Skip to main content

Linear Models and Regression

  • Chapter
  • First Online:
Pharmacokinetic-Pharmacodynamic Modeling and Simulation

Abstract

A model is said to be linear if the partial derivatives with respect to any of the model parameters are independent of the other parameters. This chapter introduces linear models and regression, both simple linear and multiple regression, within the framework of ordinary least squares and maximum likelihood. Influence diagnostics, conditional models, error in variables, and smoothers and splines are discussed. How to appropriately handle missing data in both the dependent and independent variables is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    More formally, leverage is defined as the partial derivative of the predicted value with respect to the corresponding dependent variable, i.e., \( {h_i} = \partial {\hat Y_i}/\partial {Y_i} \), which reduces to the HAT matrix for linear models.

  2. 2.

    The intent to treat principle essentially states that all patients are analyzed according to the treatment they were randomized to, irrespective of the treatment they actually received. Hence, a patient is included in the analysis even if that patient never received the treatment.

References

  • Allison PD. Multiple imputation for missing data: a cautionary tale. Sociological Methods and Research 2000; 28: 301-309.

    Article  Google Scholar 

  • Allison PD. Missing Data. Sage Publications, Inc., Thousand Oaks, CA, 2002.

    Google Scholar 

  • Altman NS. An introduction to kernel and nearest-neighbor nonparametric regression. American Statistician 1992; 46: 175-185.

    Google Scholar 

  • Bazunga M, Tran HT, Kertland H, Chow MSS, and Massarella J. The effects of renal impairment on the pharmacokinetics of zalcitabine. Journal of Clinical Pharmacology 1998; 38: 28-33.

    Article  PubMed  CAS  Google Scholar 

  • Belsley DA, Kuh E, and Welsch RE. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. John Wiley and Sons, Inc., New York, 1980.

    Book  Google Scholar 

  • Bonate PL and Howard D. Prospective allometric scaling: does the emperor have clothes? Journal of Clinical Pharmacology 2000; 40: 335-340.

    Article  PubMed  CAS  Google Scholar 

  • Breen R. Regression Models: Censored, Sample Selected, and Truncated Data. Sage Publications, Thousand Oaks, CA, 1996.

    Google Scholar 

  • Buonaccorsi JP. Prediction in the presence of measurement error: general discussion and an example predicting defoliation. Biometrics 1995; 51: 1562-1569.

    Article  PubMed  CAS  Google Scholar 

  • Calvert AH, Newell DR, Gumbrell LA, O'Reilly S, Burnell M, Boxall FE, Siddik ZH, Judson IR, Gore ME, and Wiltshaw E. Carboplatin dosing: prospective evaluation of a simple formula based on renal function. Journal of Clinical Oncology 1989; 7: 1748-1756.

    PubMed  CAS  Google Scholar 

  • Carroll RJ, Juchenhodd H, Lombard F, and Stefanki LA. Asymptotics for the SIMEX estimator in nonlinear measurement error models. Journal of the American Statistical Association 1996; 91: 242-250.

    Article  Google Scholar 

  • Carroll RJ, Ruppert D, and Stefanski LA. Measurement Error in Nonlinear Models. Chapman & Hall, New York, 1995.

    Google Scholar 

  • Carter WH, Jones DE, and Carchman RA. Application of response surface methods for evaluating the interactions of soman, atropine, and pralidoxime chloride. Fundamental and Applied Toxicology 1985; 5: S232-S241.

    Article  PubMed  CAS  Google Scholar 

  • Chapra SC and Canale RP. Numerical Methods for Engineers: With Programming and Software Applications. McGraw-Hill, New York, 1998.

    Google Scholar 

  • Cleveland WS. Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association 1979; 74: 829-836.

    Article  Google Scholar 

  • Cook JR and Stefanski LA. Simulation-extrapolation estimation in parametric measurement error models. Journal of the American Statistical Association 1994; 89: 1314-1328.

    Article  Google Scholar 

  • Diggle PJ and Kenward MG. Informative drop-out in longitudinal data analysis (with discussion). Applied Statistics 1994; 43: 49-93.

    Article  Google Scholar 

  • European Agency for the Evaluation of Medicinal Products and Committee for Proprietary Medicinal Products. Points to Consider on Missing Data. 2001.

    Google Scholar 

  • Fuller WA. Measurement Error Models. John Wiley and Sons, Inc., New York, 1987.

    Book  Google Scholar 

  • Gehan EA and George SL. Estimation of human body surface area from height and weight. Cancer Chemotherapy Reports 1970; 54: 225-235.

    CAS  Google Scholar 

  • Gelman A, Carlin JB, Stern HS, and Rubin DB. Bayesian Data Analysis. Chapman & Hall, London, 1995.

    Google Scholar 

  • Gray JB. A simple graphic for assessing influence in regression. Journal of Statistical Computing and Simulation 1986; 24: 121-134.

    Article  Google Scholar 

  • Gray JB and Woodall WH. The maximum size of standardized and internally studentized residuals in regression analysis. American Statistician 1994; 48: 111-113.

    Google Scholar 

  • Greco WR, Bravo G, and Parsons JC. The search for synergy: A critical review from a response surface perspective. Pharmacological Reviews 1995; 47: 331-385.

    PubMed  CAS  Google Scholar 

  • Hastie TJ and Tibshirani RJ. Generalized Additive Models. Chapman and Hall, New York, 1990.

    Google Scholar 

  • Hodges SD and Moore PG. Data uncertainties and least squares regression. Applied Statistics 1972; 21: 185-195.

    Article  Google Scholar 

  • Holford NHG. A size standard for pharmacokinetics. Clinical Pharmacokinetics 1996; 30: 329-332.

    Article  PubMed  CAS  Google Scholar 

  • Hollander M and Wolfe DA. Nonparametric Statistical Methods. John Wiley & Sons, New York, 1999.

    Google Scholar 

  • International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. General Considerations for Clinical Trials (E8). 1997.

    Google Scholar 

  • International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. Statistical Principles for Clinical Trials (E9). 1998.

    Google Scholar 

  • Iwatsubo T, Hirota N, Ooie T, Suzuki H, Shimada N, Chiba K, Ishizaki T, Green CE, Tyson CA, and Sugiyama Y. Prediction of in vivo drug metabolism in the human liver from in vitro metabolism data. Pharmacology Therapeutics 1997; 73: 147-171.

    Article  PubMed  CAS  Google Scholar 

  • Iwatsubo T, Hirota N, Ooie T, Suzuki H, and Sugiyama Y. Prediction of in vivo drug disposition from in vitro data based on physiological pharmacokinetics. Biopharmaceutics and Drug Disposition 1996; 17: 273-310.

    Article  PubMed  CAS  Google Scholar 

  • Jackson JE. A User's Guide to Principal Components. John Wiley and Sons, Inc., New York, 1991.

    Book  Google Scholar 

  • Kaul S and Ritschel WA. Quantitative structure-pharmacokinetic relationship of a series of sulfonamides in the rat. European Journal of Drug Metabolism and Pharmacokinetics 1990; 15: 211-217.

    Article  PubMed  CAS  Google Scholar 

  • Lefevre F, Duval M, Gauron S, Brookman LJ, Rolan PE, Morris TM, Piraino AJ, Morgan JM, Palmisano M, and Close P. Effect of renal impairment on the pharmacokinetics and pharmacodynamics of desirudin. Clinical Pharmacology and Therapeutics 1997; 62: 50-59.

    Article  PubMed  CAS  Google Scholar 

  • Little RJ. Regression with missing X's: A review. Journal of the American Statistical Association 1992; 87: 1227-1237.

    Google Scholar 

  • Little RJ. Modeling the drop-out mechanism in repeated measures studies. Journal of the American Statistical Association 1995; 90: 1112-1121.

    Article  Google Scholar 

  • Little RJ and Rubin DB. Statistical Analysis with Missing Data. John Wiley & Sons, New York, 2002.

    Google Scholar 

  • Mallows CL. Some comments on Cp. Technometrics 1973; 15: 661-675.

    Google Scholar 

  • McCullough BD. Assessing the reliability of statistical software: Part II. American Statistician 1999; 53: 149-159.

    Google Scholar 

  • McCullough BD and Wilson B. On the accuracy of statistical procedures in Excel 97. Computational Statistics & Data Analysis 1999; 31: 27-37.

    Article  Google Scholar 

  • Myers RH. Classical and Modern Regression with Applications. Duxbury Press, Boston, 1986.

    Google Scholar 

  • Neter J, Kutner MH, Nachtsheim CJ, and Wasserman W. Applied Linear Statistical Models. Irwin, Chicago, 1996.

    Google Scholar 

  • Pool JL, Cushman WC, Saini RK, Nwachuku CE, and Battikha JP. Use of the factorial design and quadratic response models to evaluate the fosinopril and hydrochlorothiazide combination in hypertension. American Journal of Hypertension 1997; 10: 117-123.

    Article  PubMed  CAS  Google Scholar 

  • Port RE, Daniel B, Ding RW, and Hermann R. Relative importance of dose, body surface area, sex, and age in 5- fluorouracil clearance. Oncology 1991; 48: 277-281.

    Article  PubMed  CAS  Google Scholar 

  • Rockhold FW and Goldberg MR. An approach to the assessment of therapeutic drug interactions with fixed combination drug products. Journal of Biopharmaceutical Statistics 1996; 6: 231-240.

    Article  PubMed  CAS  Google Scholar 

  • Rubin DR. Multiple Imputation for Nonresponse in Surveys. John Wiley & Sons, New York, 1987.

    Book  Google Scholar 

  • Ryan TP. Modern Regression Methods. John Wiley & Sons, Inc., New York, 1997.

    Google Scholar 

  • Schafer J. Analysis of Incomplete Multivariate Data. Chapman & Hall, London, 1997.

    Book  Google Scholar 

  • Simon SD and Lesage JP. The impact of collinearity involving the intercept term on the numerical accuracy of regression. Computer Science in Economics and Management 1988; 1: 137-152.

    Article  Google Scholar 

  • Stefanski LA and Cook JR. Simulation-extrapolation: the measurement error jackknife. Journal of the American Statistical Association 1995; 90: 1247-1256.

    Article  Google Scholar 

  • Stewart WH. Application of response surface methodology and factorial designs for drug combination development. Journal of Biopharmaceutical Statistics 1996; 6: 219-231.

    Article  PubMed  CAS  Google Scholar 

Recommended Reading

  • Allison PD. Missing Data. Sage Publications, Inc., Thousand Oaks, CA, 2002.

    Google Scholar 

  • Fox J (2000) Nonparametric Simple Regression. Sage Publications, Newbury Park, CA.

    Google Scholar 

  • International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. Statistical Principles for Clinical Trials (E9). 1998.

    Google Scholar 

  • Myers RH. Classical and Modern Regression with Applications. Duxbury Press, Boston, 1986.

    Google Scholar 

  • Neter J, Kutner MH, Nachtsheim CJ, Wasserman W. Applied Linear Statistical Models. Irwin, Chicago, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bonate, P.L. (2011). Linear Models and Regression. In: Pharmacokinetic-Pharmacodynamic Modeling and Simulation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9485-1_2

Download citation

Publish with us

Policies and ethics