Skip to main content

Genetics and Epigenetics of Head and Neck Cancer

  • Chapter
  • First Online:
Head and Neck Cancer

Abstract

Cancer is caused by a multi-step progression of genetic and epigenetic aberrations resulting in a clonal expansion of cells. These cells have a selective growth advantage characterised as the “hallmarks of cancer” including loss of control of the cell cycle, genomic instability, inhibition of apoptosis, insensitivity to growth signals and promotion of angiogenesis. A greatly increased understanding of the pathogenesis of the various underlying genetic and epigenetic lesions has accompanied the recent explosion of knowledge, coined the “omics” revolution. In a variety of cancer sites, we are already able to explain and classify much of the heterogeneity of tumour behaviour in terms of the underlying molecular lesions responsible. This capacity will increase with the scope of technologies becoming available, and being able to offer a corresponding tailored approach to therapy remains the ultimate goal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boveri T. Zur Frage der Entstehlung MalignerTumoren. Jena, Germany: Gustave Fischer; 1914.

    Google Scholar 

  2. Barrett JC. Mechanisms of multistep carcinogenesis and carcinogen risk assessment. Environ Health Perspect. 1993;100:9–20.

    Article  PubMed  CAS  Google Scholar 

  3. Alitalo K, Schwab M. Oncogene amplification in tumor cells. Adv Cancer Res. 1986;47:235–81.

    Article  PubMed  CAS  Google Scholar 

  4. Haluska FG, Tsujimoto Y, Croce CM. Oncogene activation by chromosome translocation in human malignancy. Annu Rev Genet. 1987;21:321–45.

    Article  PubMed  CAS  Google Scholar 

  5. Klein G, Klein E. Evolution of tumours and the impact of molecular oncology. Nature. 1985;315(6016):190–5.

    Article  PubMed  CAS  Google Scholar 

  6. Field JK. The role of oncogenes and tumour-suppressor genes in the aetiology of oral, head and neck squamous cell carcinoma. J R Soc Med. 1995;88(1):35P–9.

    PubMed  CAS  Google Scholar 

  7. Sidransky D. Molecular genetics of head and neck cancer. Curr Opin Oncol. 1995;7(3):229–33.

    Article  PubMed  CAS  Google Scholar 

  8. Ishitoya J, Toriyama M, Oguchi N, Kitamura K, Ohshima M, Asano K, et al. Gene amplification and overexpression of EGF receptor in squamous cell carcinomas of the head and neck. Br J Cancer. 1989;59(4):559–62.

    Article  PubMed  CAS  Google Scholar 

  9. Chang SS, Califano J. Current status of biomarkers in head and neck cancer. J Surg Oncol. 2008;97(8):640–3.

    Article  PubMed  Google Scholar 

  10. Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med. 2006;354(6):567–78.

    Article  PubMed  CAS  Google Scholar 

  11. Eberhard DA, Johnson BE, Amler LC, Goddard AD, Heldens SL, Herbst RS, et al. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol. 2005;23(25):5900–9.

    Article  PubMed  CAS  Google Scholar 

  12. Patturajan M, Nomoto S, Sommer M, Fomenkov A, Hibi K, Zangen R, et al. DeltaNp63 induces beta-catenin nuclear accumulation and signaling. Cancer Cell. 2002;1(4):369–79.

    Article  PubMed  CAS  Google Scholar 

  13. Rosenthal EL, Matrisian LM. Matrix metalloproteases in head and neck cancer. Head Neck. 2006;28(7):639–48.

    Article  PubMed  Google Scholar 

  14. Weinberg RA. Tumor suppressor genes. Science. 1991;254(5035):1138–46.

    Article  PubMed  CAS  Google Scholar 

  15. Choi S, Myers JN. Molecular pathogenesis of oral squamous cell carcinoma: implications for therapy. J Dent Res. 2008;87(1):14–32.

    Article  PubMed  CAS  Google Scholar 

  16. Knudson Jr AG. Genetics and etiology of human cancer. Adv Hum Genet. 1977;8:1–66.

    PubMed  CAS  Google Scholar 

  17. Vogelstein B, Kinzler KW. The multistep nature of cancer. Trends Genet. 1993;9(4):138–41.

    Article  PubMed  CAS  Google Scholar 

  18. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell. 1997;88(3):323–31.

    Article  PubMed  CAS  Google Scholar 

  19. Bradford CR, Zhu S, Ogawa H, Ogawa T, Ubell M, Narayan A, et al. P53 mutation correlates with cisplatin sensitivity in head and neck squamous cell carcinoma lines. Head Neck. 2003;25(8):654–61.

    Article  PubMed  Google Scholar 

  20. Poeta ML, Manola J, Goldwasser MA, Forastiere A, Benoit N, Califano JA, et al. TP53 mutations and survival in squamous-cell carcinoma of the head and neck. N Engl J Med. 2007;357(25):2552–61.

    Article  PubMed  CAS  Google Scholar 

  21. Temam S, Flahault A, Perie S, Monceaux G, Coulet F, Callard P, et al. p53 gene status as a predictor of tumor response to induction chemotherapy of patients with locoregionally advanced squamous cell ­carcinomas of the head and neck. J Clin Oncol. 2000;18(2):385–94.

    PubMed  CAS  Google Scholar 

  22. Carvalho AL, Chuang A, Jiang WW, Lee J, Begum S, Poeta L, et al. Deleted in colorectal cancer is a putative conditional tumor-­suppressor gene inactivated by promoter hypermethylation in head and neck squamous cell carcinoma. Cancer Res. 2006;66(19):9401–7.

    Article  PubMed  CAS  Google Scholar 

  23. Nakaya K, Yamagata HD, Arita N, Nakashiro KI, Nose M, Miki T, et al. Identification of homozygous deletions of tumor suppressor gene FAT in oral cancer using CGH-array. Oncogene. 2007;26(36):5300–8.

    Article  PubMed  CAS  Google Scholar 

  24. Califano J, van der RP, Westra W, Nawroz H, Clayman G, Piantadosi S, et al. Genetic progression model for head and neck cancer: implications for field cancerization. Cancer Res. 1996;56(11):2488–92.

    PubMed  CAS  Google Scholar 

  25. van der Riet P, Nawroz H, Hruban RH, Corio R, Tokino K, Koch W, et al. Frequent loss of chromosome 9p21-22 early in head and neck cancer progression. Cancer Res. 1994;54(5):1156–8.

    PubMed  Google Scholar 

  26. Lukas J, Parry D, Aagaard L, Mann DJ, Bartkova J, Strauss M, et al. Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16. Nature. 1995;375(6531):503–6.

    Article  PubMed  CAS  Google Scholar 

  27. Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature. 1993;366(6456):704–7.

    Article  PubMed  CAS  Google Scholar 

  28. Serrano M, Gomez-Lahoz E, DePinho RA, Beach D, Bar-Sagi D. Inhibition of ras-induced proliferation and cellular transformation by p16INK4. Science. 1995;267(5195):249–52.

    Article  PubMed  CAS  Google Scholar 

  29. Garnis C, Baldwin C, Zhang L, Rosin MP, Lam WL. Use of complete coverage array comparative genomic hybridization to define copy number alterations on chromosome 3p in oral squamous cell carcinomas. Cancer Res. 2003;63(24):8582–5.

    PubMed  CAS  Google Scholar 

  30. Mao L, Lee JS, Fan YH, Ro JY, Batsakis JG, Lippman S, et al. Frequent microsatellite alterations at chromosomes 9p21 and 3p14 in oral premalignant lesions and their value in cancer risk assessment. Nat Med. 1996;2(6):682–5.

    Article  PubMed  CAS  Google Scholar 

  31. Dong SM, Sun DI, Benoit NE, Kuzmin I, Lerman MI, Sidransky D. Epigenetic inactivation of RASSF1A in head and neck cancer. Clin Cancer Res. 2003;9(10 Pt 1):3635–40.

    PubMed  CAS  Google Scholar 

  32. Berenson JR, Yang J, Mickel RA. Frequent amplification of the bcl-1 locus in head and neck squamous cell carcinomas. Oncogene. 1989;4(9):1111–6.

    PubMed  CAS  Google Scholar 

  33. Callender T, El-Naggar AK, Lee MS, Frankenthaler R, Luna MA, Batsakis JG. PRAD-1 (CCND1)/cyclin D1 oncogene ­amplification in primary head and neck squamous cell carcinoma. Cancer. 1994;74(1):152–8.

    Article  PubMed  CAS  Google Scholar 

  34. Cheng KC, Loeb LA. Genomic instability and tumor progression: mechanistic considerations. Adv Cancer Res. 1993;60:121–56.

    Article  PubMed  CAS  Google Scholar 

  35. Fanconi G. Familiare infantile perniziosaartige Anämie (perniziöses Blutbild und Konstitution). Jahrbuch für Kinderheilkunde und physische Erziehung. 1927;117:257–80.

    Google Scholar 

  36. Lustig JP, Lugassy G, Neder A, Sigler E. Head and neck carcinoma in Fanconi’s anaemia – report of a case and review of the literature. Eur J Cancer B Oral Oncol. 1995;31B(1):68–72.

    Article  PubMed  CAS  Google Scholar 

  37. Kaplan MJ, Sabio H, Wanebo HJ, Cantrell RW. Squamous cell carcinoma in the immunosuppressed patient: Fanconi’s anemia. Laryngoscope. 1985;95(7 Pt 1):771–5.

    PubMed  CAS  Google Scholar 

  38. Sparano A, Quesnelle KM, Kumar MS, Wang Y, Sylvester AJ, Feldman M, et al. Genome-wide profiling of oral squamous cell carcinoma by array-based comparative genomic hybridization. Laryngoscope. 2006;116(5):735–41.

    Article  PubMed  CAS  Google Scholar 

  39. Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ, Qin J. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev. 2000;14(8):927–39.

    Article  PubMed  CAS  Google Scholar 

  40. Meetei AR, Sechi S, Wallisch M, Yang D, Young MK, Joenje H, et al. A multiprotein nuclear complex connects Fanconi anemia and Bloom syndrome. Mol Cell Biol. 2003;23(10):3417–26.

    Article  PubMed  CAS  Google Scholar 

  41. Garkavtsev IV, Kley N, Grigorian IA, Gudkov AV. The Bloom syndrome protein interacts and cooperates with p53 in regu-lation of transcription and cell growth control. Oncogene. 2001;20(57):8276–80.

    Article  PubMed  CAS  Google Scholar 

  42. Gatti RA, Berkel I, Boder E, Braedt G, Charmley P, Concannon P, et al. Localization of an ataxia-telangiectasia gene to chromosome 11q22-23. Nature. 1988;336(6199):577–80.

    Article  PubMed  CAS  Google Scholar 

  43. Lazar AD, Winter MR, Nogueira CP, Larson PS, Finnemore EM, Dolan RW, et al. Loss of heterozygosity at 11q23 in squamous cell carcinoma of the head and neck is associated with recurrent disease. Clin Cancer Res. 1998;4(11):2787–93.

    PubMed  CAS  Google Scholar 

  44. Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L, et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science. 1995;268(5218):1749–53.

    Article  PubMed  CAS  Google Scholar 

  45. Ai L, Vo QN, Zuo C, Li L, Ling W, Suen JY, et al. Ataxia-telangiectasia-mutated (ATM) gene in head and neck squamous cell carcinoma: promoter hypermethylation with clinical correlation in 100 cases. Cancer Epidemiol Biomarkers Prev. 2004;13(1):150–6.

    Article  PubMed  CAS  Google Scholar 

  46. Shiloh Y. ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer. 2003;3(3):155–68.

    Article  PubMed  CAS  Google Scholar 

  47. Bootsma D. Nucleotide excision repair syndromes: xeroderma pigmentosum, Cockayne syndrome and trcihothiodystrophy. In: Scriver CB, editor. The metabolic and molecular basis of inherited disease. New York: McGraw-Jill Book Co.; 2001. p. 677–703.

    Google Scholar 

  48. Cleaver JE. Cancer in xeroderma pigmentosum and related disorders of DNA repair. Nat Rev Cancer. 2005;5(7):564–73.

    Article  PubMed  CAS  Google Scholar 

  49. Santibanez-Koref MF, Birch JM, Hartley AL, Jones PH, Craft AW, Eden T, et al. p53 germline mutations in Li-Fraumeni syndrome. Lancet. 1991;338(8781):1490–1.

    Article  PubMed  CAS  Google Scholar 

  50. Akashi M, Koeffler HP. Li-Fraumeni syndrome and the role of the p53 tumor suppressor gene in cancer susceptibility. Clin Obstet Gynecol. 1998;41(1):172–99.

    Article  PubMed  CAS  Google Scholar 

  51. Trizna Z, Schantz SP. Hereditary and environmental factors associated with risk and progression of head and neck cancer. Otolaryngol Clin North Am. 1992;25(5):1089–103.

    PubMed  CAS  Google Scholar 

  52. Fishel R, Lescoe MK, Rao MR, Copeland NG, Jenkins NA, Garber J, et al. The human mutator gene homolog MSH2 and its asso-ciation with hereditary nonpolyposis colon cancer. Cell. 1993;75(5):1027–38.

    Article  PubMed  CAS  Google Scholar 

  53. Hsu TC, Johnston DA, Cherry LM, Ramkissoon D, Schantz SP, Jessup JM, et al. Sensitivity to genotoxic effects of bleomycin in humans: possible relationship to environmental carcinogenesis. Int J Cancer. 1989;43(3):403–9.

    Article  PubMed  CAS  Google Scholar 

  54. Field JK. Genomic instability in squamous cell carcinoma of the head and neck. Anticancer Res. 1996;16(4C):2421–31.

    PubMed  CAS  Google Scholar 

  55. Schantz SP, Zhang ZF, Spitz MS, Sun M, Hsu TC. Genetic susceptibility to head and neck cancer: interaction between nutrition and mutagen sensitivity. Laryngoscope. 1997;107(6):765–81.

    Article  PubMed  CAS  Google Scholar 

  56. Foulkes WD, Brunet JS, Sieh W, Black MJ, Shenouda G, Narod SA. Familial risks of squamous cell carcinoma of the head and neck: retrospective case-control study. BMJ. 1996;313(7059):716–21.

    PubMed  CAS  Google Scholar 

  57. Sato M, Sato T, Izumo T, Amagasa T. Genetically high susceptibility to oral squamous cell carcinoma in terms of combined genotyping of CYP1A1 and GSTM1 genes. Oral Oncol. 2000;36(3):267–71.

    Article  PubMed  CAS  Google Scholar 

  58. Tanimoto K, Hayashi S, Yoshiga K, Ichikawa T. Polymorphisms of the CYP1A1 and GSTM1 gene involved in oral squamous cell carcinoma in association with a cigarette dose. Oral Oncol. 1999;35(2):191–6.

    Article  PubMed  CAS  Google Scholar 

  59. Zhuo W, Wang Y, Zhuo X, Zhu Y, Wang W, Zhu B, et al. CYP1A1 and GSTM1 polymorphisms and oral cancer risk: association studies via evidence-based meta-analyses. Cancer Invest. 2009;27(1):86–95.

    Article  PubMed  CAS  Google Scholar 

  60. Anantharaman D, Chaubal PM, Kannan S, Bhisey RA, Mahimkar MB. Susceptibility to oral cancer by genetic polymorphisms at CYP1A1, GSTM1 and GSTT1 loci among Indians: tobacco exposure as a risk modulator. Carcinogenesis. 2007;28(7):1455–62.

    Article  PubMed  CAS  Google Scholar 

  61. Ha PK, Chang SS, Glazer CA, Califano JA, Sidransky D. Molecular techniques and genetic alterations in head and neck cancer. Oral Oncol. 2009;45(4–5):335–9.

    Article  PubMed  CAS  Google Scholar 

  62. Uchida K, Oga A, Okafuji M, Mihara M, Kawauchi S, Furuya T, et al. Molecular cytogenetic analysis of oral squamous cell carcinomas by comparative genomic hybridization, spectral karyotyping, and fluorescence in situ hybridization. Cancer Genet Cytogenet. 2006;167(2):109–16.

    Article  PubMed  CAS  Google Scholar 

  63. Latif F, Tory K, Gnarra J, Yao M, Duh FM, Orcutt ML, et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science. 1993;260(5112):1317–20.

    Article  PubMed  CAS  Google Scholar 

  64. Kinzler KW, Nilbert MC, Vogelstein B, Bryan TM, Levy DB, Smith KJ, et al. Identification of a gene located at chromosome 5q21 that is mutated in colorectal cancers. Science. 1991;251(4999):1366–70.

    Article  PubMed  CAS  Google Scholar 

  65. Williams ME, Gaffey MJ, Weiss LM, Wilczynski SP, Schuuring E, Levine PA. Chromosome 11Q13 amplification in head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg. 1993;119(11):1238–43.

    PubMed  CAS  Google Scholar 

  66. Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975;98(3):503–17.

    Article  PubMed  CAS  Google Scholar 

  67. Southern E, Mir K, Shchepinov M. Molecular interactions on microarrays. Nat Genet. 1999;21(1 Suppl):5–9.

    Article  PubMed  CAS  Google Scholar 

  68. Sanger F, Coulson AR. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol. 1975;94(3):441–8.

    Article  PubMed  CAS  Google Scholar 

  69. Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99(3):247–57.

    Article  PubMed  CAS  Google Scholar 

  70. Paroush Z, Keshet I, Yisraeli J, Cedar H. Dynamics of demethylation and activation of the alpha-actin gene in myoblasts. Cell. 1990;63(6):1229–37.

    Article  PubMed  CAS  Google Scholar 

  71. Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 2008;9(6):465–76.

    Article  PubMed  CAS  Google Scholar 

  72. Shivaswamy S, Bhinge A, Zhao Y, Jones S, Hirst M, Iyer VR. Dynamic remodeling of individual nucleosomes across a eukaryotic genome in response to transcriptional perturbation. PLoS Biol. 2008;6(3):e65.

    Article  PubMed  CAS  Google Scholar 

  73. Fatemi M, Pao MM, Jeong S, Gal-Yam EN, Egger G, Weisenberger DJ, et al. Footprinting of mammalian promoters: use of a CpG DNA methyltransferase revealing nucleosome positions at a single molecule level. Nucleic Acids Res. 2005;33(20):e176.

    Article  PubMed  CAS  Google Scholar 

  74. Schuebel KE, Chen W, Cope L, Glockner SC, Suzuki H, Yi JM, et al. Comparing the DNA hypermethylome with gene mutations in human colorectal cancer. PLoS Genet. 2007;3(9):1709–23.

    Article  PubMed  CAS  Google Scholar 

  75. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, et al. The consensus coding sequences of human breast and colorectal cancers. Science. 2006;314(5797):268–74.

    Article  PubMed  CAS  Google Scholar 

  76. Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature. 1983;301(5895):89–92.

    Article  PubMed  CAS  Google Scholar 

  77. Sakai T, Toguchida J, Ohtani N, Yandell DW, Rapaport JM, Dryja TP. Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene. Am J Hum Genet. 1991;48(5):880–8.

    PubMed  CAS  Google Scholar 

  78. Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128(4):683–92.

    Article  PubMed  CAS  Google Scholar 

  79. Baylin SB, Ohm JE. Epigenetic gene silencing in cancer – a mechanism for early oncogenic pathway addiction? Nat Rev Cancer. 2006;6(2):107–16.

    Article  PubMed  CAS  Google Scholar 

  80. Schlesinger Y, Straussman R, Keshet I, Farkash S, Hecht M, Zimmerman J, et al. Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet. 2007;39(2):232–6.

    Article  PubMed  CAS  Google Scholar 

  81. Tiwari VK, McGarvey KM, Licchesi JD, Ohm JE, Herman JG, Schubeler D, et al. PcG proteins, DNA methylation, and gene repression by chromatin looping. PLoS Biol. 2008;6(12):2911–27.

    Article  PubMed  CAS  Google Scholar 

  82. Ha PK, Califano JA. Promoter methylation and inactivation of tumour-suppressor genes in oral squamous-cell carcinoma. Lancet Oncol. 2006;7(1):77–82.

    Article  PubMed  CAS  Google Scholar 

  83. Shaw R. The epigenetics of oral cancer. Int J Oral Maxillofac Surg. 2006;35(2):101–8.

    Article  PubMed  CAS  Google Scholar 

  84. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation ­status of CpG islands. Proc Natl Acad Sci USA. 1996;93(18):9821–6.

    Article  PubMed  CAS  Google Scholar 

  85. Easds CA, Danenberg KD, Kawakami K, et al. Methylight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res. 2000;28:E32.

    Article  Google Scholar 

  86. Colella S, Shen L, Baggerly KA, Issa JP, Krahe R. Sensitive and quantitative universal Pyrosequencing methylation analysis of CpG sites. Biotechniques. 2003;35(1):146–50.

    PubMed  CAS  Google Scholar 

  87. Shaw RJ, Liloglou T, Rogers SN, Brown JS, Vaughan ED, Lowe D, et al. Promoter methylation of P16, RARbeta, E-cadherin, cyclin A1 and cytoglobin in oral cancer: quantitative evaluation using pyrosequencing. Br J Cancer. 2006;94(4):561–8.

    Article  PubMed  CAS  Google Scholar 

  88. Shaw RJ, Hall GL, Lowe D, Liloglou T, Field JK, Sloan P, et al. The role of pyrosequencing in head and neck cancer epigenetics: correlation of quantitative methylation data with gene expression. Arch Otolaryngol Head Neck Surg. 2008;134(3):251–6.

    Article  PubMed  Google Scholar 

  89. Bibikova M, Lin Z, Zhou L, Chudin E, Garcia EW, Wu B, et al. High-throughput DNA methylation profiling using universal bead arrays. Genome Res. 2006;16(3):383–93.

    Article  PubMed  CAS  Google Scholar 

  90. Hoque MO, Kim MS, Ostrow KL, Liu J, Wisman GB, Park HL, et al. Genome-wide promoter analysis uncovers portions of the cancer methylome. Cancer Res. 2008;68(8):2661–70.

    Article  PubMed  CAS  Google Scholar 

  91. Tokumaru Y, Yamashita K, Osada M, Nomoto S, Sun DI, Xiao Y, et al. Inverse correlation between cyclin A1 hypermethylation and p53 mutation in head and neck cancer identified by reversal of epigenetic silencing. Cancer Res. 2004;64(17):5982–7.

    Article  PubMed  CAS  Google Scholar 

  92. El-Naggar AK, Lai S, Clayman G, Lee JK, Luna MA, Goepfert H, et al. Methylation, a major mechanism of p16/CDKN2 gene inactivation in head and neck squamous carcinoma. Am J Pathol. 1997;151(6):1767–74.

    PubMed  CAS  Google Scholar 

  93. Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA. 1999;96(15):8681–6.

    Article  PubMed  CAS  Google Scholar 

  94. Shaw RJ, Hall GL, Lowe D, Bowers NL, Liloglou T, Field JK, et al. CpG island methylation phenotype (CIMP) in oral cancer: associated with a marked inflammatory response and less aggressive tumour biology. Oral Oncol. 2007;43(9):878–86.

    Article  PubMed  CAS  Google Scholar 

  95. Laird PW. The power and the promise of DNA methylation markers. Nat Rev Cancer. 2003;3(4):253–66.

    Article  PubMed  CAS  Google Scholar 

  96. Shaw RJ, Akufo-Tetteh EK, Risk JM, Field JK, Liloglou T. Methylation enrichment pyrosequencing: combining the specificity of MSP with validation by pyrosequencing. Nucleic Acids Res. 2006;34(11):e78.

    Article  PubMed  CAS  Google Scholar 

  97. Righini CA, de Fraipont F, Timsit JF, Faure C, Brambilla E, Reyt E, et al. Tumor-specific methylation in saliva: a promising biomarker for early detection of head and neck cancer recurrence. Clin Cancer Res. 2007;13(4):1179–85.

    Article  PubMed  CAS  Google Scholar 

  98. Carvalho AL, Jeronimo C, Kim MM, Henrique R, Zhang Z, Hoque MO, et al. Evaluation of promoter hypermethylation detection in body fluids as a screening/diagnosis tool for head and neck squamous cell carcinoma. Clin Cancer Res. 2008;14(1):97–107.

    Article  PubMed  CAS  Google Scholar 

  99. Goldenberg D, Harden S, Masayesva BG, Ha P, Benoit N, Westra WH, et al. Intraoperative molecular margin analysis in head and neck cancer. Arch Otolaryngol Head Neck Surg. 2004;130(1):39–44.

    Article  PubMed  Google Scholar 

  100. Shaw RJ, Hall GL, Woolgar JA, Lowe D, Rogers SN, Field JK, et al. Quantitative methylation analysis of resection margins and lymph nodes in oral squamous cell carcinoma. Br J Oral Maxillofac Surg. 2007;45(8):617–22.

    Article  PubMed  Google Scholar 

  101. Tan HK, Saulnier P, Auperin A, Lacroix L, Casiraghi O, Janot F, et al. Quantitative methylation analyses of resection margins predict local recurrences and disease-specific deaths in patients with head and neck squamous cell carcinomas. Br J Cancer. 2008;99(2):357–63.

    Article  PubMed  CAS  Google Scholar 

  102. Lopez M, Aguirre JM, Cuevas N, Anzola M, Videgain J, Aguirregaviria J, et al. Gene promoter hypermethylation in oral rinses of leukoplakia patients – a diagnostic and/or prognostic tool? Eur J Cancer. 2003;39(16):2306–9.

    Article  PubMed  CAS  Google Scholar 

  103. Hall GL, Shaw RJ, Field EA, Rogers SN, Sutton DN, Woolgar JA, et al. p16 Promoter methylation is a potential predictor of malignant transformation in oral epithelial dysplasia. Cancer Epidemiol Biomarkers Prev. 2008;17(8):2174–9.

    Article  PubMed  CAS  Google Scholar 

  104. Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF, Vanaclocha V, et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med. 2000;343(19):1350–4.

    Article  PubMed  CAS  Google Scholar 

  105. Banno K, Yanokura M, Kawaguchi M, Kuwabara Y, Akiyoshi J, Kobayashi Y, et al. Epigenetic inactivation of the CHFR gene in cervical cancer contributes to sensitivity to taxanes. Int J Oncol. 2007;31(4):713–20.

    PubMed  CAS  Google Scholar 

  106. Steele N, Finn P, Brown R, Plumb JA. Combined inhibition of DNA methylation and histone acetylation enhances gene ­re-expression and drug sensitivity in vivo. Br J Cancer. 2009;100(5):758–63.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Shaw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shaw, R.J., Dhanda, J. (2011). Genetics and Epigenetics of Head and Neck Cancer. In: Bernier, J. (eds) Head and Neck Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9464-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9464-6_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9463-9

  • Online ISBN: 978-1-4419-9464-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics