Skip to main content

Ion Signaling and Electrophysiological Function

  • Chapter
  • First Online:
Signaling in the Heart
  • 1126 Accesses

Abstract

The normal sequence and synchronous contraction of the heart is governed by the cardiac action potential generated by the highly regulated activity of the ion channels. Ion channels represent multiprotein complexes composed of homologous subunits circularly arranged around a water-filled pore through the plane of the membrane lipid bilayer. Based on their gating (the mechanism of opening and closing of a channel) properties, the ion channels can be divided into subclasses: the voltage-gated, ligand-gated, and mechanosensitive ion channels. In this chapter, the action potential properties and the function of major ion channels are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nattel S, Carlsson L. Innovative approaches to anti-arrhythmic drug therapy. Nat Rev Drug Discov. 2006;5:1034–49.

    Article  PubMed  CAS  Google Scholar 

  2. Marx SO, Kurokawa J, Reiken S, et al. Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science. 2002;295:496–9.

    Article  PubMed  CAS  Google Scholar 

  3. Delmar M, Duffy HS, Sorgen PL, Taffet SM, Spray DC. Molecular organization and regulation of the cardiac gap junction channel connexin43. In: Zipes DP, Jalife J, editors. Cardiac electrophysiology: from cell to bedside. Philadelphia: Elsevier Inc.; 2004.

    Google Scholar 

  4. Li RA, Tomaselli F, Marbin E. Sodium channels. In: Zipes DP, Jalife J, editors. Cardiac electrophysiology: from cell to bedside. Philadelphia: Elsevier Inc.; 2004.

    Google Scholar 

  5. Noda M, Shimizu S, Tanabe T, et al. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature. 1984;312:121–7.

    Article  PubMed  CAS  Google Scholar 

  6. Ruan Y, Liu N, Priori SG. Sodium channel mutations and arrhythmias. Nat Rev Cardiol. 2009;6:337–48.

    Article  PubMed  CAS  Google Scholar 

  7. Balser JR. The cardiac sodium channel: gating function and molecular pharmacology. J Mol Cell Cardiol. 2001;33:599–613.

    Article  PubMed  CAS  Google Scholar 

  8. Medeiros-Domingo A, Kaku T, Tester DJ, et al. SCN4B-encoded sodium channel beta4 subunit in congenital long-QT syndrome. Circulation. 2007;116:134–42.

    Article  PubMed  Google Scholar 

  9. Watanabe H, Koopmann TT, Le Scouarnec S, et al. Sodium channel beta1 subunit mutations associated with Brugada syndrome and cardiac conduction disease in humans. J Clin Invest. 2008;118:2260–8.

    PubMed  CAS  Google Scholar 

  10. Ono K, Kiyosue T, Arita M. Isoproterenol, DBcAMP, and forskolin inhibit cardiac sodium current. Am J Physiol. 1989;256:C1131–7.

    PubMed  CAS  Google Scholar 

  11. Kirstein M, Eickhorn R, Kochsiek K, Langenfeld H. Dose-dependent alteration of rat cardiac sodium current by isoproterenol: results from direct measurements on multicellular preparations. Pflugers Arch. 1996;431:395–401.

    Article  PubMed  CAS  Google Scholar 

  12. Frohnwieser B, Chen LQ, Schreibmayer W, Kallen RG. Modulation of the human cardiac sodium channel alpha-subunit by cAMP-dependent protein kinase and the responsible sequence domain. J Physiol. 1997;498(Pt 2):309–18.

    PubMed  CAS  Google Scholar 

  13. Abriel H, Kass RS. Regulation of the voltage-gated cardiac sodium channel Nav1.5 by interacting proteins. Trends Cardiovasc Med. 2005;15:35–40.

    Article  PubMed  CAS  Google Scholar 

  14. Clancy CE, Kass RS. Inherited and acquired vulnerability to ventricular arrhythmias: cardiac Na+ and K+ channels. Physiol Rev. 2005;85:33–47.

    Article  PubMed  CAS  Google Scholar 

  15. Zingman LV, Alekseev AE, Hodgson-Zingman DM, Terzic A. ATP-sensitive potassium channels: metabolic sensing and cardioprotection. J Appl Physiol. 2007;103:1888–93.

    Article  PubMed  CAS  Google Scholar 

  16. Patel HH, Gross ER, Peart JN, Hsu AK, Gross GJ. Sarcolemmal KATP channel triggers delayed ischemic preconditioning in rats. Am J Physiol Heart Circ Physiol. 2005;288:H445–7.

    Article  PubMed  CAS  Google Scholar 

  17. Brown HF, DiFrancesco D, Noble SJ. How does adrenaline accelerate the heart? Nature. 1979;280:235–6.

    Article  PubMed  CAS  Google Scholar 

  18. Yu FH, Yarov-Yarovoy V, Gutman GA, Catterall WA. Overview of molecular relationships in the voltage-gated ion channel superfamily. Pharmacol Rev. 2005;57:387–95.

    Article  PubMed  CAS  Google Scholar 

  19. Biel M, Wahl-Schott C, Michalakis S, Zong X. Hyperpolarization-activated cation channels: from genes to function. Physiol Rev. 2009;89:847–85.

    Article  PubMed  CAS  Google Scholar 

  20. Pfeifer A, Ruth P, Dostmann W, Sausbier M, Klatt P, Hofmann F. Structure and function of cGMP-dependent protein kinases. Rev Physiol Biochem Pharmacol. 1999;135:105–49.

    Article  PubMed  CAS  Google Scholar 

  21. Kaupp UB, Seifert R. Cyclic nucleotide-gated ion channels. Physiol Rev. 2002;82:769–824.

    PubMed  CAS  Google Scholar 

  22. Rehmann H, Wittinghofer A, Bos JL. Capturing cyclic nucleotides in action: snapshots from crystallographic studies. Nat Rev Mol Cell Biol. 2007;8:63–73.

    Article  PubMed  CAS  Google Scholar 

  23. Taylor SS, Kim C, Vigil D, et al. Dynamics of signaling by PKA. Biochim Biophys Acta. 2005;1754:25–37.

    PubMed  CAS  Google Scholar 

  24. Weber IT, Gilliland GL, Harman JG, Peterkofsky A. Crystal structure of a cyclic AMP-independent mutant of catabolite gene activator protein. J Biol Chem. 1987;262:5630–6.

    PubMed  CAS  Google Scholar 

  25. DiFrancesco D, Tortora P. Direct activation of cardiac pacemaker channels by intracellular cyclic AMP. Nature. 1991;351:145–7.

    Article  PubMed  CAS  Google Scholar 

  26. Wainger BJ, DeGennaro M, Santoro B, Siegelbaum SA, Tibbs GR. Molecular mechanism of cAMP modulation of HCN pacemaker channels. Nature. 2001;411:805–10.

    Article  PubMed  CAS  Google Scholar 

  27. Wang J, Chen S, Siegelbaum SA. Regulation of hyperpolarization-activated HCN channel gating and cAMP modulation due to interactions of COOH terminus and core transmembrane regions. J Gen Physiol. 2001;118:237–50.

    Article  PubMed  CAS  Google Scholar 

  28. Stieber J, Stockl G, Herrmann S, Hassfurth B, Hofmann F. Functional expression of the human HCN3 channel. J Biol Chem. 2005;280:34635–43.

    Article  PubMed  CAS  Google Scholar 

  29. Ishii TM, Takano M, Ohmori H. Determinants of activation kinetics in mammalian hyperpolarization-activated cation channels. J Physiol. 2001;537:93–100.

    Article  PubMed  CAS  Google Scholar 

  30. Seifert R, Scholten A, Gauss R, Mincheva A, Lichter P, Kaupp UB. Molecular characterization of a slowly gating human hyperpolarization-activated channel predominantly expressed in thalamus, heart, and testis. Proc Natl Acad Sci USA. 1999;96:9391–6.

    Article  PubMed  CAS  Google Scholar 

  31. Ishii TM, Takano M, Xie LH, Noma A, Ohmori H. Molecular characterization of the hyperpolarization-activated cation channel in rabbit heart sinoatrial node. J Biol Chem. 1999;274:12835–9.

    Article  PubMed  CAS  Google Scholar 

  32. Ludwig A, Zong X, Stieber J, Hullin R, Hofmann F, Biel M. Two pacemaker channels from human heart with profoundly different activation kinetics. EMBO J. 1999;18:2323–9.

    Article  PubMed  CAS  Google Scholar 

  33. Bahinski A, Nairn AC, Greengard P, Gadsby DC. Chloride conductance regulated by cyclic AMP-dependent protein kinase in cardiac myocytes. Nature. 1989;340:718–21.

    Article  PubMed  CAS  Google Scholar 

  34. Nagel G, Hwang TC, Nastiuk KL, Nairn AC, Gadsby DC. The protein kinase A-regulated cardiac Cl- channel resembles the cystic fibrosis transmembrane conductance regulator. Nature. 1992;360:81–4.

    Article  PubMed  CAS  Google Scholar 

  35. Collier ML, Hume JR. Unitary chloride channels activated by protein kinase C in guinea pig ventricular myocytes. Circ Res. 1995;76:317–24.

    PubMed  CAS  Google Scholar 

  36. Walsh KB, Long KJ. Properties of a protein kinase C-activated chloride current in guinea pig ventricular myocytes. Circ Res. 1994;74:121–9.

    PubMed  CAS  Google Scholar 

  37. Levesque PC, Hume JR. ATPo but not cAMPi activates a chloride conductance in mouse ventricular myocytes. Cardiovasc Res. 1995;29:336–43.

    PubMed  CAS  Google Scholar 

  38. Yamamoto-Mizuma S, Wang GX, Hume JR. P2Y purinergic receptor regulation of CFTR chloride channels in mouse cardiac myocytes. J Physiol. 2004;556:727–37.

    Article  PubMed  CAS  Google Scholar 

  39. Duan D, Ye L, Britton F, Horowitz B, Hume JR. A novel anionic inward rectifier in native cardiac myocytes. Circ Res. 2000;86:E63–71.

    PubMed  CAS  Google Scholar 

  40. Komukai K, Brette F, Orchard CH. Electrophysiological response of rat atrial myocytes to acidosis. Am J Physiol Heart Circ Physiol. 2002;283:H715–24.

    PubMed  CAS  Google Scholar 

  41. Komukai K, Brette F, Pascarel C, Orchard CH. Electrophysiological response of rat ventricular myocytes to acidosis. Am J Physiol Heart Circ Physiol. 2002;283:H412–22.

    PubMed  CAS  Google Scholar 

  42. Duan DY, Fermini B, Nattel S. Sustained outward current observed after I(to1) inactivation in rabbit atrial myocytes is a novel Cl- current. Am J Physiol. 1992;263:H1967–71.

    PubMed  CAS  Google Scholar 

  43. Wang GX, Hatton WJ, Wang GL, et al. Functional effects of novel anti-ClC-3 antibodies on native volume-sensitive osmolyte and anion channels in cardiac and smooth muscle cells. Am J Physiol Heart Circ Physiol. 2003;285:H1453–63.

    PubMed  CAS  Google Scholar 

  44. Yamamoto-Mizuma S, Wang GX, Liu LL, et al. Altered properties of volume-sensitive osmolyte and anion channels (VSOACs) and membrane protein expression in cardiac and smooth muscle myocytes from Clcn3−/− mice. J Physiol. 2004;557:439–56.

    Article  PubMed  Google Scholar 

  45. Guan YY, Wang GL, Zhou JG. The ClC-3 Cl- channel in cell volume regulation, proliferation and apoptosis in vascular smooth muscle cells. Trends Pharmacol Sci. 2006;27:290–6.

    Article  PubMed  CAS  Google Scholar 

  46. Volk AP, Heise CK, Hougen JL, et al. ClC-3 and IClswell are required for normal neutrophil chemotaxis and shape change. J Biol Chem. 2008;283:34315–26.

    Article  PubMed  CAS  Google Scholar 

  47. Xu Y, Dong PH, Zhang Z, Ahmmed GU, Chiamvimonvat N. Presence of a calcium-activated chloride current in mouse ventricular myocytes. Am J Physiol Heart Circ Physiol. 2002;283:H302–14.

    PubMed  CAS  Google Scholar 

  48. Collier ML, Levesque PC, Kenyon JL, Hume JR. Unitary Cl- channels activated by cytoplasmic Ca2+ in canine ventricular myocytes. Circ Res. 1996;78:936–44.

    PubMed  CAS  Google Scholar 

  49. Hartzell C, Putzier I, Arreola J. Calcium-activated chloride channels. Annu Rev Physiol. 2005;67:719–58.

    Article  PubMed  CAS  Google Scholar 

  50. Caputo A, Caci E, Ferrera L, et al. TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science. 2008;322:590–4.

    Article  PubMed  CAS  Google Scholar 

  51. Schroeder BC, Cheng T, Jan YN, Jan LY. Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell. 2008;134:1019–29.

    Article  PubMed  CAS  Google Scholar 

  52. Baker MA, Lane DJ, Ly JD, De Pinto V, Lawen A. VDAC1 is a transplasma membrane NADH-ferricyanide reductase. J Biol Chem. 2004;279:4811–9.

    Article  PubMed  CAS  Google Scholar 

  53. Duan D. Phenomics of cardiac chloride channels: the systematic study of chloride channel function in the heart. J Physiol. 2009;587:2163–77.

    Article  PubMed  CAS  Google Scholar 

  54. Jentsch TJ, Stein V, Weinreich F, Zdebik AA. Molecular structure and physiological function of chloride channels. Physiol Rev. 2002;82:503–68.

    PubMed  CAS  Google Scholar 

  55. Long SB, Tao X, Campbell EB, MacKinnon R. Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature. 2007;450:376–82.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Marín-García M.D. .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Marín-García, J. (2011). Ion Signaling and Electrophysiological Function. In: Signaling in the Heart. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9461-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9461-5_6

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-9460-8

  • Online ISBN: 978-1-4419-9461-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics