Structural Properties

  • Keiji TanakaEmail author
  • Koichi Shimakawa


This chapter describes physical properties governed by normal atomic bonds. One of the biggest and long-standing problems is glass transition, at which specific heat, thermal expansion, and viscosity exhibit marked changes. Thermal crystallization is also studied extensively, specifically in relation to phase-change memories. We also take brief views of structural properties at low and room temperatures. Importance of the atomic coordination number, which affects structural properties, is also discussed. There exist magic coordination numbers at 2.4 (Phillips) and 2.67 (Tanaka); the origin of these numbers is discussed. We also refer to ion transport.


Glass transition Kauzmann temperature Free volume Fragility Crystallization Magic number Ionic conduction 


  1. Abe, H., Nakamura, Y.: The effect of Cu doping on the DC conductivity and thermoelectric power of As2Se3-based glasses. Phys. Status Solidi (a) 107, 315–319 (1988)CrossRefGoogle Scholar
  2. Andonov, P.: Studies of non-crystalline forms of selenium. J. Non-Cryst. Solids 47, 297–339 (1982)CrossRefGoogle Scholar
  3. Angell, C.A.: Structural instability and relaxation in liquid and glassy phases near the fragile liquid limit. J. Non-Cryst. Solids 102, 205–221 (1988)CrossRefGoogle Scholar
  4. Angell, C.A.: Formation of glasses from liquids and biopolymers. Science 267, 1924–1935 (1995)CrossRefGoogle Scholar
  5. Angell, C.A., Ngai, K.L., McKenna, G.B., McMillan, P.F., Martin, S.W.: Relaxation in glassforming liquids and amorphous solids. J. Appl. Phys. 88, 3113–3157 (2000)CrossRefGoogle Scholar
  6. Angell, C.A., Ueno, K.: Soft is strong. Nature 462, 45–46 (2009)CrossRefGoogle Scholar
  7. Arai, K., Kumata, K., Kadota, K., Yamamoto, K., Namikawa, H., Saito, S.: Pressure effects on electrical conduction in glasses. J. Non-Cryst. Solids 13, 131–139 (1973)CrossRefGoogle Scholar
  8. Belin, R., Taillades, G., Pradel, A., Ribes, M.: Ion dynamics in superionic chalcogenide glasses: Complete conductivity spectra. Solid State Ionics 136–137, 1025–1029 (2000)CrossRefGoogle Scholar
  9. Berret, J.F., Meissner, M.: How universal are the low temperature acoustic properties of glasses? Z. Phys. B 70, 65–72 (1988)CrossRefGoogle Scholar
  10. Berthier, L., Biroli, C., Bouchaud, J.P., Cipelletti, L., Masri, D.El., L'Hôte, D., Ladieu, F., Pierno, M.: Direct experimental evidence of a growing length scale accompanying the glass transition. Science 310, 1797–1800 (2005)CrossRefGoogle Scholar
  11. Boolchand, P., Georgiev, D.G., Goodman, B.: Discovery of the intermediate phase in chalcogenide glasses. J. Optoelectron. Adv. Mater. 3, 703–720 (2001)Google Scholar
  12. Borisova, Z.U.: Glassy Semiconductors. Plenum, New York, NY (1981)Google Scholar
  13. Bychkov, E.: Superionic and ion-conducting chalcogenide glasses: Transport regimes and structural features. Solid State Ionics 180, 510–516 (2009)CrossRefGoogle Scholar
  14. Cohen, M.H., Turnbull, D.: Molecular transport in liquids and glasses. J. Chem. Phys. 31, 1164 (1959)CrossRefGoogle Scholar
  15. Corezzi, S., Fioretto, D., Rolla, P.: Bond-controlled configurational entropy reduction in chemical vitrification. Nature 420, 653–656 (2002)CrossRefGoogle Scholar
  16. Das, S.P.: Mode-coupling theory and the glass transition in supercooled liquids. Rev. Mod. Phys. 76, 785–851 (2004)CrossRefGoogle Scholar
  17. Debenedetti, P.G., Stillnger, F.H.: Supercooled liquids and the glass transition. Nature 410, 259–267 (2001)CrossRefGoogle Scholar
  18. Döhler, G.H., Dandoloff, R., Bilz, H.: A topological-dynamical model of amorphycity. J. Non-Cryst. Solids 42, 87–95 (1980)CrossRefGoogle Scholar
  19. Doremus, R.H.: Glass Science 2nd ed. Wiley, New York, NY (1994)Google Scholar
  20. Dyre, J.C., Maass, P., Roling, B., Sidebottom, D.L.: Fundamental questions relating to ion conduction in disordered solids. Rep. Prog. Phys. 72, 046501 (2009)  CrossRefGoogle Scholar
  21. Eisenberg, A.: The multi-dimensional glass transition. J. Phys. Chem. 67, 1333–1336 (1963)CrossRefGoogle Scholar
  22. Elliott, S.R.: Physics of Amorphous Materials 2nd ed. Longman Scientific & Technical, Essex (1990)Google Scholar
  23. Evich, R.M., Perechinskii, S.I., Gad’mashi, Z.P., Shpak, I.I., Vysochanskii, Yu.M., Slivka, V.Yu.: Mandelshtam-Brillouin scattering in As2S3 and GeS2 chalcogenide glasses. Glass Phys. Chem. 30, 14–16 (2004)CrossRefGoogle Scholar
  24. Glase, F.W., Blackburn, D.H., Osmalov, J.S., Hubbard, D., Black, M.H.: Properties of arsenic sulfide glass. J. Res. Natl. Bur. Stand. 59, 83–92 (1957)CrossRefGoogle Scholar
  25. Graebner, J.E., Golding, B., Allen, L.C.: Phonon localization in glasses. Phys. Rev. B 34, 5696–5701 (1986)CrossRefGoogle Scholar
  26. Greaves, G.N., Sen, S.: Inorganic glasses, glass-forming liquids and amorphizing solids. Adv. Phys. 56, 1–166 (2007)CrossRefGoogle Scholar
  27. Grimsditch, M., Senn, W., Winterling, G., Brodsky, M.H.: Brillouin scattering from hydrogenated amorphous silicon. Solid State Commun. 26, 229–233 (1978)CrossRefGoogle Scholar
  28. Hedler, A., Klaumünzer, S.L., Wesch, W.: Amorphous silicon exhibits a glass transition. Nat. Mater. 3, 804–809 (2004)CrossRefGoogle Scholar
  29. Hisakuni, H., Tanaka, K.: Optical microfabrication of chalcogenide glasses. Science 270, 974–975 (1995)CrossRefGoogle Scholar
  30. Honolka, J., Kasper, G., Hunklinger, S.: Correlation of low-energy excitations with photodarkening in a-As2S3. Europhys. Lett. 57, 382–388 (2002)CrossRefGoogle Scholar
  31. Itoh, M.: Electronic structures of Ag(Cu)-As-Se glasses. J. Non-Cryst. Solids 210, 178–186 (1997)CrossRefGoogle Scholar
  32. Jund, P., Caprion, D., Jullien, R.: Is there an ideal quenching rate for an ideal glass? Phys. Rev. Lett. 79, 91–94 (1997)CrossRefGoogle Scholar
  33. Kasap, S., Tonchev, D.: Thermal properties and thermal analysis: Fundamentals, experimental technique and applications. In: Kasap, S., Capper, P. (eds.) Springer Handbook of Electronic and Photonic Materials, pp. 385–408. Springer, New York, NY (2006)CrossRefGoogle Scholar
  34. Kauzmann, W.: The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev. 43, 219–256 (1948)CrossRefGoogle Scholar
  35. Kawaguchi, T., Maruno, S., Elliott, S.R.: Effect of addition of Au on the physical, electrical and optical properties of bulk glassy As2S3. J. Appl. Phys. 80, 5625 (1996)CrossRefGoogle Scholar
  36. Kerner, R., Micoulaut, M.: On the glass transition temperature in covalent glasses. J. Non-Cryst. Solids 210, 298–305 (1997)CrossRefGoogle Scholar
  37. Kittel, C.: Introduction to Solids State Physics 8th ed. Wiley, New York, NY (2005)Google Scholar
  38. Langer, J.S.: Excitation chains at the glass transition. Phys. Rev. Lett. 97, 115704 (2006)CrossRefGoogle Scholar
  39. Lee, A.L., Wand, A.J.: Microscopic origins of entropy, heat capacity and the glass transition in proteins. Nature 411, 501–504 (2001)CrossRefGoogle Scholar
  40. Liu, J.Z., Taylor, P.C.: A general structural model for semiconducting glasses. Solid State Commun. 70, 81–85 (1989)CrossRefGoogle Scholar
  41. Mamedov, S.: On the macromolecular mechanism of dissolution of As2S3 films in organic solutions. Thin Solid Films 226, 215–218 (1993)CrossRefGoogle Scholar
  42. Micoulaut, M., Phillips, J.C.: Onset of rigidity in glasses: From random to self-organized networks. J. Non-Cryst. Solids 353, 1732–1740 (2007)CrossRefGoogle Scholar
  43. Minami, T.: Recent progress in superionic conducting glasses. J. Non-Cryst. Solids 95–96, 107–118 (1987)CrossRefGoogle Scholar
  44. Mitkova, M., Wang, Yu., Boolchand, P.: Dual chemical role of Ag as an additive in chalcogenide glasses. Phys. Rev. Lett. 83, 3848–3851 (1999)CrossRefGoogle Scholar
  45. Naumis, G.G.: Variation of the glass transition temperature with rigidity and chemical composition. Phys. Rev. B 73, 172202 (2006)CrossRefGoogle Scholar
  46. Nemanich, R.J.: Low-frequency inelastic light scattering from chalcogenide glasses and alloys. Phys. Rev. B 16, 1655–1674 (1977)CrossRefGoogle Scholar
  47. Ngai, K.L.: Meyer-Neldel rule and anti Meyer-Neldel rule of ionic conductivity – Conclusions from the coupling model. Solid State Ionics 105, 231–235 (1998)CrossRefGoogle Scholar
  48. Novikov, V.N., Sokolov, A.P.: Poisson's ratio and the fragility of glass-forming liquids. Nature 431, 961–963 (2004)CrossRefGoogle Scholar
  49. Phillips, J.C.: Topology of covalent non-crystalline solids I: Short-range order in chalcogenide alloys. J. Non-Cryst. Solids 34, 153–181 (1979)CrossRefGoogle Scholar
  50. Phillips, J.C., Kerner, R.: Structure and function of window glass and pyrex. J. Chem. Phys. 128, 174506 (2008)CrossRefGoogle Scholar
  51. Pohl, R.O., Liu, X., Thompson, E.: Low-temperature thermal conductivity and acoustic attenuation in amorphous solids. Rev. Mod. Phys. 74, 991–1013 (2002)CrossRefGoogle Scholar
  52. Rau, C., Armand, P., Pradel, A., Varsamis, C.P.E., Kamitsos, E.I., Granier, D., Ibanez, A., Philippot, E.: Mixed cation effect in chalcogenide glasses Rb2S-Ag2S-GeS2. Phys. Rev. B 63, 184204 (2001)CrossRefGoogle Scholar
  53. Rouxel, T.: Elastic properties and short- to medium-range order in glasses. J. Am. Ceram. Soc. 90, 3019–3039 (2007)CrossRefGoogle Scholar
  54. Saiter, J.M., Arnoult, M., Grenet, J.: Very long physical ageing in inorganic polymers exemplified by the GexSe1-x vitreous system. Physica B 355, 370–376 (2005)CrossRefGoogle Scholar
  55. Salmon, P.S., Liu, J.: The coordination environment of Ag and Cu in ternary chalcogenide glasses. J. Non-Cryst. Solids 205–207, 172–175 (1996)CrossRefGoogle Scholar
  56. Shimakawa, K., Nitta, S.: Influence of silver additive on electronic and ionic natures in amorphous As2Se3. Phys. Rev. B 18, 4348–4354 (1978).CrossRefGoogle Scholar
  57. Stillinger, F.H.: A topographic view of supercooled liquids and glass formation. Science 267, 1935–1939 (1995)CrossRefGoogle Scholar
  58. Tanaka, K.: Photodarkening in amorphous As2S3 and Se under hydrostatic pressure. Phys. Rev. B 30, 4549–4554 (1984)CrossRefGoogle Scholar
  59. Tanaka, K.: Glass transition of covalent glasses. Solid State Commun. 54, 867–869 (1985)CrossRefGoogle Scholar
  60. Tanaka, K.: Structural phase transitions in chalcogenide glasses. Phys. Rev. B 39, 1270–1279 (1989)CrossRefGoogle Scholar
  61. Tanaka, K., Miyamoto, Y., Itoh, M., Bychkov, E.: Ionic conduction in glasses. Phys. Status Solidi (a) 173, 317–322 (1999)CrossRefGoogle Scholar
  62. Thio, T., Monroe, D., Kastner, M.A.: Evidence for thermally generated defects in liquid and glassy As2Se3. Phys. Rev. Lett. 52, 667–670 (1984)CrossRefGoogle Scholar
  63. Thorpe, M.F.: Continuous deformations in random networks. J. Non-Cryst. Solids 57, 355–370 (1983)CrossRefGoogle Scholar
  64. Tichy, L., Ticha, H.: Covalent bond approach to the glass-transition temperature of chalcogenide glasses. J. Non-Cryst. Solids 189, 141–146 (1995)CrossRefGoogle Scholar
  65. Tuller, H.L.: Ionic conduction and applications. In: Kasap, S.O., Capper, P. (eds.) Springer Handbook of Electronic and Photonic Materials,  Chap. 11, pp. 213–228. Springer, New York, NY (2006)Google Scholar
  66. Tverjanovich, A.: Calculation of viscosity of chalcogenide glasses near glass transition temperature from heat capacity or thermal expansion data. J. Non-Cryst. Solids 298, 226–231 (2002)CrossRefGoogle Scholar
  67. Vateva, E., Skordeva, E., Arsova, D.: Average coordination number dependence of photostructural changes in amorphous Ge-As-S films. Philos. Mag. B 67, 225–235 (1993)CrossRefGoogle Scholar
  68. Vlasov, Yu.G., Bychkov, E.A.: Ionic and electronic conductivity in the copper-silver-arsenic-selenium glasses. Solid State Ionics 14, 329–335 (1984)CrossRefGoogle Scholar
  69. Vlasov, Yu.G., Bychkov, E.A., Seleznev, B.L.: Compositional dependence of ionic conductivity and diffusion in mixed chalcogen Ag-containing glasses. Solid State Ionics 24, 179–187 (1987)CrossRefGoogle Scholar
  70. Wang, L.M., Li, Z., Chen, Z., Zhao, Y., Liu, R., Tian, Y.: Glass transition in binary eutectic systems: Best glass-forming composition. J. Phys. Chem. B 114, 12080–12084 (2010)CrossRefGoogle Scholar
  71. Wang, R.P., Smith, A., Luther-Davies, B., Kokkonen, H., Jackson I.: Observation of two elastic thresholds in GexAsySe1-x-y glasses. J. Appl. Phys. 105, 056109 (2009)CrossRefGoogle Scholar
  72. Wilson, M., Salmon, P.S.: Network topology and the fragility of tetrahedral glass-forming liquids. Phys. Rev. Lett. 103, 157801 (2009)CrossRefGoogle Scholar
  73. Yang, G., Bureau, B., Rouxel, T., Gueguen, Y., Gulbiten, O., Roiland, C., Soignard, E., Yarger, J.L., Troles, J., Sangleboeuf, J.-C., Lucas, P.: Correlation between structure and physical properties of chalcogenide glasses in the AsxSe1−x system. Phys. Rev. B 82, 195206 (2010)CrossRefGoogle Scholar
  74. Yang, C.Y., Paesler, M.A., Sayers, D.E.: First crystallization of arsenic trisulfide from bulk glass: The synthesis of orpiment. Mater. Lett. 4, 233–235 (1986)CrossRefGoogle Scholar
  75. Yu, P., Wang, W.H., Wang, R.J., Lin, S.X., Liu, X.R., Hong, S.M., Bai, H.Y.: Understanding exceptional thermodynamic and kinetic stability of amorphous sulfur obtained by rapid compression. Appl. Phys. Lett. 94, 11910 (2009)CrossRefGoogle Scholar
  76. Zallen, R.: The Physics of Amorphous Solids. Wiley, New York, NY (1983)CrossRefGoogle Scholar
  77. Zeller, R.C., Pohl, R.O.: Thermal conductivity and specific heat of noncrystalline solids. Phys. Rev. B 4, 2029–2041 (1971)CrossRefGoogle Scholar
  78. Zingaro, R.A., Cooper, W.C.: Selenium. Van Nostrand Reinhold Company, New York, NY (1974)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Applied PhysicsGraduate School of Engineering, Hokkaido UniversityKita-ku, SapporoJapan
  2. 2.Faculty of EngineeringGifu UniversityYanaido, GifuJapan
  3. 3.Nagoya Industrial Science InstituteNagoyaJapan

Personalised recommendations