Formal Matrix Integrals and Combinatorics of Maps

Chapter
Part of the CRM Series in Mathematical Physics book series (CRM)

Summary

This article is a short review on the relationship between convergent matrix integrals, formal matrix integrals, and combinatorics of maps.

Keywords

Sine Bonnet Orantin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Abramowitz, I.A. Stegun: Handbook of Mathematical Functions (Dover, New York, 1964)MATHGoogle Scholar
  2. 2.
    M. Bertola: J. High Energy Phys. 2003, 062 (2003)MathSciNetCrossRefGoogle Scholar
  3. 3.
    M. Bertola, Mo M. Y.: Int. Math. Res. Pap. 2005, 565 (2005)Google Scholar
  4. 4.
    D. Berenstein, J. Maldacena, H. Nastase: J. High Energy Phys. 2002, 013 (2002)MathSciNetCrossRefGoogle Scholar
  5. 5.
    P. Bleher, A. Its: Ann. Math. 150, 185 (1999)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    P. Bleher, A. Its (eds): Random Matrix Models and Their Applications (Cambridge University Press, Cambridge, 2001).MATHGoogle Scholar
  7. 7.
    P. Bleher, B. Eynard: J. Phys. A 36, 3085 (2003)MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    P. Bleher, V. Fokin: Commun. Math. Phys. 268, 223 (2006)MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    G. Bonnet, F. David, B. Eynard: J. Phys. A 33, 6739 (2000)MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    G. Bonnet, B. Eynard: Phys. Lett. B463, 273 (1999)MathSciNetADSGoogle Scholar
  11. 11.
    É. Brézin, N. Deo: Phys. Rev. E 59, 3901 (1999)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    É. Brézin, C. Itzykson, G. Parisi, J. Zuber: Commun. Math. Phys. 59, 35 (1978)ADSMATHCrossRefGoogle Scholar
  13. 13.
    L. Chekhov: Theor. Math. Phys. 141, 1640 (2004)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    L. Chekhov, B. Eynard: J. High Energy Phys. 2006, 014 (2006)MathSciNetCrossRefGoogle Scholar
  15. 15.
    L. Chekhov, B. Eynard, N. Orantin: arXiv:math-ph/0603003.Google Scholar
  16. 16.
    G.M. Cicuta: arXiv:cond-mat/0012078.Google Scholar
  17. 17.
    J.M. Daul: arXiv:hep-th/9502014.Google Scholar
  18. 18.
    F. David: Nucl. Phys. B257 45 (1985)ADSCrossRefGoogle Scholar
  19. 19.
    P. Deift, T. Kriecherbauer, K.T.-R. McLaughlin, S. Venakides, Z. Zhou: Commun. Pure Appl. Math. 52, 1335 (1999)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    P. Di Francesco, P. Ginsparg, J. Zinn-Justin: Phys. Rep. 254, 1 (1995)ADSCrossRefGoogle Scholar
  21. 21.
    B. Duplantier, I. Kostov: Phys. Rev. Lett. 61, 1433 (1988)MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    N. Ercolani, K.T.-R. McLaughlin: Int. Math. Res. Not. 2003, 755 (2003)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    B. Eynard: Gravitation quantique bidimensionnelle et matrices aléatoires, PhD Thesis, Université Paris 6, Paris (1995)Google Scholar
  24. 24.
    B. Eynard, J. High Energy Phys. 2003, 018 (2003)MathSciNetCrossRefGoogle Scholar
  25. 25.
    B. Eynard: J. High Energy Phys. 2005, 034 (2005)MathSciNetCrossRefGoogle Scholar
  26. 26.
    B. Eynard: Le modèle à deux matrices — Polynômes biorthogonaux, problème de Riemann–Hilbert et géométrie algébrique, Habilitation Thesis, Université Paris 7, Paris (2005)Google Scholar
  27. 27.
    B. Eynard, D. Korotkin, A. Kokotov: Nucl. Phys. B694, 443 (2004)MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    B. Eynard, J. Zinn-Justin: Nucl. Phys. B386, 558 (1992)MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    B. Eynard, C. Kristjansen: Nucl. Phys. B455, 577 (1995)MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    B. Eynard, C. Kristjansen: Nucl. Phys. B466, 463 (1996)MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    B. Eynard, C. Kristjansen: Nucl. Phys. B516, 529 (1998)MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    D.J. Gross, T. Piran, S. Weinberg (eds): Two-Dimensional Quantum Gravity and Random Surfaces (World Scientific, Singapore, 1991).Google Scholar
  33. 33.
    T. Guhr, A. Müller-Groeling, H.A. Weidenmüller: Phys. Rep. 299, 189 (1998)MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    A. Guionnet, E. Maurel-Segala: ALEA Lat. Am. J. Probab. Math. Stat. 1, 241 (2006)MathSciNetMATHGoogle Scholar
  35. 35.
    A. Guionnet, O. Zeitouni: J. Funct. Anal. 188, 461 (2002)MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    V.A. Kazakov: Phys. Lett. B150, 282 (1985)MathSciNetADSGoogle Scholar
  37. 37.
    V.A. Kazakov: Phys Lett. A119, 140 (1986).MathSciNetADSGoogle Scholar
  38. 38.
    V.A. Kazakov: Nucl. Phys. B Proc. Suppl. 4, 93 (1988)MathSciNetADSMATHCrossRefGoogle Scholar
  39. 39.
    V.A. Kazakov: Mod. Phys. Lett. A4, 1691 (1989)MathSciNetADSGoogle Scholar
  40. 40.
    V.A. Kazakov, A.A. Migdal, I.K. Kostov: Phys. Lett. B157, 295 (1985)MathSciNetADSGoogle Scholar
  41. 41.
    V.A. Kazakov, P. Zinn-Justin: Nucl. Phys. B546, 647 (1999)MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    E. Kanzieper, V. Freilikher, Phys. Rev. E 57, 6604 (1998)ADSCrossRefGoogle Scholar
  43. 43.
    I.K. Kostov: Mod. Phys. Lett. A4, 217 (1989)MathSciNetADSGoogle Scholar
  44. 44.
    I.K. Kostov: Nucl.Phys. B376, 539 (1992)MathSciNetADSCrossRefGoogle Scholar
  45. 45.
    I.K. Kostov: Phys. Lett. B49, 245 (2002)MathSciNetADSGoogle Scholar
  46. 46.
    I.K. Kostov: Nucl. Phys. B575, 513 (2000)MathSciNetADSCrossRefGoogle Scholar
  47. 47.
    I.K. Kostov, Phys. Lett. B297 74 (1992).MathSciNetADSGoogle Scholar
  48. 48.
    M.L. Mehta, Random Matrices, 2nd edn, (Academic Press, New York, 1991).MATHGoogle Scholar
  49. 49.
    G. ’t Hooft, Nucl. Phys. B72, 461 (1974).Google Scholar
  50. 50.
    W.T. Tutte: Can. J. Math. 14, 21 (1962)MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    W.T. Tutte: Can. J. Math. 15, 249 (1963)MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    P. van Moerbeke: Integrable lattices: random matrices and random permutations. In: Random Matrices and Their Applications ed by. P. Bleher, A. Its (Cambridge University Press, Cambridge, 2001) pp 321–406Google Scholar
  53. 53.
    S.R. Wadia: Phys. Rev. D 24, 970 (1981)ADSCrossRefGoogle Scholar
  54. 54.
    P. Wiegmann, A. Zabrodin: arXiv:hep-th/0309253.Google Scholar
  55. 55.
    E.P. Wigner: Proc. Cambridge Philos. Soc. 47, 790 (1951).MATHCrossRefGoogle Scholar
  56. 56.
    P. Zinn-Justin: Europhys. Lett. 50, 15 (2000)MathSciNetADSCrossRefGoogle Scholar
  57. 57.
    P. Zinn-Justin: J. Stat. Phys. 98, 245 (2001)MathSciNetCrossRefGoogle Scholar
  58. 58.
    M.R. Zirnbauer: J. Math. Phys. 37, 4986 (1996)MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Service de Physique Théorique de SaclayGif-sur-Yvette CedexFrance

Personalised recommendations