Skip to main content

Abstract

There is more to modeling than the act of modeling. To be an effective modeler requires understanding the different types of models and when one type of model is more appropriate than another, how to select a model from a family of similar models, how to evaluate a model’s goodness of fit, how to present modeling results both verbally and graphically to others, and to do all these tasks within an ethical framework. This chapter lays the groundwork for the rest of the book and covers these topics with an eye toward applying these concepts across the other chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Superposition was developed in physics to explain the behavior of waves that pass simultaneously through the same region in space. In pharmacokinetics, superposition states that concentration–time profiles passing through the same relative region in time are additive. For example, if two doses are taken 24 h apart and the concentration 6 and 30 h after the first dose was 100 and 10 ng/mL, respectively, then the concentration 6 h after the second dose (which is 30 h after the first dose) would be equal to 110 ng/mL (100 + 10 ng/mL). Thron (1974) presents a comprehensive review of linearity and the meaning of superposition.

  2. 2.

    Defining degrees of freedom in a simple manner is difficult. First consider that there are n “pieces of information” contained within a data set having n-observations. From these n pieces of information, either a parameter or variability can be estimated with each item being estimated decreasing the information in the data set by one degree of freedom. The degrees of freedom then is the number of pieces of information less all the estimated items. For example, given a data set in which the mean was estimated, the degrees of freedom then is n – 1. With a model having p-estimable parameters, the degrees of freedom is n – p.

  3. 3.

    The p-value is sometimes mistaken as the probability that the null hypothesis is true or as evidence against the null hypothesis, both of which are incorrect. Formally, a p-value is defined as probability of observing data at least as contradictory to the null hypothesis H0 as the observed data given the assumption that H0 is true. The reader is referred to Hubbard and Bayarri (and commentary) (2003) for a very interesting discussion on p-values and critical levels from Fisher’s and Neyman–Pearson’s point of view.

  4. 4.

    Akaike is often mispronounced by pharmacokineticists as “Ah-chi-key” but the correct pronunciation is “Ah-kay-e-kay.”

  5. 5.

    AIC and AICc will be used interchangeably hereafter.

  6. 6.

    A perturbed compartment is one in which material is added to the compartment to push the system from steady state, following which the system returns to steady state (Jacquez 1996).

  7. 7.

    Asterisks and plus signs (+) are examples of line endings or terminators. Asterisks contain eight line endings, whereas + symbols contain four line endings. The larger the number of terminators, the greater the distinguish ability between symbols.

  8. 8.

    The data to ink ratio is the ratio of the ink used to show data to the ink used to print the graphic.

References

  • Aarons L, Karlsson MO, Mentre F, Rombout F, Steimer JL, Van Peer A, and invited COST B Experts. Role of modelling and simulation in Phase I drug development. European Journal of Pharmaceutical Sciences 2001; 13: 115-122.

    Google Scholar 

  • Acton F. Real Computing Made Real: Preventing Errors in Scientific Engineering Calculations. Princeton University Press, Princeton, NJ, 1996.

    Google Scholar 

  • Akaike H. Information theory as an extension of the maximum likelihood principle. In: Second International Symposium on Information Theory, (Ed. Petrov BN and Csaki F). Akademiai Kiado, Budapest, 1973, pp. 267-281.

    Google Scholar 

  • Analytical Methods Committee and Royal Society of Chemistry. Uses (proper and improper) of correlation coefficients. Analyst 1988; 113: 1469-1471.

    Google Scholar 

  • Ascione FJ, Kirking DM, Gaither CA, and Welage LS. Historical overview of generic medication policy. Journal of the American Pharmacists Association 2001; 41: 567-577.

    CAS  Google Scholar 

  • ASCPT Pharmacometrics Task Force. Pharmacometrics: A Business Case. 2010.

    Google Scholar 

  • Atkinson AC. Two graphical displays for outlying and influential observations in regression. Biometrika 1981; 68: 13-20.

    Google Scholar 

  • Atkinson AC. Plots, Transformations, and Regression: An Introduction to Graphical Methods of Diagnostic Regression Analysis. Oxford Science Publications, Oxford, UK, 1985.

    Google Scholar 

  • Audoly S, D’Angio L, Saccomani MP, and Cobelli C. Global identifiability of linear compartmental models – a computer algebra algorithm. IEEE Transactions on Biomedical Engineering 1998; 45: 36-47.

    PubMed  CAS  Google Scholar 

  • Baille TA, Cayen MN, Fouda H, Gerson RJ, Green JD, Grossman SJ, Klunk LJ, LeBlanc B, Perkins DG, and Shipley LA. Drug metabolites in safety testing. Toxicology and Applied Pharmacology 2002; 182: 188-196.

    Google Scholar 

  • Bain LJ and Engelhardt M. Introduction to Probability and Mathematical Statistics. Duxbury Press, Boston, 1987.

    Google Scholar 

  • Balant LP and Gex-Fabry M. Modelling during drug development. European Journal of Pharmaceutics and Biopharmaceutics 2000; 50: 13-26.

    PubMed  CAS  Google Scholar 

  • Bates DM and Watts DG. Nonlinear Regression Analysis and its Applications. John Wiley & Sons, New York, 1988.

    Google Scholar 

  • Bayles MD. Professional Ethics. Wadsworth Publishing Company, Belmont, CA, 1989.

    Google Scholar 

  • Bellman R and Astrom KJ. On structural identifiability. Mathematical Biosciences 1970; 7: 329-339.

    Google Scholar 

  • Bellu G, Saccomani MP, Audoly S, and D’Angio L. DAISY: a new software tool to test global identifiability of biological and physiological systems. Computer Methods and Programs in Biomedicine 2007; 88: 52-61.

    PubMed  Google Scholar 

  • Bhattaram VA, Bonapace C, Chilukuri DM, Duan JZ, Garnett C, Gobburu JVS, Jang SH, Kenna L, Lesko LJ, Madabushi R, Men Y, Powell JR, Qiu W, Ramchandani RP, Tornoe CW, Wang Y, and Zheng JJ. Impact of pharmacometric reviews on New Drug Applications and labeling decisions – a survey of 31 New Drug Applications submitted between 2005 and 2006. Clinical Pharmacology and Therapeutics 2007; 81: 213-221.

    PubMed  CAS  Google Scholar 

  • Bogumil RJ. Sensitivity analysis of biosystem models. Federation Proceedings 1980; 39: 97-103.

    PubMed  CAS  Google Scholar 

  • Box GEP. Science and statistics. Journal of the American Statistical Association 1976; 71: 791-799.

    Google Scholar 

  • Box GEP and Hill WJ. Discrimination among mechanistic models. Technometrics 1967; 9: 57-71.

    Google Scholar 

  • Breiman L. Statistical modeling: the two cultures (with commentary). Statistical Science 2002; 16: 199-231.

    Google Scholar 

  • Brown T, Havlin K, Weiss G, Cagnola J, Koeller J, Kuhn J, Rizzo J, Craig J, Phillips J, and Von Hoff D. A phase I trial of taxol given by a 6-hour intravenous infusion. Journal of Clinical Oncology 1991; 9: 1261-1267.

    PubMed  CAS  Google Scholar 

  • Burnham KP and Anderson DR. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer-Verlag, New York, 2002.

    Google Scholar 

  • Buse A. The likelihood ratio, Wald, and Lagrange multiplier tests: an expository note. American Statistician 1982; 36: 153-157.

    Google Scholar 

  • Chambers HE. Effective Communication Skills for Scientific and Technical Professionals. Perseus Publishing, Cambridge, MA, 2001.

    Google Scholar 

  • Chan KKH and Gibaldi M. Assessment of drug absorption after oral administration. Journal of Pharmaceutical Sciences 1985; 74: 388-393.

    PubMed  CAS  Google Scholar 

  • Chappell MJ, Godfrey K, and Vajda S. Global identifiability of the parameters of nonlinear systems with specified inputs: a comparison of methods. Mathematical Biosciences 1990; 102: 41-73.

    PubMed  CAS  Google Scholar 

  • Chatfield C. Problem Solving: A Statistician’s Guide. Chapman & Hall, London, 1988.

    Google Scholar 

  • Chatfield C. Model uncertainty, data mining, and statistical inference. Journal of the Royal Statistical Society, Series A 1995; 158: 419-466.

    Google Scholar 

  • Cleveland WS. Graphs in scientific publications. American Statistician 1984a; 38: 261-269.

    Google Scholar 

  • Cleveland WS. The Elements of Graphing Data. Hobart Press, Summit NJ, 1984b.

    Google Scholar 

  • Cleveland WS, Diaconis P, and McGill R. Variables on scatter plots look more highly correlated when the scales are increased. Science 1982; 216: 1138-1141.

    PubMed  CAS  Google Scholar 

  • Cleveland WS and McGill R. Graphical perception: theory, experimentation, and application to the development of graphical methods. Journal of the American Statistical Association 1984a; 79: 531-554.

    Google Scholar 

  • Cleveland WS and McGill R. The many faces of a scatterplot. Journal of the American Statistical Association 1984b; 79: 807-822.

    Google Scholar 

  • Cleveland WS and McGill R. Graphical perception and graphical methods for analyzing scientific data. Science 1985; 229: 828-833.

    PubMed  CAS  Google Scholar 

  • Cobelli C, Carson ER, Finkelstein L, and Leaning MS. Validation of simple and complex models in physiology and medicine. American Journal of Physiology 1984; 246: R259-R266.

    PubMed  CAS  Google Scholar 

  • Cobelli C and DeStefano JJ. Parameter and structural identifiability concepts and ambiguities: a critical review and analysis. American Journal of Physiology 1980; 239: R7-R24.

    PubMed  CAS  Google Scholar 

  • Colburn W and Lee JW. Biomarkers, validation, and pharmacokinetic-pharmacodynamic modeling. Journal of Clinical Pharmacology 2003; 42: 997-1022.

    CAS  Google Scholar 

  • Cook RD and Weisberg S. Residuals and Influence in Regression. Chapman and Hall, New York, 1982.

    Google Scholar 

  • Covey SR. The 7 Habits of Highly Effective People. Fireside, New York, 1989.

    Google Scholar 

  • Cross M and Moscardini AO. Learning the Art of Mathematical Modeling. Ellis Horwood Ltd., Chichester, 1985.

    Google Scholar 

  • D’Arcy J. Technically Speaking: A Guide for Communicating Complex Information. Battelle Press, Columbus, OH, 1998.

    Google Scholar 

  • Derendorf H and Meibohm B. Modeling of pharmacokinetic/pharmacodynamic (PK/PD) relationships: concepts and perspectives. Pharmaceutical Research 1999; 16: 176-185.

    PubMed  CAS  Google Scholar 

  • DiMasi JA, Hansen RW, and Grabowski HG. The price of innovation: new estimates of drug development costs. Journal of Health Economics 2003; 835: 1-35.

    Google Scholar 

  • DiStefano JJ and Landaw EM. Multiexponential, multicompartmental, and noncompartmental modeling. I. Methodological limitations and physiological interpretations. American Journal of Physiology 1984; 246: R651-R664.

    PubMed  Google Scholar 

  • Doane DP. Aesthetic frequency classification. American Statistician 1976; 30: 181-183.

    Google Scholar 

  • Domingos P. The role of Occam’s razor in knowledge discovery. Data Mining and Knowledge Discovery 1999; 3: 409-425.

    Google Scholar 

  • Eisenhauer EA, ten Bakkel Huinink WW, Swenerton KD, Gianni L, Myles J, van der Burg MEL, Kerr I, Vermorken JB, Buser K, Colombo N, Bacon M, Santa Barbara P, Onetto N, Winograd B, and Canetta R. European-Canadian randomized trial of paclitaxel in relapsed ovarian cancer: high-dose versus low-dose and long versus short infusion. Journal of Clinical Oncology 1994; 12: 2654-2666.

    Google Scholar 

  • Ellenbogen JM, Hu PT, Payne JD, Titone D, and Walker MP. Human relational memory requires time and sleep. Proceedings of the National Academy of Science USA 2007; 104: 7723-7728.

    CAS  Google Scholar 

  • Epstein MAF. Winds of change: current focus of the Modeling in Physiology Department. American Journal of Physiology 1994; 267: E628.

    CAS  Google Scholar 

  • Evans ND, Godfrey KR, Chapman MJ, Chappell MJ, Aarons L, and Duffull S. An identifiability analysis of parent-metabolite pharmacokinetic model for ivabradine. Journal of Pharmacokinetics and Pharmacodynamics 2001; 28: 93-105.

    PubMed  CAS  Google Scholar 

  • Freedman D and Diaconis P. On the histogram as a density estimator: L2 theory. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 2003; 57: 453-476.

    Google Scholar 

  • Garfinkel D and Fegley KA. Fitting physiological models to data. American Journal of Physiology 1984; 15: R641-R650.

    Google Scholar 

  • Gianni L, Kearns CM, Giani A, Capri G, Vigano L, Lacatelli A, Bonadonna G, and Egorin MJ. Nonlinear pharmacokinetics and metabolism of paclitaxel and its pharmacokinetic/pharmacodynamic relationships in humans. Journal of Clinical Oncology 1995; 13: 180-190.

    PubMed  CAS  Google Scholar 

  • Godfrey KR and Chapman MJ. The problem of model indistinguishability in pharmacokinetics. Journal of Pharmacokinetics and Biopharmaceutics 1989; 17: 229-267.

    PubMed  CAS  Google Scholar 

  • Godfrey KR, Chapman MJ, and Vajda S. Identifiability and indistinguishability of nonlinear pharmacokinetic models. Journal of Pharmacokinetics and Biopharmaceutics 1994; 22: 229-251.

    PubMed  CAS  Google Scholar 

  • Godfrey KR, Jones PR, and Brown RG. Identifiable pharmacokinetic models: the role of extra inputs and measurements. Journal of Pharmacokinetics and Biopharmaceutics 1980; 8: 633.

    PubMed  CAS  Google Scholar 

  • Goodman B. Multiple Investigations. The Statistician 1996; 10: 1.

    Google Scholar 

  • Grem JL, Tutsch KD, Simon KJ, Alberti DB, Willson JK, Tormey DC, Swaminathan S, and Trump DL. Phase I study of taxol administered as a short i.v. infusion daily for 5 days. Cancer Treatment Reports 1987; 71: 1179-1184.

    PubMed  CAS  Google Scholar 

  • Harmatz JS and Greenblatt DJ. Falling off the straight line: some hazards of correlation and regression. Journal of Clinical Psychopharmacology 1992; 12: 75-78.

    PubMed  CAS  Google Scholar 

  • Healy MJR. The use of R2 as a measure of goodness of fit. Journal of the Royal Statistical Society, Series A 1984; 147: 608-609.

    Google Scholar 

  • Helland IS. On the interpretation and use of R2 in regression analysis. Biometrics 1987; 43: 61-69.

    Google Scholar 

  • Henningsson A, Karlsson MO, Vigano L, Gianni L, Verweij J, and Sparreboom A. Mechanism-based pharmacokinetic model for paclitaxel. Journal of Clinical Oncology 2001; 19: 4065-4073.

    PubMed  CAS  Google Scholar 

  • Hill AB. The environment and disease: association or causality? Proceedings of the Royal Society of Medicine 1965; 58: 295-300.

    PubMed  CAS  Google Scholar 

  • Hodges JS. Six (or so) things you can do with a bad model. Operations Research 1991; 39: 355-365.

    Google Scholar 

  • Hoeting JA, Madigan D, Raftery AE, and Volinsky CT. Bayesian model averaging: a tutorial. Statistical Science 1999; 14: 382-401.

    Google Scholar 

  • Huff D. How to Lie With Statistics. Norton, New York, 1954.

    Google Scholar 

  • Huizing MT, Keung AC, Rosing H, van der Kuij V, ten Bokkel Huinink WW, Mandjes IM, Dubbelman AC, Pinedo HM, and Beijnen JH. Pharmacokinetics of paclitaxel and metabolites in a randomized comparative study in platinum-pretreated ovarian cancer patients. Journal of Clinical Oncology 1993; 11: 2127-2135.

    Google Scholar 

  • Hurvich CM and Tsai C-L. Regression and time series model selection in small samples. Biometrics 1989; 76: 297-307.

    Google Scholar 

  • IBM Business Consulting Services. Pharma 2010: The Threshold of Innovation. International Business Consulting Services, London, UK, 2003.

    Google Scholar 

  • Iman RL, Helton JC, and Campbell JE. An approach to sensitivity analysis of computer models: part I – Introduction, input variable selection and preliminary variable assessment. Journal of Quality Technology 1981; 13: 174-183.

    Google Scholar 

  • Jacquez JA. Compartmental Analysis in Biology and Medicine. BioMedware, Ann Arbor, MI, 1996.

    Google Scholar 

  • Jacquez JA and Perry T. Parameter estimation: local identifiability of parameters. American Journal of Physiology 1990; 258: E727-E736.

    PubMed  CAS  Google Scholar 

  • Johnson DE, Braeckman RA, and Wolfgang GHI. Practical aspects of assessing toxicokinetics and toxicodynamics. Current Opinion in Drug Discovery and Development 1999; 2: 49-57.

    PubMed  CAS  Google Scholar 

  • Karlsson MO, Molnar V, Freijs A, Nygren P, Berghm J, and Larson R. Pharmacokinetic models for the saturable distribution of paclitaxel. Drug Metabolism and Disposition 1997; 27: 1220-1223.

    Google Scholar 

  • Kullback S. The Kullback-Leibler distance. American Statistician 1987; 41: 340-341.

    Google Scholar 

  • Kvalseth TO. Cautionary note about R2. American Statistician 1985; 39: 279-285.

    Google Scholar 

  • Lewandowsky S and Spence I. Discriminating strata in scatterplots. Journal of the American Statistical Association 1989; 84: 682-688.

    Google Scholar 

  • Lin LI. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989; 45: 255-268.

    PubMed  CAS  Google Scholar 

  • Lindsey JK. Some statistical heresies. The Statistician 1999; 48: 1-40.

    Google Scholar 

  • Longnecker SM, Donehower RC, Cates AE, Chen TL, Brundrett RB, Grochow LB, Ettinger DS, and Colvin M. High-performance liquid chromatographic assay for taxol in human plasma and urine and pharmacokinetics in a phase I trial. Cancer Treatment Reports 1987; 71: 53-59.

    PubMed  CAS  Google Scholar 

  • Ludden TM, Beal SL, and Sheiner LB. Comparison of the Akaike Information Criterion, the Schwarz criterion, and the F-test as guides to model selection. Journal of Pharmacokinetics and Biopharmaceutics 1994; 22: 431-445.

    PubMed  CAS  Google Scholar 

  • Maurer R. Why Don’t You Want What I Want? How to Win Support for Your Ideas Without Hard Sell, Manipulation, and Power Plays. Bard Press, Atlanta, GA, 2002.

    Google Scholar 

  • McCullagh P and Nelder JA. Generalized Linear Models. Chapman & Hall, London, 1989.

    Google Scholar 

  • McLeod J and with Contributors. Computer Modeling and Simulation: Principles of Good Practice. Society for Computer Simulation, La Jolla, CA, 1982.

    Google Scholar 

  • Merino JA, de Biasi J, Plusquellec Y, and Houin G. Minimal experimental requirements for structural identifiability in linear compartmental models: the software ‘IDEXMIN’. Arzneimittel Forschung/Drug Research 1996; 46: 324-328.

    CAS  Google Scholar 

  • Mesterton-Gibbons M. A Concrete Approach to Mathematical Modelling. Addison Wesley, Reading, MA, 1989.

    Google Scholar 

  • Moye LA. Multiple Analyses in Clinical Trials: Fundamentals for Investigators. Springer-Verlag, New York, 2003.

    Google Scholar 

  • Myers RH. Classical and Modern Regression with Applications. Duxbury Press, Boston, 1986.

    Google Scholar 

  • Nesterov I. Sensitivity analysis of pharmacokinetic and pharmacodynamic systems: I. A structural approach to sensitivity analysis of physiologically based pharmacokinetic models. Journal of Pharmacokinetics and Biopharmaceutics 1999; 27: 577-596.

    Google Scholar 

  • Pearson K. Notes on the history of correlation. Biometrika 1920; 13: 25-45.

    Google Scholar 

  • Pitt MA and Myung IJ. When a good fit can be bad. Trends in Cognitive Science 2002; 6: 421-425.

    Google Scholar 

  • PricewaterhouseCoopers. Pharma 2005: Silicon Rally: The Race to e-R&D. PriceWaterHouseCoopers, New York, 1999.

    Google Scholar 

  • Ramakrishnan R, DuBois DC, Almon RR, Pyszczynski NA, and Jusko WJ. Fifth-generation model for corticosteroid pharmacodynamics: application to steady-state receptor down-regulation and enzyme induction patterns during seven-day continuous infusion of methylprednisolone in rats. Journal of Pharmacokinetics and Biopharmaceutics 2002; 29: 1-24.

    CAS  Google Scholar 

  • Rescigno A, Beck JS, and Thakur AK. The use and abuse of models and commentary. Journal of Pharmacokinetics and Biopharmaceutics 1987; 15: 327-344.

    PubMed  CAS  Google Scholar 

  • Royston P and Thompson SG. Comparing non-nested regression models. Biometrics 1995; 51: 114-127.

    PubMed  CAS  Google Scholar 

  • Saccomani MP, Audoly S, Bellu G, and D’Angio L. Examples of testing global identifiability of biological and biomedical models with DAISY software. Computers in Biology and Medicine 2010; 40: 402-407.

    PubMed  Google Scholar 

  • Schwarz G. Estimating the dimension of a model. Annals of Statistics 1978; 6: 461-464.

    Google Scholar 

  • Scott DW. On optimal and data-based histograms. Biometrika 1979; 66: 605-610.

    Google Scholar 

  • Scott DW. Multivariate Density Estimation. John Wiley and Sons, New York, 1992.

    Google Scholar 

  • Scott DW. Scott’s rule. Wiley Interdisciplinary Reviews: Computational Statistics 2010; 2: 497-502.

    Google Scholar 

  • Seebauer EG and Barry RL. Fundamentals of Ethics for Scientists and Engineers. Oxford University Press, New York, 2001.

    Google Scholar 

  • Sheiner LB and Beal SL. Some suggestions for measuring predictive performance. Journal of Pharmacokinetics and Biopharmaceutics 1981; 9: 503-512.

    PubMed  CAS  Google Scholar 

  • Shrader-Frechette K. Ethics of Scientific Research. Rowman & Littlefield Publishers, Inc., Lanham, MD, 1994.

    Google Scholar 

  • Slob W, Janssen PHM, and van den Hof JM. Structural identifiability of PBPK models: practical consequences for modeling strategies and study designs. Critical Reviews in Toxicology 1997; 27: 261-272.

    PubMed  CAS  Google Scholar 

  • Sonnichsen DS, Hurwitz CA, Pratt CB, Shuster JJ, and Relling MV. Saturable pharmacokinetics and paclitaxel pharmacodynamics in children with solid tumors. Journal of Clinical Oncology 1994; 12: 532-538.

    PubMed  CAS  Google Scholar 

  • Sparreboom A, van Tellingen O, Nooijen WJ, and Beijnen JH. Nonlinear pharmacokinetics of paclitaxel in mice results from the pharmaceutical vehicle Cremophor EL. Cancer Research 1996; 56: 2112-2115.

    PubMed  CAS  Google Scholar 

  • Sparreboom A, van Tellingen O, Nooijen WJ, and Beijnen JH. Tissue distribution, metabolism, and excretion of paclitaxel in mice. Anti-Cancer Drugs 1996; 7: 78-86.

    PubMed  CAS  Google Scholar 

  • Sparreboom A, van Zuylen L, Brouwer E, Loos WJ, de Bruijn P, Gelderblom H, Pillay M, Nooter K, Stoter G, and Verweij J. Cremephor EL-mediated alteration of paclitaxel distribution of human blood: clinical pharmacokinetic implications. Cancer Research 1999; 59: 1454-1457.

    PubMed  CAS  Google Scholar 

  • Stigler SM. The History of Statistics: The Measurement of Uncertainty Before 1900. The Belknap University Press of Harvard University, Cambridge, MA, 1986.

    Google Scholar 

  • Sturges HA. The choice of a class interval. Journal of the American Statistical Association 1926; 21: 65-66.

    Google Scholar 

  • Svensson CK. Ethical considerations in the conduct of clinical pharmacokinetics studies. Clinical Pharmacokinetics 1989; 17: 217-222.

    PubMed  CAS  Google Scholar 

  • Thakur AK. Model: mechanistic vs. empirical. In: New Trends in Pharmacokinetics, (Ed. Rescigno A and Thakur AK). Plenum, New York, 1991, pp. 41-51.

    Google Scholar 

  • Thron CD. Linearity and superposition in pharmacokinetics. Pharmacology Reviews 1974; 26: 3-31.

    CAS  Google Scholar 

  • Tremmel L. The visual separability of plotting symbols in scatterplots. Journal of Computational and Graphical Statistics 1995; 4: 101-112.

    Google Scholar 

  • Tufte ER. The Visual Display of Quantitative Information. Graphics Press, Chesire, CT, 2001.

    Google Scholar 

  • Tukey JW. Exploratory Data Analysis. Addison-Wesley, Reading, MA, 1977.

    Google Scholar 

  • United States Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, and Center for Biologics Evaluation and Research. Guidance for Industry: Population Pharmacokinetics. 1999.

    Google Scholar 

  • United States Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, and Center for Biologics Evaluation and Research. Guidance For Industry: Exposure-Response Relationships: Study Design, Data Analysis, and Regulatory Applications. 2003.

    Google Scholar 

  • Van Buskirk P. Saving corporations millions: the benefits of modeling. PCAI 2000; July/August: 38.

    Google Scholar 

  • van Zuylen L, Karlsson MO, Verweij J, Brouwer E, de Bruijn P, Nooter K, Stoter G, and Sparreboom A. Pharmacokinetic modeling of paclitaxel encapsulation in Cremephor EL micelles. Cancer Chemotherapy and Pharmacology 2001; 47: 309-318.

    PubMed  Google Scholar 

  • Venables WN and Ripley BD. Modern Applied Statistics with S-PLUS. Springer Verlag, New York, 1997.

    Google Scholar 

  • Verbeke G and Molenberghs G. Linear Mixed Models for Longitudinal Data. Springer Verlag, New York, 2000.

    Google Scholar 

  • Vonesh EF, Chinchilli VM, and Pu K. Goodness-of-fit in generalized nonlinear mixed-effects models. Biometrics 1996; 52: 575-587.

    Google Scholar 

  • Wagner JG. Do you need a pharmacokinetic model and, if so, which one? Journal of Pharmacokinetics and Biopharmaceutics 1975; 3: 457-478.

    PubMed  CAS  Google Scholar 

  • Wagner JG. Pharmacokinetics for the Pharmaceutical Scientist. Technomic Publishing Co., Lancaster, PA, 1993.

    Google Scholar 

  • Wainer H. How to display data badly. American Statistician 1984; 38: 137-147.

    Google Scholar 

  • Wallace WA. Ethics in Modeling. Elsevier, New York, 1994.

    Google Scholar 

  • Wand MP. Data-based choice of histogram bin width. American Statistician 1997; 51: 59-64.

    Google Scholar 

  • Wastney ME, Siva Subramanian KN, Broering N, and Boston R. Using models to explore whole-body metabolism and accessing models through a model library. Metabolism 1997; 46: 330-332.

    Google Scholar 

  • Wastney ME, Wang XQ, and Boston RC. Publishing, interpreting, and accessing models. Journal of the Franklin Institute 1998; 335B: 281-301.

    Google Scholar 

  • Wierkin PH, Schwartz EL, Strauman JJ, Dutcher JP, Lipton RB, and Paietta E. Phase I clinical and pharmacokinetic study of taxol. Cancer Research 1987; 47: 2486-2493.

    Google Scholar 

  • Wiernik PH, Schwartz EL, Einzig A, Strauman JJ, Lipton RB, and Dutcher JP. Phase I trial of taxol given as a 24-hour infusion every 21 days: responses observed in metastatic melanoma. Journal of Clinical Oncology 1987; 5: 1232-1239.

    PubMed  CAS  Google Scholar 

  • Williams PJ and Ette EI. Pharmacometrics: Impacting drug development and pharmacotherapy. In: Pharmacometrics: The Science of Quantitative Pharmacology, (Ed. Ette EI and Williams PJ). John Wiley & Sons, Inc., Hoboken, NJ, 2010, pp. 1-24.

    Google Scholar 

  • Wu G. Sensitivity analysis of pharmacokinetic parameters in one-compartment models. Pharmacological Research 2000; 41: 445-453.

    PubMed  CAS  Google Scholar 

  • Yamaoka K, Nakagawa T, and Uno T. Application of Akaike’s Information Criterion (AIC) in the evaluation of linear pharmacokinetic equations. Journal of Pharmacokinetics and Biopharmaceutics 1978; 6: 165-175.

    PubMed  CAS  Google Scholar 

  • Zar JH. Biostatistical Analysis, second edition. Prentice-Hall, New York, 1984.

    Google Scholar 

  • Zhang L-Q, Collins JC, and King PH. Indistinguishability and identifiability analysis of linear compartmental models. Mathematical Biosciences 1991; 103: 77-95.

    PubMed  CAS  Google Scholar 

  • Zhi J. Unique pharmacokinetic characteristics of the one-compartment first-order absorption model with equal absorption and elimination rate constants. Journal of Pharmaceutical Sciences 1990; 79: 652-654.

    PubMed  CAS  Google Scholar 

Recommended Reading

  • Aarons L, Karlson MO, Mentre F, Rombout F, Steimer JL, van Peer A, and invited COST B Experts. Role of modelling and simulation in Phase I drug development. European Journal of Pharmaceutical Sciences 2001; 13: 115-22.

    Google Scholar 

  • Amit O, Heiberger RM, and Lane PW. Graphical approaches to the analysis of safety data from clinical trials. Pharmaceutical Statistics 7; 20-35, 2008.

    PubMed  Google Scholar 

  • Balant LP, Gex-Fabry M. Modelling during drug development. European Journal of Pharmaceutical Sciences 2000; 50: 13-26.

    CAS  Google Scholar 

  • Breiman L. Statistical modeling: the two cultures (with commentary). Statistical Science 2002; 16: 199-231.

    Google Scholar 

  • Burnham KP, Anderson DR. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer-Verlag, New York, 2002.

    Google Scholar 

  • Cobelli C, Carson ER, Finkelstein L, Leaning MS. Validation of simple and complex models in physiology and medicine. American Journal of Physiology 1984; 246: R259-R266.

    PubMed  CAS  Google Scholar 

  • Cobelli C, DiStefano JJ. Parameter and structural identifiability concepts and ambiguities: A critical review and analysis. American Journal of Physiology 1980; 239: R7-R24.

    PubMed  CAS  Google Scholar 

  • D’Arcy J. Technically Speaking: A Guide for Communication Complex Information. Battelle Press, Columbus, OH, 1998.

    Google Scholar 

  • Tufte ER. The Visual Display of Quantitative Information. Graphics Press, Cheshire, CT, 2001.

    Google Scholar 

  • Yamaoka K, Nakagawa T, Uno T. Application of Akaike’s Information Criterion (AIC) in the evaluation of linear pharmacokinetic equations. Journal of Pharmacokinetics and Biopharmaceutics 1978; 6: 165-175.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bonate, P.L. (2011). The Art of Modeling. In: Pharmacokinetic-Pharmacodynamic Modeling and Simulation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9485-1_1

Download citation

Publish with us

Policies and ethics