developmental refinement of temporal processing in principal neurons of the medial superior olive. Journal of Neuroscience, 25(35), 7887–7895. doi:10.1523/JNEUROSCI.1016-05.2005.

    PubMed  CAS  Google Scholar 

  • Scott, L. L., Hage, T. A., & Golding, N. L. (2007). Weak action potential backpropagation is associated with high-frequency axonal firing capability in principal neurons of the gerbil medial superior olive. Journal of Physiology, 583(Pt 2), 647–661. doi:10.1113/jphysiol.2007.136366.

    PubMed  CAS  Google Scholar 

  • Scott, L. L., Mathews, P. J., & Golding, N. L. (2010). Perisomatic voltage-gated sodium channels actively maintain linear synaptic integration in principal neurons of the medial superior olive. Journal of Neuroscience, 30(6), 2051–2062.

    Google Scholar 

  • Sheng, M., Tsaur, M. L., Jan, Y. N., & Jan, L. Y. (1994). Contrasting subcellular localization of the kv1.2 K+ channel subunit in different neurons of rat brain. Journal of Neuroscience, 14(4), 2408–2417.

    PubMed  CAS  Google Scholar 

  • Smith, P. H., & Rhode, W. S. (1989). Structural and functional properties distinguish two types of multipolar cells in the ventral cochlear nucleus. Journal of Comparative Neurology, 282(4), 595–616. doi:10.1002/cne.902820410.

    PubMed  CAS  Google Scholar 

  • Smith, P. H., Joris, P. X., & Yin, T. C. (1993). Projections of physiologically characterized spherical bushy cell axons from the cochlear nucleus of the cat: Evidence for delay lines to the medial superior olive. Journal of Comparative Neurology, 331(2), 245–260. doi:10.1002/cne.903310208.

    PubMed  CAS  Google Scholar 

  • Song, P., Yang, Y., Barnes-Davies, M., Bhattacharjee, A., Hamann, M., Forsythe, I. D., & Kaczmarek, L. K. (2005). Acoustic environment determines phosphorylation state of the kv3.1 potassium channel in auditory neurons. Nature Neuroscience, 8(10), 1335–1342. doi:10.1038/nn1533.

    PubMed  CAS  Google Scholar 

  • Stotler, W. A. (1953). An experimental study of the cells and connections of the superior olivary complex of the cat. Journal of Comparative Neurology, 98(3), 401–431.

    PubMed  CAS  Google Scholar 

  • Svirskis, G., Kotak, V., Sanes, D. H., & Rinzel, J. (2002). Enhancement of signal-to-noise ratio and phase locking for small inputs by a low-threshold outward current in auditory neurons. Journal of Neuroscience, 22(24), 11019–11025.

    PubMed  CAS  Google Scholar 

  • Svirskis, G., Kotak, V., Sanes, D. H., & Rinzel, J. (2004). Sodium along with low-threshold potassium currents enhance coincidence detection of subthreshold noisy signals in MSO neurons. Journal of Neurophysiology, 91(6), 2465–2473. doi:10.1152/jn.00717.2003.

    PubMed  CAS  Google Scholar 

  • Swensen, A. M., & Bean, B. P. (2003). Ionic mechanisms of burst firing in dissociated purkinje neurons. Journal of Neuroscience, 23(29), 9650–9663.

    PubMed  CAS  Google Scholar 

  • Taberner, A. M., & Liberman, M. C. (2005). Response properties of single auditory nerve fibers in the mouse. Journal of Neurophysiology, 93(1), 557–569. doi:10.1152/jn.00574.2004.

    PubMed  Google Scholar 

  • Talley, E. M., Solorzano, G., Lei, Q., Kim, D., & Bayliss, D. A. (2001). CNS distribution of members of the two-pore-domain (KCNK) potassium channel family. Journal of Neuroscience, 21(19), 7491–7505.

    PubMed  CAS  Google Scholar 

  • Taschenberger, H., & von Gersdorff, H. (2000). Fine-tuning an auditory synapse for speed and fidelity: Developmental changes in presynaptic waveform, EPSC kinetics, and synaptic plasticity. Journal of Neuroscience, 20(24), 9162–9173.

    PubMed  CAS  Google Scholar 

  • Tsuchitani, C. (1977). Functional organization of lateral cell groups of cat superior olivary complex. Journal of Neurophysiology, 40(2), 296–318.

    PubMed  CAS  Google Scholar 

  • Usowicz, M. M., Sugimori, M., Cherksey, B., & Llinás, R. (1992). P-Type calcium channels in the somata and dendrites of adult cerebellar purkinje cells. Neuron, 9(6), 1185–1199.

    PubMed  CAS  Google Scholar 

  • von Hehn, C. A., Bhattacharjee, A., & Kaczmarek, L. K. (2004). Loss of kv3.1 tonotopicity and alterations in camp response element-binding protein signaling in central auditory neurons of hearing impaired mice. Journal of Neuroscience, 24(8), 1936–1940. doi:10.1523/JNEUROSCI.4554-03.2004.

    Google Scholar 

  • Wang, L. Y., Gan, L., Forsythe, I. D., & Kaczmarek, L. K. (1998). Contribution of the kv3.1 potassium channel to high-frequency firing in mouse auditory neurones. Journal of Physiology, 509 ( Pt 1), 183–194.

    PubMed  CAS  Google Scholar 

  • Wang, Y. X., Wenthold, R. J., Ottersen, O. P., & Petralia, R. S. (1998). Endbulb synapses in the anteroventral cochlear nucleus express a specific subset of ampa-type glutamate receptor subunits. Journal of Neuroscience, 18(3), 1148–1160.

    PubMed  CAS  Google Scholar 

  • Wu, S. H., & Oertel, D. (1984). Intracellular injection with horseradish peroxidase of physiologically characterized stellate and bushy cells in slices of mouse anteroventral cochlear nucleus. Journal of Neuroscience, 4(6), 1577–1588.

    PubMed  CAS  Google Scholar 

  • Young, E. D., Robert, J. M., & Shofner, W. P. (1988). Regularity and latency of units in ventral cochlear nucleus: Implications for unit classification and generation of response properties. Journal of Neurophysiology, 60(1), 1–29.

    PubMed  CAS  Google Scholar 

  • Young, E. D., Spirou, G. A., Rice, J. J., & Voigt, H. F. (1992). Neural organization and responses to complex stimuli in the dorsal cochlear nucleus. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 336(1278), 407–413. doi:10.1098/rstb.1992.0076.

    PubMed  CAS  Google Scholar 

  • Zacksenhouse, M., Johnson, D. H., Williams, J., & Tsuchitani, C. (1998). Single-neuron modeling of LSO unit responses. Journal of Neurophysiology, 79(6), 3098–3110.

    PubMed  CAS  Google Scholar 

  • Zhang, S., & Oertel, D. (1993). Cartwheel and superficial stellate cells of the dorsal cochlear nucleus of mice: Intracellular recordings in slices. Journal of Neurophysiology, 69(5), 1384–1397.

    PubMed  CAS  Google Scholar 

  • Zhou, Y., & Colburn, H. S. (2010). A modeling study of the effects of membrane afterhyperpolarization on spike interval statistics and on ILD encoding in the lateral superior olive. Journal of Neurophysiology, 103(5), 2355–2371. doi:10.1152/jn.00385.2009.

    PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to thank Drs. S. Cherry and M. Roberts for their comments on the manuscript. The author was supported by a grant from the National Institutes of Health (R01 DC 0006877).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nace L. Golding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Golding, N.L. (2012). Neuronal Response Properties and Voltage-Gated Ion Channels in the Auditory System. In: Trussell, L., Popper, A., Fay, R. (eds) Synaptic Mechanisms in the Auditory System. Springer Handbook of Auditory Research, vol 41. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9517-9_2

Download citation

Publish with us

Policies and ethics