• Keiji TanakaEmail author
  • Koichi Shimakawa


A variety of applications, present and potential, of non-crystalline insulators and semiconductors including amorphous chalcogenides are described in a “tree growth manner.” History and trend of optical devices, fibers, and waveguides are described. Great success has been attained in phase change memories (DVDs), x-ray medical image sensors, highly sensitive vidicons, and xerography. We refer also to other applications such as holographic memories, nonlinear devices, solar cells, and ionic devices.


Optical fiber Phase change DVD Image sensor Vidicon Xerography Solar cell Ionic device 


  1. Abedin, K.S.: Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber. Opt. Express 13, 10266–10271 (2005)CrossRefGoogle Scholar
  2. Adachi, S., Hori, N., Sato, K., Tokuda, S., Sato, T., Uehara, K., Izumi, Y., Nagata, H., Yoshimura, Y., Yamada, S.: Experimental evaluation of a-Se and CdTe flat-panel x-ray detectors for digital radiography and fluoroscopy. Proc. SPIE 38, 3977–3986 (2000)Google Scholar
  3. Askins, C.G.: Periodic UV-induced index modulations in doped-silica optical fibers: formation and properties of the fiber Bragg grating. In: Pacchioni, G., Skuja, L., Griscom, D.L. (eds.) Defects in SiO2 and Related Dielectrics: Science and Technology pp. 391–426. Kluwer, Dordrecht (2000)Google Scholar
  4. Atwood, G.: Phase-change materials for electronic memories. Science 321, 210–211 (2008)CrossRefGoogle Scholar
  5. Baker, C.T., Trachtenberg, I.: Ion selective electrochemical sensors—Fe+3, Cu+2. J. Electrochem. Soc. 118, 571–576 (1971)CrossRefGoogle Scholar
  6. Bishop, S.G., Turnbull, D.A., Aitken, B.G.: Excitation of rare earth emission in chalcogenide glasses by broadband Urbach edge absorption. J. Non-Cryst. Solids 266–269, 876–883 (2000)CrossRefGoogle Scholar
  7. Bureau, B., Maurugeon, S., Charpentier, F., Adam, J.-L., Boussard-Pledel, C., Zhang, X.: Chalcogenide glass fibers for infrared sensing and space optics. Fiber Integrated Opt. 28, 65–80 (2009)CrossRefGoogle Scholar
  8. Cai, B., Drabold, D.A., Elliott, S.R.: Structural fingerprints of electronic change in the phase-change-material: Ge2Sb2Te5. Appl. Phys. Lett. 97, 191908 (2010)CrossRefGoogle Scholar
  9. Calvez, L., Yang, Z., Lucas, P.: Composition dependence and reversibility of photoinduced refractive index changes in chalcogenide glass. J. Phys. D: Appl. Phys. 43, 445401–445408 (2010)CrossRefGoogle Scholar
  10. Carlson, D.E., Wronski, C.R.: Amorphous silicon solar cell. Appl. Phys. Lett. 28, 671–673 (1976)CrossRefGoogle Scholar
  11. Chen, L., Li, Q.C., Guo, H.X., Gao, L.G., Xia, Y.D., Yin, J., Liu, Z.G.: Monte Carlo simulation of the percolation in Ag30Ge17Se53 amorphous electrolyte films. Appl. Phys. Lett. 95, 242106 (2009)CrossRefGoogle Scholar
  12. Cherif, R., Ben Salem, A., Zghal, M., Beshard, P., Chartier, T., Brilland, L., Troles, J.: Highly nonlinear As2Se3-based chalcogenide photonic crystal fiber for midinfrared supercontinuum generation. Opt. Eng. 49, 095002 (2010)CrossRefGoogle Scholar
  13. Choi, Y., Lee, Y.K.: Double electrical percolation phenomenon during the crystallization of an amorphous Ge2Sb2Te5 thin film under continuous heating. Appl. Phys. Lett. 96, 041910 (2010)CrossRefGoogle Scholar
  14. Choi, D.-Y., Madden, S., Rode, A., Wang, R., Luther-Davies, B.: Dry etching characteristics of amorphous As2S3 film in CHF3 plasma. J. Appl. Phys. 104, 113305 (2008)CrossRefGoogle Scholar
  15. Chong, E., Chun, Y.S., Lee, S.Y.: Amorphous silicon-indium-zinc oxide semiconductor thin film transistors processed below 150°C. Appl. Phys. Lett. 97, 102102 (2010)CrossRefGoogle Scholar
  16. Clement, T.J., Ponnampalam, N., Nguyen, H.T., DeCorby, R.G.: Improved omnidirectional reflectors in chalcogenide glass and polymer by using the silver doping technique. Opt. Express 14, 1789–1796 (2006)CrossRefGoogle Scholar
  17. Coldren, L.A., Bösch, M.A., Rentschler, J.A.: Multistate amorphous-semiconductor switch. Appl. Phys. Lett. 36, 688–690 (1980)CrossRefGoogle Scholar
  18. Conde Garrido, J.M., Macoretta, F., Ureña, M.A., Arcondo, B.: Application of Ag–Ge–Se based chalcogenide glasses on ion-selective electrodes. J. Non-Cryst. Solids 355, 2079–2082 (2009)CrossRefGoogle Scholar
  19. Coulombier, Q., Brilland, L., Houizot, R., Chartier, T., N’Guyen, T.N., Smektala, F., Renversez, G., Monteville, A., Mechin, D., Pain, T., Orain, H., Sangleboeuf, J.-C., Troles, J.: Casting method for producing low-loss chalcogenide microstructured optical fibers. Opt. Express 18, 9107–9112 (2010)CrossRefGoogle Scholar
  20. Coulombier, Q., Zhang, S.Q., Zhang, X.H., Bureau, B., Lucas, J., Boussard-Pledel, C., Troles, J., Calvez, L., Ma, H., Maurugeon, S., Guillevic, E.: Planar waveguide obtained by burying a Ge22As20Se58 fiber in As2S3 glass. Appl. Opt. 47, 5750–5752 (2008)CrossRefGoogle Scholar
  21. Desurvire, E.: Erbium-Doped Fiber Amplifiers: Principles and Applications. Wiley, New York, NY (1994)Google Scholar
  22. Devasia, A., Kurinec, S., Campbell, K.A., Raoux, S.: Influence of Sn Migration on phase transition in GeTe and Ge2Se3 thin films. Appl. Phys. Lett. 96, 141908 (2010)CrossRefGoogle Scholar
  23. Eggleton, B.J., Luther-Davies, B., Richardson, K.: Chalcogenide photonics. Nature Photonics 5, 141–148 (2011)Google Scholar
  24. Feinleib, J., deNeufville, J., Moss, S.C., Ovshinsky, S.R.: Rapid reversible light-induced crystallization of amorphous semiconductors. Appl. Phys. Lett. 18, 254–257 (1971)CrossRefGoogle Scholar
  25. Flaschen, S.S., Pearson, A.D., Northover, W.R.: Formation and properties of low-melting glasses in the ternary systems As-TI-S, As-TI-Se, and As-Se-S. J. Am. Ceram. Soc. 43, 274–275 (1960)CrossRefGoogle Scholar
  26. Florea, C., Bashkansky, M., Sanguhera, J., Aggrawal, I., Dutton, Z.: Slow-light generation through Brillouin scattering in As2S3 fibers. Opt. Mater. 32, 358–361 (2009)CrossRefGoogle Scholar
  27. Frumar, M., Wagner, T.: Ag doped chalcogenide glasses and their applications. Curr. Opin. Solid State Mater. Sci. 7, 117–126 (2003)CrossRefGoogle Scholar
  28. Fuhs, W., Ulber, I., Weiser, G., Bresler, M.S., Gusev, O.B., Kuznetsov, A.N., Kudoyarova, V.K., Terukov, E.I., Yassievich, I.N.: Excitation and temperature quenching of Er-induced luminescence in a-Si:H(Er). Phys. Rev. B 56, 9545–9551 (1997)CrossRefGoogle Scholar
  29. Fujisaki, Y.: Current status of nonvolatile semiconductor memory technology. Jpn. J. Appl. Phys. 49, 100001 (2010).CrossRefGoogle Scholar
  30. Gelbaor, M., Klebanov, M., Lyubin, V., Abdulhalim, I.: Permanent photoalighment of liquid crystals on nanostructured chalcogenide glassy thin films. Appl. Phys. Lett. 98, 071909 (2011)CrossRefGoogle Scholar
  31. Glebov, A.S.: The nature of the current instability in chalcogenide vitreous semiconductors. In: Fairman, R., Ushkov, B. (eds.) Semiconducting Chalcogenide Glass II,  Chap. 3, pp. 57–144. Elsevier, Amsterdam (2004)Google Scholar
  32. Goldan, A.H., Tousignant, O., Laperrière, L., Karim, K.S.: Reduced photocurrent lag using unipolar solid-state photoconductive detector structures: Application to stabilized n-i-p amorphous selenium. Appl. Phys. Lett. 96, 053507 (2010)CrossRefGoogle Scholar
  33. González-Leal, J.M., Krecmer, P., Prokop, J., Elliott, S.R.: Evaluation of multiplexing in high-density holographic memories. In: Kolobov, A.V. (ed.) Photo-Induced Metastability in Amorphous Semiconductors,  Chap. 20. pp. 338–357. Wiley-VCH, Weinheim (2003)CrossRefGoogle Scholar
  34. Griscom, D.L.: Optical-properties and structure of defects in silica glass. J. Ceram. Soc. Jpn. 99, 923–942 (1991)CrossRefGoogle Scholar
  35. Hamann, H.F., O’Boyle, M., Martin, Y.C., Rooks, M., Wickramasinghe, H.K.: Ultra-high-density phase-change storage and memory. Nat. Mater. 5, 383–387 (2006)CrossRefGoogle Scholar
  36. Handa, Y., Suhara, T., Nishihara, H., Koyama, J.: Microgratings for high-efficiency guided-beam deflection fabricated by electron-beam direct-writing techniques. Appl. Opt. 19, 2842–2847 (1980)CrossRefGoogle Scholar
  37. Haque, S.A., Nelson, J.: Toward organic all-optical switching. Science 327, 1466–1467 (2010)CrossRefGoogle Scholar
  38. Harada, H., Tanaka, K.: Photoluminescence from Pr3+-doped chalcogenide glasses excited by bandgap light. J. Non-Cryst. Solids 246, 189–196 (1999)CrossRefGoogle Scholar
  39. Hegedüs, J., Elliott, S.R.: Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials. Nat. Mater. 7, 399–405 (2008)CrossRefGoogle Scholar
  40. Hiramatsu, H., Yanagi, H., Kamiya, T., Hirano, M., Matsunami, N., Shimizu, K., Hosono, H.: Electrical and optical properties of copper-based chalcogenide thin films deposited by pulsed laser deposition at room temperature: Toward p-channel thin film transistor fabricable at room temperature. Phys. Status Solidi (a) 205, 2007–2012 (2008)CrossRefGoogle Scholar
  41. Hisakuni, H., Tanaka, K.: Optical fabrication of microlenses in chalcogenide glasses. Opt. Lett. 20, 958–960 (1995).CrossRefGoogle Scholar
  42. Hoheisel, M., Fuhs, W.: Drift mobility in n- and p-conducting a-Si:H. Philos. Mag. B 57, 411–419 (1988)CrossRefGoogle Scholar
  43. Hu, J., Menyuk, C.R., Shaw, L.B., Sanghera, J.S., Aggarwal, D.: Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers. Opt. Express 18, 6722–6739 (2010)CrossRefGoogle Scholar
  44. Ikushima, A.J., Fujiwara, T., Saito, K.: Silica glass: A material for photonics. J. Appl. Phys. 88, 1201–1213 (2000)CrossRefGoogle Scholar
  45. Jackson, S.D., Anzueto-Sánchez, G.: Chalcogenide glass Raman fiber laser. Appl. Phys. Lett. 88, 221106 (2006)CrossRefGoogle Scholar
  46. Jain, H., Vlcek, M.: Glasses for lithography. J. Non-Cryst. Solids 354, 1401–1406 (2008)CrossRefGoogle Scholar
  47. Jang, M.H., Park, S.J., Park, S.J., Cho, M.-H., Kurmaev, E.Z., Finkelstein, L.D., Chang, G.S.: The origin of the resistance change in GeSbTe films. Appl. Phys. Lett. 97, 152113 (2010)Google Scholar
  48. Jiang, F., Okuda, M.: The effect of doping on the erasure speed and stability of reversible phase-change optical recording films. Jpn. J. Appl. Phys. 30, 97–100 (1991)CrossRefGoogle Scholar
  49. Kalb, J.A., Wuttig, M., Spaepen, F.: Calorimetric measurements of structural relaxation and glass transition temperatures in sputtered films of amorphous Te alloys used for phase change recording. J. Mater. Res. 22, 748–754 (2007)CrossRefGoogle Scholar
  50. Kamiya, T., Tsuchiya, M.: Progress in ultrafast photonics. Jpn. J. Appl. Phys. 44, 5875–5888 (2005)CrossRefGoogle Scholar
  51. Kao, K.C., Hockham, C.A.: Dielectric-fiber surface waveguides for optical frequencies. Proc. Inst. Electr. Eng. 133, 1151–1158 (1966)CrossRefGoogle Scholar
  52. Kasap, S., Frey, J.B., Belev, G., Tousignant, O., Mani, H., Laperriere, L., Reznik, A., Rowland, J.A.: Amorphous selenium and its alloys from early xeroradiography to high resolution x-ray image detectors and ultrasensitive imaging tubes. Phys. Status Solidi (b) 246, 1794–1805 (2009)CrossRefGoogle Scholar
  53. Kato, N., Fukano, T., Takeda, Y., Takeichi, A., Motohiro, T., Kawai, S.: GeS2/metal thin film bilayered structures as write-once-type optical recording materials. J. Appl. Phys. 100, 113115 (2006)CrossRefGoogle Scholar
  54. Kato, T., Tanaka, K.: Electronic properties of amorphous and crystalline Ge2Sb2Te5 films. Jpn. J. Appl. Phys. 44, 7340–7344 (2005)CrossRefGoogle Scholar
  55. Keneman, S.A.: Surface relief holograms in evaporated arsenic trisulfide films. Thin Solid Films 21, 281–285 (1974)CrossRefGoogle Scholar
  56. Kim, Y., Hwang, U., Cho, Y.J., Park, H.M., Cho, M.H., Cho, P.S., Lee, J.H.: Change in electrical resistance and thermal stability of nitrogen incorporated Ge2Sb2Te5 films. Appl. Phys. Lett. 90, 021908 (2007)CrossRefGoogle Scholar
  57. Kitaura, H., Hayashi, A., Tadanaga, K., Tatsumisago, M.: All-solid-state lithium secondary batteries using LiMn2O4 electrode and Li2S–P2S5 solid electrolyte. J. Electrochem. Soc. 157, A407–A411 (2010)CrossRefGoogle Scholar
  58. Klein, R.M.: Chalcogenide glasses as passive thin film structures for integrated optics. J. Electron. Mater. 3, 79–99 (1974)CrossRefGoogle Scholar
  59. Kohoutek, T., Orava, J., Sawada, T., Fudouzi, H.: Inverse opal photonic crystal of chalcogenide glass by solution processing. J. Colloid Interface Sci. 353, 454–458 (2011)CrossRefGoogle Scholar
  60. Kolobov, A.V., Fons, P., Frenkel, A.I., Ankudinov, A.L., Tominaga, J., Uruga, T.: Understanding the phase-change mechanism of rewritable optical media. Nat. Mater. 3, 703–708 (2004)CrossRefGoogle Scholar
  61. Kondakci, H.E., Yaman, M., Koylu, O., Dana, A., Bayindir, M.: All-chalcogenide glass omnidirectional photonic band gap variable infrared filters. Appl. Phys. Lett. 94, 111110 (2009)CrossRefGoogle Scholar
  62. Kozicki, M.N., Park, M., Mitkova, M.: Nanoscale memory elements based on solid-state electrolytes. IEEE Trans. Nanotech. 4, 331–338 (2005)CrossRefGoogle Scholar
  63. Krebs, D., Raoux, S., Rettner, C.T., Burr, G.W., Salinga, M., Wuttig, M.: Threshold field of phase change memory materials measured using phase change bridge devices. Appl. Phys. Lett. 95, 082101 (2009)CrossRefGoogle Scholar
  64. Kumta, P.N., Risbud, S.H.: Novel glasses in rare-earth sulfide systems. Am. Ceram. Soc. Bull. 69, 1977–1984 (1990)Google Scholar
  65. Lainé, M., Seddon, A.B.: Chalcogenide glasses for acousto-optic devices. J. Non-Cryst. Solids 184, 30–35 (1995)CrossRefGoogle Scholar
  66. Lee, M.W., Grillet, C., Tomljenovic-Hanic, S., Magi, E.C., Moss, D.J., Eggleton, B.J., Gai, X., Madden, S., Choi, D.Y., Bulla, D.A.P., Luther-Davies, B.: Photowritten high-Q cavities in two-dimensional chalcogenide glass photonic crystals. Opt. Lett. 34, 3671–3673 (2009)CrossRefGoogle Scholar
  67. Lee, S., Jeong, D.S., Jeong, J., Zhe, W., Park, Y.-W., Ahn, H.W., Cheong, B.: A study on the temperature dependence of the threshold switching characteristics of Ge2Sb2Te5. Appl. Phys. Lett. 96, 023501 (2010)CrossRefGoogle Scholar
  68. Lencer, D., Salinga, M., Grabowski, B., Hickel, T., Neugebauer, J., Wuttig, M.: A map for phase-change materials. Nat. Mater. 7, 972–977 (2008)CrossRefGoogle Scholar
  69. Liao, M., Chaudhari, C., Qin, G., Yan, X., Kito, C., Suzuki, T., Ohishi, Y., Matsumoto, M., Misumi, T.: Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity. Opt. Express 17, 21608–21614 (2009)CrossRefGoogle Scholar
  70. Liu, W.C., Hoffman, G., Zhou, W., Reano, R.M., Boolchand, P., Sooryakumar, R.: Slab waveguides and nanoscale patterning of pulsed laser- deposited Ge0.2Se0.8 chalcogenide films. Appl. Phys. Lett. 93, 041107 (2008)CrossRefGoogle Scholar
  71. Lucas, J.: Infrared glasses. Curr. Opin. Solid State Mater. Sci. 4, 181–187 (1999)CrossRefGoogle Scholar
  72. Lucovsky, G., Phillips, J.C.: Reversible chemical phase separation in on-state of art rewritable Ge2Sb2Te5 optical phase change memories J. Non-Cryst. Solids 354, 2753–2756 (2008)CrossRefGoogle Scholar
  73. Lyubin, V., Arsh, A., Klebanov, M., Dror, R., Sfez, B.: Nonlinear photoresists for maskless photolithography on the basis of Ag-doped As2S3 glassy films. Appl. Phys. Lett. 92, 011118 (2008)CrossRefGoogle Scholar
  74. Mada, Y., Wada, K.: Passivation of an n-type InP surface with an As2S3 film. J. Appl. Phys. 83, 2025–2029 (1998)CrossRefGoogle Scholar
  75. Madam, A., Shaw, M.P.: The Physics and Applications of Amorphous Semiconductors,  Chap. 5. Academic, Boston, MA (1988)Google Scholar
  76. Matsuda, A., Mizuno, H., Takayama, T., Saito, M., Kikuchi, M.: “Stopping effect” on guided light in As-S films by a laser beam. Appl. Phys. Lett. 24, 314–315 (1974)CrossRefGoogle Scholar
  77. Matsumoto, T., Shimano, T., Saga, H., Sukeda, H., Kiguchi, M.: Highly efficient probe with a wedge-shaped metallic plate for high density near-field optical recording. J. Appl. Phys. 95, 3901–3905 (2004)CrossRefGoogle Scholar
  78. Miyoshi, T., Igarashi, N., Matsugaki, N., Yamada, Y., Hirano, K., Hyodo, K., Tanioka, K., Egami, N., Namba, M., Kubota, M., Kawai, T., Wakatsuki, S.: Development of an X-ray HARP-FEA detector system for high-throughput protein crystallography. J. Synchrotron Rad. 15, 281–284 (2008)CrossRefGoogle Scholar
  79. Morishita, Y., Tanaka, K.: Microscopic structures in Co-doped SiO2–GeO2 glasses and fibers. Jpn. J. Appl. Phys. 42, 7456–7460 (2003)CrossRefGoogle Scholar
  80. Mott, N.F., Davis, E.A.: Electronic Processes in Non-Crystalline materials. p. 541. Clarendon Press, Oxford (1979)Google Scholar
  81. Nam, S.W., Kim, C., Kwon, M.H., Lee, H.S., Wi, J.S., Lee, D., Lee, T.Y., Khang, Y., Kim, K.B.: Phase separation behavior of Ge2Sb2Te5 line structure during electrical stress biasing. Appl. Phys. Lett. 92, 111913 (2008)CrossRefGoogle Scholar
  82. Nardone, M., Karpov, V.G., Jackson, D.C.S., Karpov, I.V.: A unified model of nucleation of switching. Appl. Phys. Lett. 94, 103509 (2009)CrossRefGoogle Scholar
  83. Narushima, S., Hiroki, M., Ueda, K., Shimizu, K., Kamiya, T., Hirano, M., Hosono, H.: Electrical properties and local structure of n-type conducting amorphous indium sulphide. Philos. Mag. Lett. 84, 665–671 (2004)CrossRefGoogle Scholar
  84. Negishi, N., Matsuba, Y., Tanaka, R., Nakada, T., Sakemura, K., Okuda, Y., Watanabe, A., Yoshikawa, T., Ogasawara, K.: Development of a high-resolution active-matrix electron emitter array for application to high-sensitivity image sensing. J. Vac. Sci. Technol. 25, 661–665 (2007)CrossRefGoogle Scholar
  85. Nishii, J., Yamashita, T.: Chalcogenide glass-based fibers. In: Sanghera, J.S., Aggarwal, I.D. (eds.) Infrared Fiber Optics,  Chap. 4, pp. 143–184. CRC Press, Boca Raton, FL (1998)Google Scholar
  86. Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M., Hosono, H.: Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488–492 (2004)CrossRefGoogle Scholar
  87. Ohishi, Y., Mori, A., Kanamori, T., Fujiura, K., Sudo, S.: Fabrication of praseodymium-doped arsenic sulfide chalcogenide fiber for 1.3-μm fiber amplifier. Appl. Phys. Lett. 65, 13–15 (1994)CrossRefGoogle Scholar
  88. Ohto, M., Tanaka, K.: Scanning tunneling spectroscopy of Ag–As–Se ion-conducting glasses. Appl. Phys. Lett. 71, 3409–3411 (1997)CrossRefGoogle Scholar
  89. Ovshinsky, S.R.: Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450–1453 (1968)CrossRefGoogle Scholar
  90. Ozols, A., Saharovs, D., Reinfelde, M.: Holographic recording in amorphous As2S3 films at 633 nm. J. Non-Cryst. Solids 352, 2652–2656 (2006)CrossRefGoogle Scholar
  91. Pai, D.M., Springett, B.E.: Physics of electrophotography. Rev. Mod. Phys. 65, 163–211 (1993)CrossRefGoogle Scholar
  92. Pandian, R., Kooi, B.J., Oosthoek, J.L.M., Dool, P., Palasantzas G., Pauza, A.: Polarity-dependent resistance switching in GeSbTe phase-change thin films: The importance of excess Sb in filament formation. Appl. Phys. Lett. 95, 252109 (2009)CrossRefGoogle Scholar
  93. Petit, L., Carlie, N., Anderson, T., Jiyeon, C., Richardson M., Richardson, K.C.: Progress on the photoresponse of chalcogenide glasses and films to near-infrared femtosecond laser irradiation: A review. IEEE J. Select Topics Quant. Electron. 14, 1323–1334 (2008)CrossRefGoogle Scholar
  94. Popescu, M., Savastru, D., Popescu, A., Miclos, S., Lorinczi, A., Sava, F., Velea, A., Baschir, L., Ciobanu, M., Matel, E., Socol, G., Mihailescu, I.N., Niciu, H.: Chalcogenide photonic structures. J. Optoelectron. Adv. Mater. Rapid Commun. 3, 851–859 (2009)Google Scholar
  95. Rouvaen, J.M., Torguet, R., Bridoux, E., Haine, F.: Nonlinear steering and mixing of acoustic waves in arsenic trisulfide. Appl. Phys. Lett. 27, 519–521 (1975)CrossRefGoogle Scholar
  96. Ruan, Y., Kim, M.K., Lee, Y.H., Luther-Davies, B., Rode, A.: Fabrication of high-Q chalcogenide photonic crystal resonators by e-beam lithography. Appl. Phys. Lett. 90, 071102 (2007)CrossRefGoogle Scholar
  97. Saito, K., Utsugi, Y., Yoshikawa, A.: X-ray lithography with a Ag-Se/Ge-Se inorganic resist using synchrotron radiation. J. Appl. Phys. 63, 565–567 (1988)CrossRefGoogle Scholar
  98. Saitoh, A., Donuma, T., Tanaka, K.: Un-stability of sputtered Ge2Sb2Te5 films in electrical phase changes. Appl. Phys. Express 1, 021501 (2008)CrossRefGoogle Scholar
  99. Saitoh, A., Tanaka, K.: Self-developing aspherical chalcogenide-glass microlenses for semiconductor lasers. Appl. Phys. Lett. 83, 1725–1727 (2003)CrossRefGoogle Scholar
  100. Samsung: Samsung to Mass Produce 65 nm PRAM in June. (2009). Accessed 10 November 2010.
  101. Satoh, H., Sugawara, K., Tanaka, K.: Nanoscale phase changes in crystalline Ge2Sb2Te5 films using scanning probe microscopes. J. Appl. Phys. 99, 024306 (2006)CrossRefGoogle Scholar
  102. Schoning, M.J., Kloock, J.P.: About 20 years of silicon-based thin-film sensors with chalcogenide glass materials for heavy metal analysis: Technological aspects of fabrication and miniaturization. Electroanalysis 19, 2029–2038 (2007)CrossRefGoogle Scholar
  103. Scott, J.C.: Is there an immortal memory? Science 304, 62–63 (2004)CrossRefGoogle Scholar
  104. Seddon, A.B., Pan, W.J., Furniss, D., Miller, C.A., Rowe, H., Zhang, D., Brearty, E.M., Zhang, Y., Loni, A., Sewell P., Bensonsuch, T.M.: Fine embossing of chalcogenide glasses – A new fabrication route for photonic integrated circuits. J. Non-Cryst. Solids 352, 2515–2520 (2006)CrossRefGoogle Scholar
  105. Seo, H., Jeong, T.H., Park, J.W., Yeon, C., Kim, S.J., Kim, S.Y.: Investigation of crystallization behavior of sputter-deposited nitrogen-doped amorphous Ge2Sb2Te5 thin films. Jpn. J. Appl. Phys. 39, 745–751 (2000)CrossRefGoogle Scholar
  106. Shinkawa, K., Oda, Y., Ma, Z., Ogusu, K.: Transient stimulated Brillouin scattering in multimode As2S3 glass fiber. Jpn. J. Appl. Phys. 48, 070215 (2009)CrossRefGoogle Scholar
  107. Shokooh-Saremi, M., Ta'eed, V.G., Baker, N.J., Littler, I.C.M., Moss, D.J., Eggleton, B.J., Ruan, Y.L., Luther-Davies, B.: High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer. J. Opt. Soc. Am. B 23, 1323–1331 (2006)CrossRefGoogle Scholar
  108. Simpson, R.E., Fons, P., Wang, X., Kolobov, A.V., Fukaya, T., Tominaga, J.: Non-melting super-resolution near-field aperture in Sb-Te alloys. Appl. Phys. Lett. 97, 161906 (2010)CrossRefGoogle Scholar
  109. Snopatin, G.Е., Churbanov, М.F., Pushkin, A.A., Gerasimenko, V.V., Dianov, Е.М., Plotnichenko, V.G.: High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km. J. Optoelectron. Adv. Mater. Rapid Commun. 3, 669–671 (2009)Google Scholar
  110. Solis, J., Afonso, C.N., Hyde, S.C.W., Barry, N.P., French, P.M.W.: Existence of electronic excitation enhanced crystallization in GeSb amorphous thin films upon ultrashort laser pulse irradiation. Phys. Rev. Lett. 76, 2519–2522 (1996)CrossRefGoogle Scholar
  111. Somemura, Y., Yoshikawa, A., Utsugi, Y.: Characteristics of Ag-Se/Ge-Se as a recording medium for x-Ray holograms. Jpn. J. Appl. Phys. 31, 3712–3715 (1992)CrossRefGoogle Scholar
  112. Song, S., Howard, S.S., Liu, Z., Dirisu, A.O., Gmachl, C.F., Arnold, C.B.: Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings. Appl. Phys. Lett. 89, 041115 (2006)CrossRefGoogle Scholar
  113. Song, K.B., Sohn, S.W., Kim, J.H., Kim, K.A., Cho, K.: Chalcogenide thin-film transistors using oxygenated n-type and p-type phase change materials. Appl. Phys. Lett. 93, 043514 (2008)CrossRefGoogle Scholar
  114. Stegeman, R., Stegeman, G., Delfyett, Jr. P., Petit, L., Carlie, N., Richardson, K., Couzi, M.: Raman gain measurements and photo-induced transmission effects of germanium- and arsenic-based chalcogenide glasses. Opt. Express 14, 11702–11708 (2006)CrossRefGoogle Scholar
  115. Sudoh, T.K., Nakano, Y., Tada, K.: Wavelength trimming technology for multiple-wavelength distributed-feedback laser arrays by photo-induced refractive index change. Electron. Lett. 33, 216–217 (1997)CrossRefGoogle Scholar
  116. Sun, Z., Zhou, J., Blomqvist, A., Johansson, B., Ahuja, R.: Comment on “Formation of large voids in the amorphous phase-change memory Ge2Sb2Te5 alloy” reply. Phys. Rev. Lett. 104, 019602 (2010)CrossRefGoogle Scholar
  117. Suzuki, K., Hamachi, Y., Baba, T.: Fabrication and characterization of chalcogenide glass photonic crystal waveguides. Opt. Express 17, 22393–22400 (2009)CrossRefGoogle Scholar
  118. Tanaka, K., Saitoh, A.: Optical nonlinearities of Se-loaded zeolite (ZSM-5): A molded nanowire system. Appl. Phys. Lett. 94, 241905 (2009)CrossRefGoogle Scholar
  119. Tanaka, K., Imai, Y., Odajima, A.: Photo-optical devices by amorphous As–S waveguides. J. Appl. Phys. 57, 4897–4900 (1985)CrossRefGoogle Scholar
  120. Tanaka, K., Toyosawa, N., Hisakuni, H.: Photoinduced Bragg gratings in As2S3 optical fibers. Opt. Lett. 20, 1976–1978 (1995)CrossRefGoogle Scholar
  121. Tanioka, K.: The ultra sensitive TV pickup tube from conception to recent development. J. Mater. Sci. Mater. 18, S321–S325 (2007)Google Scholar
  122. Terao, M., Morikawa, T., Ohta, T.: Electrical phase-change memory: Fundamentals and state of the art. Jpn. J. Appl. Phys. 48, 080001 (2009)CrossRefGoogle Scholar
  123. Teteris, J.: Holographic recording in amorphous chalcogenide thin films. Curr. Opin. Solid State Mater. Sci. 7, 127–134 (2003)CrossRefGoogle Scholar
  124. Thomas, G.A., Shraiman, B.I., Glodis, P.F., Stephen, M.J.: Towards the clarity limit in optical fibre. Nature 404, 262–264 (2000).CrossRefGoogle Scholar
  125. Tohge, N., Kanda, K., Minami, T.: Electrical and photovoltaic properties of amorphous chalcogenide thin-film p-n junctions. Appl. Phys. Lett. 53, 580–582 (1988)CrossRefGoogle Scholar
  126. Tsiulyanu, D.: Heterostructures on chalcogenide glass and their applications. In: Fairman, R., Ushkov, B. (eds.) Semiconducting Chalcogenide Glass III, Chap.2, pp. 57–101. Elsevier, Amsterdam (2004)Google Scholar
  127. Tver’yanovichi, Yu.S., Tverjanovich, A.: Rare-earth doped chalcogenide glass. In: Fairman, R., Ushkov, B. (eds.) Semiconducting Chalcogenide Glass III, Chap.4, pp. 169–207. Elsevier, Amsterdam (2004)Google Scholar
  128. Ung, B., Skorobogatiy, M.: Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infra red. Opt. Express 18, 8647–8659 (2010)CrossRefGoogle Scholar
  129. Utsugi, Y.: Nanometre-scale chemical modification using a scanning tunnelling microscope. Nature 90, 747–749 (1990)CrossRefGoogle Scholar
  130. Van Heerden, P.J.: Theory of optical information storage in solids. Appl. Opt. 2, 393–400 (1963)CrossRefGoogle Scholar
  131. Vassilev, V.S., Boycheva, S.V.: Chemical sensors with chalcogenide glassy membranes. Talanta 67, 20–27 (2005)CrossRefGoogle Scholar
  132. Vo, T.D., Hu, H., Galili, M., Palushani, E., Xu, J., Oxenlowe, L.K., Madden, S.J., Choi, D.Y., Bulla, D.A.P., Pelusi, M.D., Schroeder, J., Luther-Davies, B., Eggleton, B.J.: Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal. Opt. Express 18, 17252–17261 (2010)  CrossRefGoogle Scholar
  133. Wang, K., Chen, F., Belev, G., Kasap, S., Karim, K.S.: Lateral metal-semiconductor-metal photodetectors based on amorphous selenium. Appl. Phys. Lett. 95, 013505 (2009)CrossRefGoogle Scholar
  134. Watts, R.K., de Wit, M., Holton, W.C.: Nonoxide chalcogenide glass films for integrated optics. Appl. Opt. 13, 2329–2332 (1974)CrossRefGoogle Scholar
  135. Weiss, D.S., Abkowitz, M.: Organic photoconductor. In: Kasap, S., Capper, P. (eds.) Springer Handbook of Electronic and Photonic Materials,  Chap. 39, pp. 953–982. Springer, New York, NY (2006)Google Scholar
  136. Wu, L., Song, Z., Rao, F., Gong, Y., Feng, S.: Multistate storage through successive phase change and resistive change. Appl. Phys. Lett. 94, 243115 (2009)CrossRefGoogle Scholar
  137. Wuttig, M., Yamada, N.: Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824–832 (2007)CrossRefGoogle Scholar
  138. Xiong, C., Magi, E., Luan, F., Tuniz, A., Dekker, S., Sanghera, J.S., Shaw, L.B., Aggrawal, I.D., Eggleton, B.J.: Characterization of picoseconds pulse nonlinear propagation in chalcogenide As2S3 fiber. Appl. Opt. 48, 5467–5474 (2009)CrossRefGoogle Scholar
  139. Xiong, F., Liao, A.D., Estrada, D., Pop, E.: Low-power switching of phase-change materials with carbon nanotube electrodes. Science 332, 568–570 (2011).CrossRefGoogle Scholar
  140. Yamada, N., Kojima, R., Nishihara, T., Tsuchino, A., Tomekawa, Y., Kusada, H.: 100 GB rewritable triple-layer optical disk having Ge-Sb-Te films. Proc. E*PCOS 2009 23–28 (2009)Google Scholar
  141. Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N., Takao, M.: Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory. J. Appl. Phys. 69, 2849–2856 (1991)CrossRefGoogle Scholar
  142. Yeo, E.G., Shi, L.P., Zhao, R., Lim, K.G., Chong, T.C., Adesida, I.: Parasitic capacitance effect on programming performance of phase change random access memory devices. Appl. Phys. Lett. 96, 043506 (2010)CrossRefGoogle Scholar
  143. Yoshida, N., Harada, H., Tanaka, K.: Solid-state photochemical cell: persistent photo-generated voltage in ion-conducting amorphous semiconductor Ag-As-S. Solid State Ionics 95, 323–326 (1997)CrossRefGoogle Scholar
  144. Youm, M.S., Kim, Y.T., Sung, M.Y.: Observation of hexagonal nuclei in the once melt-quenched Ge2Sb2Te5 phase change contact dimensions. Appl. Phys. Lett. 91, 083508 (2007)CrossRefGoogle Scholar
  145. Zakery, A., Elliott, S.R.: Optical properties and applications of chalcogenide glasses: A review. J. Non-Cryst. Solids 330, 1–12 (2003)CrossRefGoogle Scholar
  146. Zembutsu, S., Toyoshima, Y., Igo, T., Nagai, H.: Properties of (Se,S)-based chalcogenide glass films, and an application to a holographic supermicrofiche. Appl. Opt. 14, 3073–3077 (1975)CrossRefGoogle Scholar
  147. Zhang, G., Gan, F., Lysenko, S., Liu, H.: Observation of ultrafast carrier dynamics in amorphous Ge2Sb2Te5 films induced by femtosecond laser pulses. J. Appl. Phys. 101, 033127 (2007)CrossRefGoogle Scholar
  148. Zhu, H., Yin, J., Xia, Y., Liu, Z.: Ga2Te3 phase change material for low-power phase change memory application. Appl. Phys. Lett. 97, 083504 (2010)CrossRefGoogle Scholar
  149. Zijlstra, P., Chon, J.W.M., Gu, M.: Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459, 410–413 (2009)CrossRefGoogle Scholar
  150. Zou, L.E., Chen, B.X., Chen, L., Yuan, Y.F., Hamanaka, M., Iso, M.: Fabrication of an As2S8 stripe waveguide with an optical stopping effect by exposure to ultraviolet irradiation. Appl. Phys. Lett. 88, 153510 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Applied PhysicsGraduate School of Engineering, Hokkaido UniversityKita-ku, SapporoJapan
  2. 2.Faculty of EngineeringGifu UniversityYanaido, GifuJapan
  3. 3.Nagoya Industrial Science InstituteNagoyaJapan

Personalised recommendations