Skip to main content

Correlated Electron-Nuclear Motion Visualized Using a Wavelet Time-Frequency Analysis

  • Chapter
  • First Online:
Quantum Dynamic Imaging

Abstract

We have solved numerically the time-dependent Schrödinger equation (TDSE) describing dissociative-ionization of a H2 molecule exposed to intense short-pulse laser light in one dimension. From the time dependent wave function we calculated the total average acceleration of the two electrons and the relative proton acceleration. We find that the general shape of the power spectra of electrons and protons is very similar except that the for the electrons the peaks occur at odd harmonics whereas for protons the peaks occur at even harmonics. The wavelet time-frequency analysis shows that, surprisingly, time profiles of electron and proton accelerations are nearly identical for high harmonics. The wavelet time profiles confirm predictions of the three-step quasi-classical model of harmonic generation by identifying several (up to three) electron return times with high precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Brabec, F. Krausz, Rev. Mod. Phys. 72, 545 (2000)

    Article  ADS  Google Scholar 

  2. P. Salière, A. LHuillier, P. Antoine, M. Lewenstein, Adv. At. Mol. Opt. Phys. 41, 83 (1999)

    Article  Google Scholar 

  3. P.B. Corkum, F. Krausz, Nature Phys. 3, 381 (2007)

    Article  ADS  Google Scholar 

  4. A.D. Bandrauk, S. Barmaki, S. Chelkowski, G.L. Kamta, in Progress in Ultrafast Intense Laser Science III, Springer Series in Chemical Physics, vol. 89, ed. by K. Yamanouchi, S.L. Chin, P. Agostini, G. Ferrante (Springer, New York, 2008), chap. 9

    Google Scholar 

  5. P. Agostini, L.F. DiMauro, Rep. Prog. Phys. 67, 813 (2004)

    Article  ADS  Google Scholar 

  6. S. Chelkowski, G.L. Yudin, A.D. Bandrauk, J. Phys. B 39, S409 (2006)

    Article  ADS  Google Scholar 

  7. P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993)

    Article  ADS  Google Scholar 

  8. W. Becker, S. Long, J.K. Mclver, Phys.Rev.A 50, 1540 (1994)

    Google Scholar 

  9. A.D. Bandrauk, S. Chelkowski, S. Goudreau, J. Mod. Opt. 52, 411 (2005)

    Article  ADS  MATH  Google Scholar 

  10. A.D. Bandrauk, S. Barmaki, G.L. Kamta, Phys. Rev. Lett. 98, 013001 (2007)

    Article  ADS  Google Scholar 

  11. X.B. Bian, A.D. Bandrauk, Phys. Rev. Lett. 106, 093903 (2010)

    Article  ADS  Google Scholar 

  12. T. Zuo, A.D. Bandrauk, Phys. Rev. A 52, 2511 (1995)

    Article  ADS  Google Scholar 

  13. T. Seideman, M.Y. Ivanov, P.B. Corkum, Phys. Rev. Lett. 75, 2819 (1995)

    Article  ADS  Google Scholar 

  14. S. Chelkowski, A.D. Bandrauk, J. Phys. B 28, L723 (1995)

    Article  ADS  Google Scholar 

  15. A. Zavriyev, P.H. Bucksbaum, in Molecules in Laser Fields, ed. by A.D. Bandrauk (Dekker, New York, 1994), chap. 2

    Google Scholar 

  16. K. Harumiya, H. Kono, Y. Fujimura, I. Kawata, A.D. Bandrauk, Phys. Rev. A 66, 043403 (2002)

    Article  ADS  Google Scholar 

  17. J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J.C. Kieffer, P.B. Corkum, D.M. Villeneuve, Nature 432, 867 (2004)

    Article  ADS  Google Scholar 

  18. S. Baker, J.S. Robinson, C.A. Haworth, H. Teng, R.A. Smith, C.C. Chirilă, M. Lein, J.W.G. Tisch, J.P. Marangos, Science 312, 424 (2006)

    Article  ADS  Google Scholar 

  19. M. Lein, Phys. Rev. Lett. 94, 053004 (2005)

    Article  ADS  Google Scholar 

  20. C.C. Wiggins, U. T, Phys. D 181, 171 (2003)

    Google Scholar 

  21. A.D. Bandrauk, S. Chelkowski, H. Lu, J. Phys. B 47, 075602 (2009)

    Article  ADS  Google Scholar 

  22. A.D. Bandrauk, H.Z. Lu, Phys. Rev. A 72, 023408 (2005)

    Article  ADS  Google Scholar 

  23. S. Chelkowski, C. Foisy, A.D. Bandrauk, Phys. Rev. A 57, 1176 (1998)

    Article  ADS  Google Scholar 

  24. K. Burnett, V.C. Reed, J. Cooper, P.L. Knight, Phys. Rev. A 45, 3347 (1992)

    Article  ADS  Google Scholar 

  25. P. Antoine, B. Piraux, A. Maquet, Phys. Rev. A 51, R1750 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André D. Bandrauk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bandrauk, A.D., Chelkowski, S., Lu, H. (2011). Correlated Electron-Nuclear Motion Visualized Using a Wavelet Time-Frequency Analysis. In: Bandrauk, A., Ivanov, M. (eds) Quantum Dynamic Imaging. CRM Series in Mathematical Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9491-2_3

Download citation

Publish with us

Policies and ethics