Skip to main content

HPV and EBV in Head and Neck Cancer

  • Chapter
  • First Online:

Abstract

The focus of this book chapter is to discuss the role of human papillomavirus (HPV) in head and neck squamous cell carcinoma (HNSCC) and Epstein-Barr virus (EBV) in nasopharyngeal carcinoma (NPC). We have summarized the main events of HPV & EBV life cycle, potential mechanisms of HPV- or EBV-mediated carcinogenesis, and the implications of HPV and EBV in head and neck cancer, with an emphasis on disease diagnosis, prognosis, and therapeutic treatment. The potential of proteomics for studying these virus-associated cancers has also been discussed. A mechanistic understanding of HPV-associated HNSCC or EBV-associated NPC would require profound analysis of these tumors using advanced molecular analysis technologies, which will then facilitate the development of preventive and therapeutic strategies for these diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ferlay J, Bray F, Pisani P, Parkin DM. Globocan 2002: cancer ­incidence and mortality worldwide. IARC/WHO CancerBase no. 5, version 2.0. France: Lyon; 2004.

    Google Scholar 

  2. Gillison ML, Koch WM, Capone RB, et al. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Nat Cancer Instit. 2000;92:709–20.

    CAS  Google Scholar 

  3. Gillison ML, Shah KV. Human papillomavirus-associated head and neck squamous cell carcinoma: mounting evidence for an etiologic role for human papillomavirus in a subset of head and neck cancers. Curr Opin Oncol. 2001;13:183–8.

    PubMed  CAS  Google Scholar 

  4. Renwei C, Leena-Maija A, Antti V. Human papillomavirus type 16 in head and neck carcinogenesis. Rev Med Virol. 2005;15:351–63.

    Google Scholar 

  5. Shope RE, Hurst EW. Infectious papillomatosis of rabbits: with a note on the histopathology. J Exp Med. 1933;58:607–24.

    PubMed  CAS  Google Scholar 

  6. Ha PK, Califano JA. The role of human papillomavirus in oral carcinogenesis. Crit Rev Oral Biol Med. 2004;15:188–96.

    PubMed  Google Scholar 

  7. Psyrri A, DiMaio D. Human papillomavirus in cervical and head-and-neck cancer. Nat Clin Prac Oncol. 2008;5:24–31.

    CAS  Google Scholar 

  8. Fakhry C, Gillison ML. Clinical implications of human papillomavirus in head and neck cancers. J Clin Oncol. 2006;24:2606–11.

    PubMed  Google Scholar 

  9. Devaraj K, Gillison ML, Wu TC. Development of HPV vaccines for HPV-associated head and neck squamous cell carcinoma. Crit Rev Oral Biol Med. 2003;14:345–62.

    PubMed  Google Scholar 

  10. Steinberg B, Auborn K. Papillomaviruses in head and neck disease: pathophysiology and possible regulation. J Cell Biochem Suppl. 1993;17F:155–64.

    PubMed  CAS  Google Scholar 

  11. Dyson N, Howley PM, Munger K, Harlow E. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science. 1989;243:934–7.

    PubMed  CAS  Google Scholar 

  12. Werness BA, Levine AJ, Howley PM. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science. 1990;248:76–9.

    PubMed  CAS  Google Scholar 

  13. Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 1990;63:1129–36.

    PubMed  CAS  Google Scholar 

  14. Ferris RL, Martinez I, Sirianni N, Wang J, López-Albaitero A, Gollin SM, et al. Human papillomavirus-16 associated squamous cell carcinoma of the head and neck (SCCHN): a natural disease model provides insights into viral carcinogenesis. Eur J Cancer. 2005;41:807–15.

    PubMed  CAS  Google Scholar 

  15. Boyer SN, Wazer DE, Band V. E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Res. 1996;56:4620–4.

    PubMed  CAS  Google Scholar 

  16. Münger K, Howley P, DiMaio D. Human papillomavirus E6 and E7 oncogenes. In: Garcea R, DiMaio D, editor. The papillomaviruses. Springer, 2007. pp. 197–252.

    Google Scholar 

  17. Ming Z, Eli R, Andre Lopes C, Wayne K, WeiWen J, David S, et al. Feasibility of quantitative PCR-based saliva rinse screening of HPV for head and neck cancer. Int J Cancer. 2005;117:605–10.

    Google Scholar 

  18. Gillison ML, Lowy DR. A causal role for human papillomavirus in head and neck cancer. Lancet. 2004;363:1488–9.

    PubMed  CAS  Google Scholar 

  19. Herrero R. Chapter 7: human papillomavirus and cancer of the upper aerodigestive tract. J Natl Cancer Inst Monogr. 2003;2003:47–51.

    Google Scholar 

  20. Jose VB, Yolanda J, Judith M, et al. Lack of association between proliferative verrucous leukoplakia and human papillomavirus infection. J Oral Maxillofacial Surg. 2007;65:46–9.

    Google Scholar 

  21. Fouret P, Dabit D, Sibony M, Alili D, Commo F, Saint-Guily JL, et al. Expression of p53 protein related to the presence of human papillomavirus infection in precancer lesions of the larynx. Am J Path. 1995;146:599–604.

    PubMed  CAS  Google Scholar 

  22. Ha PK, Pai SI, Westra WH, Gillison ML, Tong BC, Sidransky D, et al. Real-time quantitative PCR demonstrates low prevalence of human papillomavirus type 16 in premalignant and malignant lesions of the oral cavity. Clin Cancer Res. 2002;8:1203–9.

    PubMed  CAS  Google Scholar 

  23. Bouda M, Gorgoulis VG, Kastrinakis NG, et al. High risk HPV types are frequently detected in potentially malignant and malignant oral lesions, but not in normal oral mucosa. Mod Pathol. 2000;13:644–53.

    PubMed  CAS  Google Scholar 

  24. Muñoz N, Castellsagué X, de González AB, Gissmann L. Chapter 1: HPV in the etiology of human cancer. Vaccine. 2006;24:S1–10.

    Google Scholar 

  25. Kreimer AR, Clifford GM, Boyle P, Franceschi S. Human papillomavirus types in head and neck squamous cell carcinomas worldwide: a systematic review. Cancer Epidemiol Biomarkers Prev. 2005;14:467–75.

    PubMed  CAS  Google Scholar 

  26. D’Souza G, Kreimer AR, Viscidi R, et al. Case-control study of human papillomavirus and oropharyngeal cancer. N Engl J Med. 2007;356:1944–56.

    PubMed  Google Scholar 

  27. Klussmann JP, Gultekin E, Weissenborn SJ, et al. Expression of p16 protein identifies a distinct entity of tonsillar carcinomas associated with human papillomavirus. Am J Pathol. 2003;162:747–53.

    PubMed  CAS  Google Scholar 

  28. Campisi G, Giovannelli L. Controversies surrounding human papilloma virus infection, head & neck vs. oral cancer, implications for prophylaxis and treatment. Head Neck Oncol. 2009;1:8.

    PubMed  Google Scholar 

  29. Slebos RJC, Yi Y, Ely K, et al. Gene expression differences associated with human papillomavirus status in head and neck squamous cell carcinoma. Clin Cancer Res. 2006;12:701–9.

    PubMed  CAS  Google Scholar 

  30. Yang H, Yang K, Khafagi A, et al. Sensitive detection of human papillomavirus in cervical, head/neck, and schistosomiasis-associated bladder malignancies. Proc Natl Acad Sci USA. 2005;102:7683–8.

    PubMed  CAS  Google Scholar 

  31. Fakhry C, Westra WH, Li S, Cmelak A, Ridge JA, Pinto H, et al. Improved survival of patients with human papillomavirus-positive head and neck squamous cell carcinoma in a prospective clinical trial. J Natl Cancer Inst. 2008;100:261–9.

    PubMed  CAS  Google Scholar 

  32. Begum S, Gillison ML, Nicol TL, Westra WH. Detection of human papillomavirus-16 in fine-needle aspirates to determine tumor origin in patients with metastatic squamous cell carcinoma of the head and neck. Clin Cancer Res. 2007;13:1186–91.

    PubMed  CAS  Google Scholar 

  33. Wei L, Carol HT, Christopher JOB, et al. Human papillomavirus positivity predicts favourable outcome for squamous carcinoma of the tonsil. Int J Cancer. 2003;106:553–8.

    Google Scholar 

  34. Hanna M, Signe F, Rolf L, Tina D, Eva M-W. Human papillomavirus (HPV) DNA in tonsillar cancer: clinical correlates, risk of relapse, and survival. Int J Cancer. 2000;89:300–4.

    Google Scholar 

  35. Harriet CH, Manni JJ, Haesevoets A, et al. Marked differences in survival rate between smokers and nonsmokers with HPV 16-associated tonsillar carcinomas. Int J Cancer. 2008;122:2656–64.

    Google Scholar 

  36. Weinberger PM, Yu Z, Haffty BG, et al. Molecular classification identifies a subset of human papillomavirus-associated oropharyngeal cancers with favorable prognosis. J Clin Oncol. 2006;24:736–47.

    PubMed  CAS  Google Scholar 

  37. Chaturvedi AK, Engels EA, Anderson WF, Gillison ML. Incidence trends for human papillomavirus-related and -unrelated oral squamous cell carcinomas in the United States. J Clin Oncol. 2008;26:612–9.

    PubMed  Google Scholar 

  38. Corvò R. Evidence-based radiation oncology in head and neck squamous cell carcinoma. Radiother Oncol. 2007;85:156–70.

    PubMed  Google Scholar 

  39. Sirianni N, Wang J, Ferris RL. Antiviral activity of Cidofovir on a naturally human papillomavirus-16 infected squamous cell carcinoma of the head and neck (SCCHN) cell line improves radiation sensitivity. Oral Oncol. 2005;41:423–8.

    PubMed  CAS  Google Scholar 

  40. Albers A, Abe K, Hunt J, et al. Antitumor activity of human papillomavirus type 16 E7-specific T cells against virally infected squamous cell carcinoma of the head and neck. Cancer Res. 2005;65:11146–55.

    PubMed  CAS  Google Scholar 

  41. Sirianni N, Ha PK, Oelke M, et al. Effect of human ­papillomavirus-16 infection on CD8+ T-cell recognition of a wild-type sequence p53 264–272 peptide in patients with squamous cell ­carcinoma of the head and neck. Clin Cancer Res. 2004;10:6929–37.

    PubMed  CAS  Google Scholar 

  42. Epstein M. The 1986 Walter Hubert lecture. Recent studies on a vaccine to prevent EB virus-associated cancers. Br J Cancer. 1986;54:1–5.

    PubMed  CAS  Google Scholar 

  43. Chou J, Lin Y-C, Kim J, You L, Xu Z, He B, et al. Nasopharyngeal carcinoma – review of the molecular mechanisms of tumorigenesis. Head Neck. 2008;30:946–63.

    PubMed  Google Scholar 

  44. Junker AK. Epstein-Barr virus. Pediatr Rev. 2005;26:79–85.

    PubMed  Google Scholar 

  45. Pattle SB, Farrell PJ. The role of Epstein-Barr virus in cancer. Exp Opin Biologic Ther. 2006;6:1193–205.

    CAS  Google Scholar 

  46. Raab-Traub N. Epstein-Barr virus in the pathogenesis of NPC. Sem Cancer Biol. 2002;12:431–41.

    CAS  Google Scholar 

  47. Wang D, Liebowitz D, Kieff E. An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell. 1985;43:831–40.

    PubMed  CAS  Google Scholar 

  48. Laux G, Perricaudet M, Farrell PJ. A spliced Epstein-Barr virus gene expressed in immortalized lymphocytes is created by circularization of the linear viral genome. EMBO J. 1988;7:769–74.

    PubMed  CAS  Google Scholar 

  49. Sample J, Hummel M, Braun D, Birkenbach M, Kieff E. Nucleotide sequences of mRNAs encoding Epstein-Barr virus nuclear proteins: a probable transcriptional initiation site. Proc Nat Acad Sci USA. 1986;83:5096–100.

    PubMed  CAS  Google Scholar 

  50. Yates JL, Warren N, Sugden B. Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature. 1985;313:812–5.

    PubMed  CAS  Google Scholar 

  51. Arrand JR, Rymo L. Characterization of the major Epstein-Barr virus-specific RNA in Burkitt lymphoma-derived cells. J Virol. 1982;41:376–89.

    PubMed  CAS  Google Scholar 

  52. Swaminathan S, Tomkinson B, Kieff E. Recombinant Epstein-Barr virus with small RNA (EBER) genes deleted transforms lymphocytes and replicates in vitro. Proc Nat Acad Sci USA. 1991;88:1546–50.

    PubMed  CAS  Google Scholar 

  53. Young LS, Murray PG. Epstein-Barr virus and oncogenesis: from latent genes to tumours. Oncogene. 2003;22:5108–21.

    PubMed  CAS  Google Scholar 

  54. Murray PG, Young LS. Epstein-Barr virus infection: basis of malignancy and potential for therapy. Exp Rev Mol Med. 2001;3:1–20.

    CAS  Google Scholar 

  55. Seto E, Ooka T, Middeldorp J, Takada K. Reconstitution of nasopharyngeal carcinoma-Type EBV infection induces tumorigenicity. Cancer Res. 2008;68:1030–6.

    PubMed  CAS  Google Scholar 

  56. Tsuchiya S. Diagnosis of Epstein-Barr virus-associated diseases. Crit Rev Oncol Hematol. 2002;44:227–38.

    PubMed  Google Scholar 

  57. Pathmanathan R, Prasad U, Sadler R, Flynn K, Raab-Traub N. Clonal proliferations of cells infected with Epstein-Barr virus in preinvasive lesions related to nasopharyngeal carcinoma. N Engl J Med. 1995;333:693–8.

    PubMed  CAS  Google Scholar 

  58. Yeung WM, Zong YS, Chiu CT, Chan KH, Jonathan STS, Damon TKC, et al. Epstein-barr virus carriage by nasopharyngeal carcinoma in situ. Int J Cancer. 1993;53:746–50.

    PubMed  CAS  Google Scholar 

  59. Lo K-W, Teo PML, Hui AB-Y, et al. High resolution allelotype of microdissected primary nasopharyngeal carcinoma. Cancer Res. 2000;60:3348–53.

    PubMed  CAS  Google Scholar 

  60. Henle W, Henle G, Zajac BA, Pearson G, Waubke R, Scriba M. Differential reactivity of human serums with early antigens induced by Epstein-Barr virus. Science. 1970;169:188–90.

    PubMed  CAS  Google Scholar 

  61. Hepeng J. Zeng YI Profile: a controversial bid to thwart the ‘Cantonese Cancer’. Science. 2008;321:1154–5.

    PubMed  CAS  Google Scholar 

  62. Xiuchan G, Randall CJ, Hong D, et al. Evaluation of nonviral risk factors for nasopharyngeal carcinoma in a high-risk population of Southern China. Int J Cancer. 2009;124:2942–7.

    Google Scholar 

  63. Morrison JA, Gulley ML, Pathmanathan R, Raab-Traub N. Differential signaling pathways are activated in the Epstein-Barr virus-associated malignancies nasopharyngeal carcinoma and hodgkin lymphoma. Cancer Res. 2004;64:5251–60.

    PubMed  CAS  Google Scholar 

  64. Thompson MP, Kurzrock R. Epstein-Barr virus and cancer. Clin Cancer Res. 2004;10:803–21.

    PubMed  CAS  Google Scholar 

  65. Pagano JS, Blaser M, Buendia M-A, Damania B, Khalili K, Raab-Traub N, et al. Infectious agents and cancer: criteria for a causal relation. Sem Cancer Biol. 2004;14:453–71.

    CAS  Google Scholar 

  66. Feng B-J, Huang W, Shugart YY, et al. Genome-wide scan for familial nasopharyngeal carcinoma reveals evidence of linkage to chromosome 4. Nat Genet. 2002;31:395–9.

    PubMed  CAS  Google Scholar 

  67. Lin CT, Lin CR, Tan GK, Chen W, Dee AN, Chan WY. The mechanism of Epstein-Barr virus infection in nasopharyngeal carcinoma cells. Am J Pathol. 1997;150:1745–56.

    PubMed  CAS  Google Scholar 

  68. Young LS, Dawson CW, Brown KW, Rickinson AB. Identification of a human epithelial cell surface protein sharing an epitope with the C3d/epstein-barr virus receptor molecule of B lymphocytes. Int J Cancer. 1989;43:786–94.

    PubMed  CAS  Google Scholar 

  69. Bejarano MT, Masucci MG. Interleukin-10 abrogates the inhibition of Epstein-Barr virus-induced B-cell transformation by memory T-cell responses. Blood. 1998;92:4256–62.

    PubMed  CAS  Google Scholar 

  70. Huang Y-T, Sheen T-S, Chen C-L, Lu J, Chang Y, Chen J-Y, et al. Profile of cytokine expression in nasopharyngeal carcinomas: a distinct expression of interleukin 1 in tumor and CD4+ T cells. Cancer Res. 1999;59:1599–605.

    PubMed  CAS  Google Scholar 

  71. Lu Q-L, Elia G, Lucas S, Thomas JA. Bcl-2 proto-oncogene expression in Epstein-Barr-virus-associated nasopharyngeal carcinoma. Int J Cancer. 1993;53:29–35.

    PubMed  CAS  Google Scholar 

  72. Wei W, Sham J. Nasopharyngeal carcinoma. Lancet. 2005;365:2041–54.

    PubMed  Google Scholar 

  73. Gulley ML. Molecular diagnosis of Epstein-Barr virus-related diseases. J Mol Diagn. 2001;3:1–10.

    PubMed  CAS  Google Scholar 

  74. Spano J-P, Busson P, Atlan D, Bourhis J, Pignon J-P, Esteban C, et al. Nasopharyngeal carcinomas: an update. Eur J Cancer. 2003;39:2121–35.

    PubMed  Google Scholar 

  75. Raab-Traub N, Flynn K. The structure of the termini of the Epstein-Barr virus as a marker of clonal cellular proliferation. Cell. 1986;47:883–9.

    PubMed  CAS  Google Scholar 

  76. Lo YMD, Chan ATC, Chan LYS, Leung S-F, Lam C-W, Huang DP, et al. Molecular prognostication of nasopharyngeal carcinoma by quantitative analysis of circulating Epstein-Barr virus DNA. Cancer Res. 2000;60:6878–81.

    PubMed  CAS  Google Scholar 

  77. Fan H, Gulley ML. Epstein-Barr viral load measurement as a marker of EBV-related disease. Mol Diag. 2001;6:279–89.

    CAS  Google Scholar 

  78. Hsu JL, Glaser SL. Epstein–Barr virus-associated malignancies: epidemiologic patterns and etiologic implications. Crit Rev Oncol Hematol. 2000;34:27–53.

    PubMed  CAS  Google Scholar 

  79. Zhou X, Cui J, Macias V, Kajdacsy-Balla AA, Ye H, Wang J, et al. The progress on genetic analysis of nasopharyngeal carcinoma. Comp Func Genomics. 2007;2007:1–13.

    Google Scholar 

  80. Comoli P, Pedrazzoli P, Maccario R, et al. Cell therapy of stage IV nasopharyngeal carcinoma with autologous Epstein-Barr ­virus-targeted cytotoxic T lymphocytes. J Clin Oncol. 2005;23:8942–9.

    PubMed  CAS  Google Scholar 

  81. Lin C-L, Lo W-F, Lee T-H, et al. Immunization with Epstein-Barr virus (EBV) peptide-pulsed dendritic cells induces functional CD8+ T-cell immunity and may lead to tumor regression in patients with EBV-positive nasopharyngeal carcinoma. Cancer Res. 2002;62:6952–8.

    PubMed  CAS  Google Scholar 

  82. Fandi A, Bachouchi M, Azli N, et al. Long-term disease-free survivors in metastatic undifferentiated carcinoma of nasopharyngeal type. J Clin Oncol. 2000;18:1324–30.

    PubMed  CAS  Google Scholar 

  83. Lin J-C, Chen KY, Wang W-Y, Jan J-S, Liang W-M, Tsai C-S, et al. Detection of Epstein-Barr virus DNA in the peripheral-blood cells of patients with nasopharyngeal carcinoma: relationship to distant metastasis and survival. J Clin Oncol. 2001;19:2607–15.

    PubMed  CAS  Google Scholar 

  84. Lo YMD, Chan LYS, Lo K-W, et al. Quantitative analysis of cell-free Epstein-Barr virus DNA in plasma of patients with nasopharyngeal carcinoma. Cancer Res. 1999;59:1188–91.

    PubMed  CAS  Google Scholar 

  85. W-h F, Kenney SC. Valproic acid enhances the efficacy of chemotherapy in EBV-positive tumors by increasing lytic viral gene expression. Cancer Res. 2006;66:8762–9.

    Google Scholar 

  86. Li J-H, Chia M, Shi W, Ngo D, Strathdee CA, Huang D, et al. Tumor-targeted gene therapy for nasopharyngeal carcinoma. Cancer Res. 2002;62:171–8.

    PubMed  CAS  Google Scholar 

  87. Feng W-h, Israel B, Raab-Traub N, Busson P, Kenney SC. Chemotherapy induces lytic EBV replication and confers ganciclovir susceptibility to EBV-positive epithelial cell tumors. Cancer Res. 2002;62:1920–6.

    PubMed  CAS  Google Scholar 

  88. Spring SB, Hascall G, Gruber J. Issues related to development of Epstein-Barr virus vaccines. J Natl Cancer Inst. 1996;88:1436–41.

    PubMed  CAS  Google Scholar 

  89. Duraiswamy J, Bharadwaj M, Tellam J, et al. Induction of therapeutic T-cell responses to subdominant tumor-associated viral oncogene after immunization with replication-incompetent polyepitope adenovirus vaccine. Cancer Res. 2004;64:1483–9.

    PubMed  CAS  Google Scholar 

  90. Kyung-Ae L, Jung-Hyun S, Chang Won K, et al. Protein profiling and identification of modulators regulated by the E7 oncogene in the C33A cell line by proteomics and genomics. Proteomics. 2004;4:839–48.

    Google Scholar 

  91. Lee K-A, Kang J-W, Shim J-H, et al. Protein profiling and identification of modulators regulated by human papillomavirus 16 E7 oncogene in HaCaT keratinocytes by proteomics. Gynecol Oncol. 2005;99:142–52.

    PubMed  CAS  Google Scholar 

  92. Yim E-K, Meoyng J, Namakoong S-E, Um S-J, Park J-S. Genomic and proteomic expression patterns in HPV-16 E6 gene transfected stable human carcinoma cell lines. DNA Cell Biol. 2004;23:826–35.

    PubMed  CAS  Google Scholar 

  93. Huh K-W, DeMasi J, Ogawa H, Nakatani Y, Howley PM, Münger K. Association of the human papillomavirus type 16 E7 oncoprotein with the 600-kDa retinoblastoma protein-associated factor, p600. Proc Natl Acad Sci USA. 2005;102:11492–7.

    PubMed  CAS  Google Scholar 

  94. Christian M, Günther E, Robert W, Bettina S, Jens Peter K, Claus W, et al. Proteomic analysis of human papillomavirus-related oral squamous cell carcinoma: identification of thioredoxin and epidermal-fatty acid binding protein as upregulated protein markers in microdissected tumor tissue. Proteomics. 2009;9:2193–201.

    Google Scholar 

  95. Lo W-Y, Lai C-C, Hua C-H, Tsai M-H, Huang S-Y, Tsai C-H, et al. S100A8 is identified as a biomarker of HPV18-infected oral squamous cell carcinomas by suppression subtraction hybridization, clinical proteomics analysis, and immunohistochemistry staining. J Proteome Res. 2007;6:2143–51.

    PubMed  CAS  Google Scholar 

  96. Kong L, Yu X-P, Bai X-H, et al. RbAp48 is a critical mediator controlling the transforming activity of human papillomavirus type 16 in cervical cancer. J Biol Chem. 2007;282:26381–91.

    PubMed  CAS  Google Scholar 

  97. Cho W. Nasopharyngeal carcinoma: molecular biomarker discovery and progress. Mol Cancer. 2007;6:1.

    PubMed  Google Scholar 

  98. Yan G, Li L, Tao Y, et al. Identification of novel phosphoproteins in signaling pathways triggered by latent membrane protein-1 using functional proteomics technology. Proteomics. 2006;6:1810–21.

    PubMed  CAS  Google Scholar 

  99. Yan G, Luo W, Lu Z, et al. Epstein-Barr virus latent membrane protein 1 mediates phosphorylation and nuclear translocation of annexin A2 by activating PKC pathway. Cell Signal. 2007;19:341–8.

    PubMed  CAS  Google Scholar 

  100. Schlee M, Krug T, Gires O, et al. Identification of Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA2) target proteins by proteome analysis: activation of ebna2 in conditionally immortalized B cells reflects early events after infection of primary B cells by EBV. J Virol. 2004;78:3941–52.

    PubMed  CAS  Google Scholar 

  101. Yokoyama A, Tanaka M, Matsuda G, et al. Identification of major phosphorylation sites of Epstein-Barr virus nuclear antigen leader protein (EBNA-LP): ability of EBNA-LP to induce latent ­membrane protein 1 cooperatively with EBNA-2 is regulated by phosphorylation. J Virol. 2001;75:5119–28.

    PubMed  CAS  Google Scholar 

  102. Martinez I, Wang J, Hobson KF, Ferris RL, Khan SA. Identification of differentially expressed genes in HPV-positive and HPV-negative oropharyngeal squamous cell carcinomas. Eur J Cancer (Oxford). 2007;43:415–32.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Brumbaugh, J., Ferris, R.L., Hu, S. (2011). HPV and EBV in Head and Neck Cancer. In: Bernier, J. (eds) Head and Neck Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9464-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9464-6_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9463-9

  • Online ISBN: 978-1-4419-9464-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics