Contractile Activity and Control of the Physical Process of Digestion Within a Gut Segment



A broad overview is given of the nature and genesis of tonic and phasic contractile activity in the walls of the various segments of the gut, along with an examination of the role of local tension and stretch receptors in regard to the propulsion and mixing of liquid and semisolid digesta. Evidence regarding the control of tonic and phasic contractile activity at a segmental level is reviewed in relation to segmental capacity and to regulating the flow of digesta between the various segments of the gut. The mode of action of the various sphincters and junctions between the component segments of the gastrointestinal tract is then examined with particular attention to the flow dynamics and physical properties of the contents therein. An overview is given of the role of systems that secrete and absorb water in the various segments of the gut which links with more detailed material in Chap. 10.


Common Bile Duct Gall Bladder Apparent Viscosity Contractile Activity Phasic Contraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Andrews PL, Grundy D, Scratcherd T (1980) Vagal afferent discharge from mechanoreceptors in different regions of the ferret stomach. J Physiol 298:513-524Google Scholar
  2. Anuras S, Cooke AR, Christensen J (1974) An inhibitory innervation at the gastroduodenal junction. J Clin Invest 54:529-535Google Scholar
  3. Argent B, Case R (1994) Pancreatic ducts: Cellular mechanism and control of bicarbonate secretion. In: Johnson LR (ed) Physiology of the gastrointestinal tract. Raven, New York, pp 1473–1497Google Scholar
  4. Barlow JD, Gregersen H, Thompson DG (2002) Identification of the biomechanical factors associated with the perception of distension in the human esophagus. Am J Physiol 282:G683-689Google Scholar
  5. Barraya L, Pujol Soler R, Yvergneaux JP (1971) La région oddienne: Anatomie millimétrique. Presse Med 79:2527-2534Google Scholar
  6. Behar J, Biancani P (1980) Effect of cholecystokinin and the octapeptide of cholecystokinin on the feline sphincter of Oddi and gallbladder. Mechanisms of action. J Clin Invest 66:1231-1239Google Scholar
  7. Behar J, Biancani P (1987) Pharmacologic characterization of excitatory and inhibitory cholecystokinin receptors of the cat gallbladder and sphincter of Oddi. Gastroenterology 92:764-770Google Scholar
  8. Biancani P, Zabinski MP, Kerstein MD, Behar J (1980) Mechanical characteristics of the cat pylorus. Gastroenterology 78:301-309Google Scholar
  9. Boeckxstaens GE (2005) The lower oesophageal sphincter. Neurogastroenterol Mot 17:13-21Google Scholar
  10. Bonington A, Mahon M, Whitmore I (1988) A histological and histochemical study of the cricopharyngeus muscle in man. J Anat 156:27-37Google Scholar
  11. Bonington A, Whitmore I, Mahon M (1987) A histological and histochemical study of the cricopharyngeus muscle in the guinea-pig. J Anat 153:151-161Google Scholar
  12. Bornstein JC, Furness JB, Kunze WAA, Bertrand PP (2002) Enteric reflexes that influence motility. In: Brookes SJH, Costa M (eds) Innervation of the gastrointestinal tract. Taylor & Francis, LondonGoogle Scholar
  13. Bosch A, Pena LR (2007) The sphincter of Oddi. Dig Dis Sci 52:1211-1218Google Scholar
  14. Boyden EA (1937) The sphincter of Oddi in man and certain representative mammals. Surgery 1:25-37Google Scholar
  15. Brookes S, Costa M (2002) Innervation of the gastrointestinal tract. Taylor & Francis, LondonGoogle Scholar
  16. Brookes SJH, Chen BN, Costa M, Humphreys CMS (1999) Initiation of peristalsis by circumferential stretch of flat sheets of guinea-pig ileum. J Physiol 516:525-538Google Scholar
  17. Brown BP, Schulze-Delrieu K, Schrier JE, Abu-Yousef MM (1993) The configuration of the human gastroduodenal junction in the separate emptying of liquids and solids. Gastroenterology 105:433-440Google Scholar
  18. Cai WQ, Gabella G (1984) Structure and innervation of the musculature at the gastroduodenal junction of the guinea-pig. J Anat 139:93-104Google Scholar
  19. Calamita G, Mazzone A, Bizzoca A, Cavalier A, Cassano G, Thomas D, Svelto M (2001) Expression and immunolocalization of the aquaporin-8 water channel in rat gastrointestinal tract. Eur J Cell Biol 80:711-719Google Scholar
  20. Cannon WB (1911) The mechanical factors of digestion. Edward Arnold, LondonGoogle Scholar
  21. Castell DO, Cohen S, Harris LD (1970) Response of human ileocecal sphincter to gastrin. Am J Physiol 219:712-715Google Scholar
  22. Chen JWC, Saccone GTP, Toouli J (1998) Sphincter of Oddi dysfunction and acute pancreatitis. Gut 43:305-308Google Scholar
  23. Code CF, Schlegel JF (1973) The gastrointestinal interdigestive housekeeper: Motor correlates of the interdigestive myoelectric complex of the dog. Proceedings from the Fourth International Symposium on Gastro-Intestinal Motility. Mitchell Press, Vancouver, pp 631-634Google Scholar
  24. Conklin JL, Christensen J (1975) Local specialization at ileocecal junction of the cat and opossum. Am J Physiol 228:1075-1081Google Scholar
  25. Cook IJ, Dodds WJ, Dantas RO, Massey B, Kern MK, Lang IM, Brasseur JG, Hogan WJ (1989) Opening mechanisms of the human upper esophageal sphincter. Am J Physiol 257:G748-759Google Scholar
  26. Costa M, Sanders KM, Schemann M, Smith TK, Cook IJ, de Giorgio R, Dent J, Grundy D, Shea-Donohue T, Tonini M, Brookes SJ (2005) A teaching module on cellular control of small intestinal motility. Neurogastroenterol Mot 17(Suppl. 3):4-19Google Scholar
  27. Cowie AGA, Sutor DJ (1975) Viscosity and osmolality of abnormal biles. Digestion 13:312-315Google Scholar
  28. Cuche G, Malbert CH (1998) Relationships between cecoileal reflux and ileal motor patterns in conscious pigs. Am J Physiol 274:G35-41Google Scholar
  29. Curtis DJ (1982) Laryngeal dynamics. Crit Rev Diagn Imaging 18:29-80Google Scholar
  30. Daniel E, Tougas G, Allescher HD, Vergara P, Fox-Threlkeld JA (1994) Mediators and enteric nerve pathways controlling gastric emptying. Dig Dis Sci 39:61-68Google Scholar
  31. Dantas RO, Kern MK, Massey BT, Dodds WJ, Kahrilas PJ, Brasseur JG, Cook IJ, Lang IM (1990) Effect of swallowed bolus variables on oral and pharyngeal phases of swallowing. Am J Physiol 258:G675-681Google Scholar
  32. Davison JS, Clarke GD (1988) Mechanical properties and sensitivity to CCK of vagal gastric slowly adapting mechanoreceptors. Am J Physiol 255:G55-61Google Scholar
  33. Dellow D (1982) Studies on the nutrition of macropodine marsupials. 3. The flow of digesta through the stomach and intestine of macropodines and sheep. Aust J Zool 30:751–765Google Scholar
  34. Dent J, Dodds WJ, Sekiguchi T, Hogan WJ, Arndorfer RC (1983) Interdigestive phasic contractions of the human lower esophageal sphincter. Gastroenterology 84:453-460Google Scholar
  35. Dikeman C, Fahey G (2006) Viscosity as related to dietary fiber: A review. Crit Rev Food Sci Nutr 46:649-663Google Scholar
  36. Dinning PG, Bampton PA, Kennedy ML, Kajimoto T, Lubowski DZ, De Carle DJ, Cook IJ (1999) Basal pressure patterns and reflexive motor responses in the human ileocolonic junction. Am J Physiol 276:G331-340Google Scholar
  37. Dinning PG, Szczesniak MM, Cook IJ (2008) Determinants of postprandial flow across the human ileocaecal junction: A combined manometric and scintigraphic study. Neurogastroenterol Mot 20:1119-1126Google Scholar
  38. Dodds WJ (1990) Biliary tract motility and its relationship to clinical disorders. Am J Roentgenol 155:247-258Google Scholar
  39. Dodds WJ, Hogan WJ, Geenen JE (1989) Motility of the biliary system. In: Schultz SG (ed) Handbook of physiology the gastrointestinal system, pp 1055-1101Google Scholar
  40. Dooley CP, Di Lorenzo C, Valenzuela JE (1992) Variability of migrating motor complex in humans. Dig Dis Sci 37:723-728Google Scholar
  41. Duch BU, Petersen JAK, Gregersen H (1998) Luminal cross-sectional area and tension-strain relation of the porcine bile duct. Neurogastroenterol Mot 10:203-209Google Scholar
  42. Ehrlein HJ, Ruoff G (1982) Cecal motility and flow of ingesta from the ileum to the cecum, appendix, and colon in rabbits. In: Wienbeck M (ed) Motility of the digestive tract. Raven New York, pp 475–481Google Scholar
  43. Elliott TR, Barclay-Smith E (1904) Antiperistalsis and other muscular activities of the colon. J Physiol 31:272-304Google Scholar
  44. Fackler K, Klein L, Hiltner A (1981) Polarizing light microscopy of intestine and its relationship to mechanical behaviour. J Microsc 124:305-311Google Scholar
  45. Gao C, Arendt-Nielsen L, Liu W, Petersen P, Drewes AM, Gregersen H (2003) Sensory and biomechanical responses to ramp-controlled distension of the human duodenum. Am J Physiol 284:G461-471Google Scholar
  46. Geenen JE, Hogan WJ, Dodds WJ, Stewart ET, Arndorfer RC (1980) Intraluminal pressure recording from the human sphincter of Oddi. Gastroenterology 78:317-324Google Scholar
  47. Gottschalk M, Lochner A (1990) Behavior of postoperative viscosity of bile fluid from T-drainage. A contribution to cholelithogenesis. Gastroenterol J 50:65-67Google Scholar
  48. Granger DN, Perry MA, Kvietys PR (1983) The microcirculation and fluid transport in digestive organs. Fed Proc 42:1667-1672Google Scholar
  49. Gregersen H (2003) Biomechanics of the gastrointestinal tract: New perspectives in motility research and diagnostics. Springer Verlag, New YorkGoogle Scholar
  50. Gregersen H, Drewes AM, Gilja OH (2005) Tension receptors: Theoretical construct or fact? Gastroenterology 128:803-804Google Scholar
  51. Gregersen H, Hausken T, Yang J, Odegaard S, Gilja OH (2006) Mechanosensory properties in the human gastric antrum evaluated using B-mode ultrasonography during volume-controlled antral distension. Am J Physiol 290:G876-882Google Scholar
  52. Gregersen H, Kassab G (1996) Biomechanics of the gastrointestinal tract. Neurogastroenterol Mot 8:277-297Google Scholar
  53. Grivell MB, Woods CM, Grivell AR, Neild TO, Craig AG, Toouli J, Saccone GTP (2004) The possum sphincter of Oddi pumps or resists flow depending on common bile duct pressure: A multilumen manometry study. J Physiol 558:611-622Google Scholar
  54. Hall KE, El-Sharkawy TY, Diamant NE (1986) Vagal control of canine postprandial upper gastrointestinal motility. Am J Physiol 250:G501-510Google Scholar
  55. Hammer J, Camilleri M, Phillips SF, Aggarwal A, Haddad AM (1993) Does the ileocolonic junction differentiate between solids and liquids? Gut 34:222-226Google Scholar
  56. Hanyu N, Dodds WJ, Layman RD, Hogan WJ, Chey WY, Takahashi I (1990) Mechanism of cholecystokinin-induced contraction of the opossum gallbladder. Gastroenterology 98:1299-1396Google Scholar
  57. Harrington K, Bomzon A, Sharkey KA, Davison JS, Shaffer EA (1992) Differential sensitivities of the sphincter of Oddi and gallbladder to cholecystokinin in the guinea pig: Their role in transsphincteric bile flow. Can J Physiol Pharmacol 70:1336-1341Google Scholar
  58. Hashmonai M, Go VL, Szurszewski JH (1987a) Effect of total sympathectomy and of decentralization on migrating complexes in dogs. Gastroenterology 92:978-986Google Scholar
  59. Hashmonai M, Go VL, Yaksh T, Szurszewski JH (1987b) Effect of central administration of motilin on migrating complexes in the dog. Am J Physiol 252:G195-199Google Scholar
  60. Hausken T, Ødegaard S, Matre K, Berstad A (1992) Antroduodenal motility and movements of luminal contents studied by duplex sonography. Gastroenterology 102:1583-1590Google Scholar
  61. Heddle R, Fone D, Dent J, Horowitz M (1988) Stimulation of pyloric motility by intraduodenal dextrose in normal subjects. Br Med J 29:1349-1357Google Scholar
  62. Heitz PU, Kasper M, Krey G, Polak JM, Pearse AG (1978) Immunoelectron cytochemical localization of motilin in human duodenal enterochromaffin cells. Gastroenterology 74:713-717Google Scholar
  63. Hennig GW, Gregory S, Brookes SJH, Costa M (2010) Non-peristaltic patterns of motor activity in the guinea-pig proximal colon. Neurogastroenterol Mot 22:e207–217Google Scholar
  64. Hipper K, Ehrlein HJ (2001) Motility of the large intestine and flow of digesta in pigs. Res Vet Sci 71:93-100Google Scholar
  65. Hirsch DP, Tytgat GNJ, Boeckxstaens GEE (2002) Transient lower oesophageal sphincter relaxations-a pharmacological target for gastro-oesophageal reflux disease? Aliment Pharmacol Ther 16:17-26Google Scholar
  66. Holloway RH, Blank EL, Takahashi I, Dodds WJ, Dent J, Sarna SK (1987) Electrical control activity of the lower esophageal sphincter in unanesthetized opossums. Am J Physiol 252:G511-521Google Scholar
  67. Huge A, Weber E, Ehrlein H (1995) Effects of enteral feedback inhibition on motility, luminal flow, and absorption of nutrients in proximal gut of minipigs. Dig Dis Sci 40:1024-1034Google Scholar
  68. Hukuhara T, Neya T (1968) The movements of the colon of rats and guinea pigs. Jpn J Physiol 18:551-562Google Scholar
  69. Hurst AF (1931) Discussion on the function of the sympathetic nervous system. Proc R Soc Med 25:1597-1599Google Scholar
  70. Husebye E (1999) The patterns of small bowel motility: Physiology and implications in organic disease and functional disorders. Neurogastroenterol Mot 11:141-162Google Scholar
  71. Indireshkumar K, Brasseur JG, Faas H, Hebbard GS, Kunz P, Dent J, Feinle C, Li M, Boesiger P, Fried M (2000) Relative contributions of ”pressure pump” and ”peristaltic pump” to gastric emptying. Am J Physiol 278:G604-616Google Scholar
  72. Itoh Z, Takeuchi S, Aizawa I, Mori K, Taminato T, Seino Y, Imura H, Yanaihara N (1978) Changes in plasma motilin concentration and gastrointestinal contractile activity in conscious dogs. Dig Dis Sci 23:929-935Google Scholar
  73. Jacob P, Kahrilas PJ, Herzon G, McLaughlin B (1990) Determinants of upper esophageal sphincter pressure in dogs. Am J Physiol 259:G245-251Google Scholar
  74. Jean A (2001) Brain stem control of swallowing: Neuronal network and cellular mechanisms. Physiol Rev 81:929-969Google Scholar
  75. Jian C, Wang G (1991) Biomechanical study of the bile duct system outside the liver. Biomed Mater Eng 1:105-113Google Scholar
  76. Johnson LR (2006) Physiology of the gastrointestinal tract. Academic Press, San DiegoGoogle Scholar
  77. Johnson PJ, Bornstein JC, Burcher E (1998) Roles of neuronal NK 1 and NK 3 receptors in synaptic transmission during motility reflexes in the guinea-pig ileum. Br J Pharmacol 124:1375-1384Google Scholar
  78. Johnson PJ, Bornstein JC, Yuan SY, Furness JB (1996) Analysis of contributions of acetylcholine and tachykinins to neuro-neuronal transmission in motility reflexes in the guinea-pig ileum. Br J Pharmacol 118:973-983Google Scholar
  79. Keinke O, Schemann M, Ehrlein HJ (1984) Mechanical factors regulating gastric emptying of viscous nutrient meals in dogs. Exp Physiol 69:781-795Google Scholar
  80. Kellow JE, Borody TJ, Phillips SF, Tucker RL, Haddad AC (1986) Human interdigestive motility: Variations in patterns from esophagus to colon. Gastroenterology 91:386-395Google Scholar
  81. Khosla R, Feely LC, Davis SS (1989) Gastrointestinal transit of non-disintegrating tablets in fed subjects. Int J Pharm 53:107-117Google Scholar
  82. King PM, Adam RD, Pryde A, McDicken WN, Heading RC (1984) Relationships of human antroduodenal motility and transpyloric fluid movement: Non-invasive observations with real-time ultrasound. Br Med J 25:1384-1391Google Scholar
  83. King PM, Heading RC, Pryde A (1985) Coordinated motor activity of the human gastroduodenal region. Dig Dis Sci 30:219-224Google Scholar
  84. Kosterlitz HW, Lees GM (1964) Pharmacological analysis of intrinsic intestinal reflexes. Pharmacol Rev 16:301-339Google Scholar
  85. Koyama Y, Yamamoto T, Tani T, Nihei K, Kondo D, Funaki H, Yaoita E, Kawasaki K, Sato N, Hatakeyama K (1999) Expression and localization of aquaporins in rat gastrointestinal tract. Am J Physiol 276:C621-627Google Scholar
  86. Krevsky B, Malmud LS, D’ercole F, Maurer AH, Fisher RS (1986) Colonic transit scintigraphy. A physiologic approach to the quantitative measurement of colonic transit in humans. Gastroenterology 91:1102-1112Google Scholar
  87. Kristmundsdottir F, Mahon M, Froes MMQ, Cumming WJK (1990) Histomorphometric and histopathological study of the human cricopharyngeus muscle: In health and in motor neuron disease. Neuropathol Appl Neurobiol 16:461-475Google Scholar
  88. Kruis W, Azpiroz F, Phillips SF (1985) Contractile patterns and transit of fluid in canine terminal ileum. Am J Physiol 249:G264-270Google Scholar
  89. Kunze WAA, Clerc N, Bertrand PP, Furness JB (1999) Contractile activity in intestinal muscle evokes action potential discharge in guinea-pig myenteric neurons. J Physiol 517:547-561Google Scholar
  90. Kwiatek MA, Menne D, Steingoetter A, Goetze O, Forras-Kaufman Z, Kaufman E, Fruehauf H, Boesiger P, Fried M, Schwizer W (2009) Effect of meal volume and calorie load on postprandial gastric function and emptying: Studies under physiological conditions by combined fiber-optic pressure measurement and MRI. Am J Physiol 297:G894-901Google Scholar
  91. Larson M, Schulze K (2002) Appearance of peristaltic reflex in isolated guinea pig ileum in response to boluses of air, water, oil, and cellulose. Dig Dis Sci 47:2644-2650Google Scholar
  92. Lentle RG, Janssen PWM (2008) Physical characteristics of digesta and their influence on flow and mixing in the mammalian intestine: A review. J Comp Physiol B178:673-690Google Scholar
  93. Lentle RG, Janssen PWM, Asvarujanon P, Chambers P, Stafford KJ, Hemar Y (2007) High definition mapping of circular and longitudinal motility in the terminal ileum of the brushtail possum trichosurus vulpecula with watery and viscous perfusates. J Comp Physiol B177:543-556Google Scholar
  94. Lentle RG, Janssen PWM, Goh K, Chambers P, Hulls C (2010) Quantification of the effects of the volume and viscosity of gastric contents on antral and fundic activity in the rat stomach maintained ex vivo. Dig Dis Sci DOI 10.1007/s10620-010-1164-y:1-12Google Scholar
  95. Lentle RG, Janssen PWM, Hume ID (2009) The roles of filtration and expression in the processing of digesta with high solid phase content. Comp Biochem Physiol A 154:1-9Google Scholar
  96. Lin TM, Spray GF (1969) Effect of pentagastrin, cholecystokinin, caerulein, and glucagon on the choledochal resistance and bile flow of conscious dog. Gastroenterology 56:1178Google Scholar
  97. Liu YF, Saccone GT, Thune A, Baker RA, Harvey JR, Toouli J (1992) Sphincter of Oddi regulates flow by acting as a variable resistor to flow. Am J Physiol 263:G683-689Google Scholar
  98. Loo DDF, Zeuthen T, Chandy G, Wright EM (1996) Cotransport of water by the Na+/glucose cotransporter. Proc Natl Acad Sci USA 93:13367-13370Google Scholar
  99. Ma T, Verkman AS (1999) Aquaporin water channels in gastrointestinal physiology. J Physiol 517:317-326Google Scholar
  100. Mack AJ, Todd JK (1968) A study of human gall bladder muscle in vitro. Br Med J 9:546-549Google Scholar
  101. MacPherson BR, Scott GW, Chansouria JPN, Fisher AWF (1984) The muscle layer of the canine gallbladder and cystic duct. Cells Tissues Organs 120:117-122Google Scholar
  102. Malbert CH (2005) The ileocolonic sphincter. Neurogastroenterol Mot 17:41-49Google Scholar
  103. Malbert CH, Mathis C, Laplace JP (1995) Vagal control of pyloric resistance. Am J Physiol 269:G558-569Google Scholar
  104. Marik F, Code CF (1975) Control of the interdigestive myoelectric activity in dogs by the vagus nerves and pentagastrin. Gastroenterology 69:387-395Google Scholar
  105. Marinelli RA, Pham L, Agre P, LaRusso NF (1997) Secretin promotes osmotic water transport in rat cholangiocytes by increasing aquaporin-1 water channels in plasma membrane. Evidence for a secretin-induced vesicular translocation of aquaporin-1. J Biol Chem 272:12984-12988Google Scholar
  106. Marinelli RA, Tietz PS, Pham LD, Rueckert L, Agre P, LaRusso NF (1999) Secretin induces the apical insertion of aquaporin-1 water channels in rat cholangiocytes. Am J Physiol 276:G280-286Google Scholar
  107. Matsuzaki T, Tajika Y, Ablimit A, Aoki T, Hagiwara H, Takata K (2004) Aquaporins in the digestive system. Med Electron Microsc 37:71-80Google Scholar
  108. Mawe GM, Saccone GT, Pozo MJ (2006) Neural control of the gallbladder and sphincter of Oddi. In: Johnson LR (ed) Physiology of the gastrointestinal tract. Academic Press, San Diego, pp 841–849Google Scholar
  109. Meinild AK, Klaerke DA, Loo DDF, Wright EM, Zeuthen T (1998) The human Na+–glucose cotransporter is a molecular water pump. J Physiol 508:15-21Google Scholar
  110. Mellander A, Jarbur K, Hemlin M, Sjovall H (2001) Effects of motility on epithelial transport in the human descending duodenum. Acta Physiol Scand 172:69-80Google Scholar
  111. Meyer JH, Tabrizi Y, DiMaso N, Hlinka M, Raybould HE (1998) Length of intestinal contact on nutrient-driven satiety. Am J Physiol 275:R1308-1319Google Scholar
  112. Mittal RK, Balaban DH (1997) The esophagogastric junction. N Engl J Med 336:924-932Google Scholar
  113. Mittal RK, Liu J, Puckett JL, Bhalla V, Bhargava V, Tipnis N, Kassab G (2005) Sensory and motor function of the esophagus: Lessons from ultrasound imaging. Gastroenterology 128:487-497Google Scholar
  114. Mittal RK, McCallum RW (1987) Characteristics of transient lower esophageal sphincter relaxation in humans. Am J Physiol 252:G636-641Google Scholar
  115. Monges H, Salducci J, Naudy B (1978) The upper esophageal sphincter during vomiting, eructation, and distension of the cardia: An electromyographic study in the unanesthetized dog. In: Duthie HL (ed) Gastrointestinal motility in health and disease. MTP Press, Lancaster, pp 575–583Google Scholar
  116. Mroz C, Kelly K (1977) The role of the extrinsic antral nerves in the regulation of gastric emptying. Surg Gynecol Obstet 145:369Google Scholar
  117. Mu L, Sanders I (1996) The innervation of the human upper esophageal sphincter. Dysphagia 11:234-238Google Scholar
  118. Nauntofte B (1992) Regulation of electrolyte and fluid secretion in salivary acinar cells. Am J Physiol 263:G823-837Google Scholar
  119. Nielsen S, Chou CL, Marples D, Christensen EI, Kishore BK, Knepper MA (1995) Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc Natl Acad Sci USA 92:1013-1017Google Scholar
  120. Ohta T, Nagakawa T, Kobayashi H, Kayahara M, Ueno K, Konishi I, Miyazaki I (1991) Histomorphological study on the minor duodenal papilla. J Gastroenterol 26:356-362Google Scholar
  121. Ooi RC, Luo XY, Chin SB, Johnson AG, Bird NC (2004) The flow of bile in the human cystic duct. J Biomech 37:1913-1922Google Scholar
  122. Orberg J, Baer E, Hiltner A (1983) Organization of collagen fibers in the intestine. Connect Tissue Res 11:285-297Google Scholar
  123. Ozaki N, Sengupta JN, Gebhart GF (1999) Mechanosensitive properties of gastric vagal afferent fibers in the rat. J Neurophysiol 82:2210-2220Google Scholar
  124. Pallotta N, Cicala M, Frandina C, Corazziari E (1998) Antro-pyloric contractile patterns and transpyloric flow after meal ingestion in humans. Am J Gastroenterol 93:2513-2522Google Scholar
  125. Parr EJ, Kennedy AL, Mawe GM (2003) Lack of evidence for the existence of interstitial cells of Cajal in the gallbladder. Gastroenterology 124:A347Google Scholar
  126. Pedley KC, Naftalin RJ (1993) Evidence from fluorescence microscopy and comparative studies that rat, ovine and bovine colonic crypts are absorptive. J Physiol 460:525-547Google Scholar
  127. Penry DL, Jumars PA (1987) Modeling animal guts as chemical reactors. Am Nat 129:69-96Google Scholar
  128. Phillip J, Koch H, Classen M (1974) Variations and anomalies of the papilla of vater, the pancreas and the biliary duct system. Endoscopy 6:70-77Google Scholar
  129. Pluja L, Alberti E, Fernandez E, Mikkelsen HB, Thuneberg L, Jimenez M (2001) Evidence supporting presence of two pacemakers in rat colon. Am J Physiol 281:G255-266Google Scholar
  130. Powell A, Bywater R (2001) Endogenous nitric oxide release modulates the direction and frequency of colonic migrating motor complexes in the isolated mouse colon. Neurogastroenterol Mot 13:221-228Google Scholar
  131. Quigley EM, Phillips SF, Dent J (1984) Distinctive patterns of interdigestive motility at the canine ileocolonic junction. Gastroenterology 87:836-844Google Scholar
  132. Ramkumar D, Schulze KS (2005) The pylorus. Neurogastroenterol Mot 17:22-30Google Scholar
  133. Rao S, Lu C, Schulze-Delrieu K (1996) Duodenum as a immediate brake to gastric outflow: A videofluoroscopic and manometric assessment. Gastroenterology 110:740-747Google Scholar
  134. Romański KW (2009) Migrating motor complex in biological sciences: Characterization, animal models and disturbances. Indian J Exp Biol 47:229-244Google Scholar
  135. Ryan J, Cohen S (1976) Gallbladder pressure-volume response to gastrointestinal hormones. Am J Physiol 230:1461-1465Google Scholar
  136. Sand J, Arvola P, Jantti V, Oja S, Singaram C, Baer G, Pasricha PJ, Nordback I (1997) The inhibitory role of nitric oxide in the control of porcine and human sphincter of Oddi activity. Br Med J 41:375-380Google Scholar
  137. Sanders KM, Koh SD, Ward SM (2006) Organization and electrophysiology of interstitial cells of Cajal and smooth muscle cells in the gastrointestinal tract. In: Johnson LR (ed) Physiology of the gastrointestinal tract. Elsevier, San Diego, pp 533–576Google Scholar
  138. Sanders KM, Stevens R, Burke E, Ward SW (1990) Slow waves actively propagate at submucosal surface of circular layer in canine colon. Am J Physiol 259:G258-263Google Scholar
  139. Sarles JC, Bidart JM, Devaux MA, Echinard C, Castagnini A (1976) Action of cholecystokinin and caerulein on the rabbit sphincter of Oddi. Digestion 14:415-423Google Scholar
  140. Sarna S, Condon RE, Cowles V (1983) Enteric mechanisms of initiation of migrating myoelectric complexes in dogs. Gastroenterology 84:814-822Google Scholar
  141. Sarna SK (1985) Cyclic motor activity; migrating motor complex: 1985. Gastroenterology 89:894-913Google Scholar
  142. Sarna SK (1996) Nitronergic regulation of gastric motility and emptying. Curr Opin Gastroenterol 12:512-516Google Scholar
  143. Sarna SK, Condon R, Cowles V (1984) Colonic migrating and nonmigrating motor complexes in dogs. Am J Physiol 246:G355-360Google Scholar
  144. Sarna SK, Gleysteen JJ, Lang IM (1985) Is gastric cyclic motor activity a migrating motor complex. Gastroenterology 88:1570Google Scholar
  145. Savoye-Collet C, Savoye G, Smout A (2003) Determinants of transpyloric fluid transport: A study using combined real-time ultrasound, manometry, and impedance recording. Am J Physiol 285:G1147-1152Google Scholar
  146. Savoye G, Savoye-Collet C, Oors J, Smout A (2003) Interdigestive transpyloric fluid transport assessed by intraluminal impedance recording. Am J Physiol 284:G663-669Google Scholar
  147. Schulze-Delrieu K (1991) Intrinsic differences in the filling responses of the guinea pig duodenum and ileum. J Lab Clin Med 117:44-50Google Scholar
  148. Shi LB, Skach WR, Verkman AS (1994) Functional independence of monomeric chip28 water channels revealed by expression of wild-type mutant heterodimers. J Biol Chem 269:10417-10422Google Scholar
  149. Singh S, Hamdy S (2005) The upper oesophageal sphincter. Neurogastroenterol Mot 17:3-12Google Scholar
  150. Snipes RL (1979) Anatomy of the rabbit cecum. Anat Embryol (Berl) 155:57-80Google Scholar
  151. Soergel K, Whalen G, Harris J (1968) Passive movement of water and sodium across the human small intestinal mucosa. J Appl Physiol 24:40-48Google Scholar
  152. Song X, Chen BN, Zagorodnyuk VP, Lynn PA, Blackshaw LA, Grundy D, Brunsden AM, Costa M, Brookes SJH (2009) Identification of medium/high-threshold extrinsic mechanosensitive afferent nerves to the gastrointestinal tract. Gastroenterology 137:274-284Google Scholar
  153. Spencer NJ, Smith CB, Smith TK (2001) Role of muscle tone in peristalsis in guinea-pig small intestine. J Physiol 530:295-306Google Scholar
  154. Spencer NJ, Walsh M, Smith TK (1999) Does the guinea-pig ileum obey the ‘law of the intestine’? J Physiol 517:889-898Google Scholar
  155. Spiller RC, Brown ML, Phillips SF (1987) Emptying of the terminal ileum in intact humans. Influence of meal residue and ileal motility. Gastroenterology 92:724-729Google Scholar
  156. Spiller RC, Trotman IF, Higgins BE, Ghatei MA, Grimble GK, Lee YC, Bloom SR, Misiewicz JJ, Silk DB (1984) The ileal brake-inhibition of jejunal motility after ileal fat perfusion in man. Br Med J 25:365-374Google Scholar
  157. Steinberg WM (2003) Controversies in clinical pancreatology: Should the sphincter of Oddi be measured in patients with idiopathic recurrent acute pancreatitis, and should sphincterotomy be performed if the pressure is high? Pancreas 27:118-121Google Scholar
  158. Stevens CE, Hume ID (1995) Comparative physiology of the vertebrate digestive system. Cambridge University Press, New YorkGoogle Scholar
  159. Strege PR, Ou Y, Sha L, Rich A, Gibbons SJ, Szurszewski JH, Sarr MG, Farrugia G (2003) Sodium current in human intestinal interstitial cells of Cajal. Am J Physiol 285:G1111-1121Google Scholar
  160. Tack J, Caenepeel P, Corsetti M, Janssens J (2004) Role of tension receptors in dyspeptic patients with hypersensitivity to gastric distention. Gastroenterology 127:1058-1066Google Scholar
  161. Takahashi I, Kern MK, Dodds WJ, Hogan WJ, Sarna SK, Soergel KH, Itoh Z (1986) Contraction pattern of opossum gallbladder during fasting and after feeding. Am J Physiol 250:G227-235Google Scholar
  162. Takeshima T (1971) Functional classification of the vagal afferent discharges in the dog’s stomach. Nippon Heikatsukin Gakkai Zasshi 7:19-27Google Scholar
  163. Thune A, Saccone GT, Scicchitano JP, Toouli J (1991) Distension of the gall bladder inhibits sphincter of Oddi motility in humans. Br Med J 32:690-693Google Scholar
  164. Thuneberg L (1999) One hundred years of interstitial cells of Cajal. Microsc Res Tech 47:223-238Google Scholar
  165. Timmermans JP (2001) Interstitial cells of Cajal: Is their role in gastrointestinal function in view of therapeutic perspectives underestimated or exaggerated? Folia Morphol 60:1-9Google Scholar
  166. Toouli J, Baker RA (1991) Innervation of the sphincter of Oddi: Physiology and considerations of pharmacological intervention in biliary dyskinesia. Pharmacol Ther 49:269-281Google Scholar
  167. Toouli J, Hogan WJ, Geenen JE, Dodds WJ, Arndorfer RC (1982) Action of cholecystokinin-octapeptide on sphincter of Oddi basal pressure and phasic wave activity in humans. Surgery 92:497-503Google Scholar
  168. Wang KS, Ma T, Filiz F, Verkman AS, Bastidas JA (2000) Colon water transport in transgenic mice lacking aquaporin-4 water channels. Am J Physiol 279:G463-470Google Scholar
  169. Wang XY, Lammers W, Bercik P, Huizinga JD (2005) Lack of pyloric interstitial cells of Cajal explains distinct peristaltic motor patterns in stomach and small intestine. Am J Physiol 289:G539-549Google Scholar
  170. Wang ZY, Han YF, Huang X, Zhao P, Lu HL, Kim YC, Xu WX (2010) Pacemaking activity is regulated by membrane stretch via the CICR pathway in cultured interstitial cells of Cajal from murine intestine. J Biomech 43:2214-2220Google Scholar
  171. Waterman SA, Tonini M, Costa M (1994) The role of ascending excitatory and descending inhibitory pathways in peristalsis in the isolated guinea-pig small intestine. J Physiol 481:223-232Google Scholar
  172. Wehrmann T, Stergiou N, Riphaus A, Lembcke B (2001) Correlation between sphincter of Oddi manometry and intraductal ultrasound morphology in patients with suspected sphincter of Oddi dysfunction. Endoscopy 33:773-777Google Scholar
  173. White CM, Poxon V, Alexander-Williams J (1983) Effects of nutrient liquids on human gastroduodenal motor activity. Br Med J 24:1109-1116Google Scholar
  174. Wilding IR, Hardy JG, Maccari M, Ravelli V, Davis SS (1991) Scintigraphic and pharmacokinetic assessment of a multiparticulate sustained release formulation of diltiazem. Int J Pharm 76:133-143Google Scholar
  175. Williams JA (1962) Closure of the pylorus. Br J Radiol 35:653-670Google Scholar
  176. Wilmer A, Tack J, Coremans G, Janssens J, Peeters T, Vantrappen G (1993) 5-hydroxytryptamine-3 receptors are involved in the initiation of gastric phase-3 motor activity in humans. Gastroenterology 105:773-780Google Scholar
  177. Wood JD (2006) Integrative functions of the enteric nervous system. In: Johnson LR (ed) Physiology of the gastrointestinal tract. Academic Press, San Diego, pp 665–684Google Scholar
  178. Woods CM, Mawe GM, Toouli J, Saccone GTP (2005) The sphincter of Oddi: Understanding its control and function. Neurogastroenterol Mot 17:31-40Google Scholar
  179. Yokohata K, Tanaka M (2000) Cyclic motility of the sphincter of Oddi. J Hepatobiliary Pancreat Surg 7:178-182Google Scholar
  180. Yuan SY, Costa M, Brookes SJH (2001) Neuronal control of the pyloric sphincter of the guinea-pig. Neurogastroenterol Mot 13:187-198Google Scholar
  181. Zagorodnyuk VP, Chen BN, Brookes SJH (2001) Intraganglionic laminar endings are mechano-transduction sites of vagal tension receptors in the guinea-pig stomach. J Physiol 534:255-268Google Scholar
  182. Zhang EB (1996) Intestinal water and electrolyte transport. In: Zhang EB, Sitrin MD, Black DB (eds) Gastrointestinal, hepatobilliary, and nutritional physiology. Lippincott-Raven, Philadelphia, pp 91–118Google Scholar
  183. Zhao J, Liao D, Gregersen H (2005) Tension and stress in the rat and rabbit stomach are location and direction dependent. Neurogastroenterol Mot 17:388-398Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institute of Food Nutrition and Human HealthMassey UniversityPalmerston NorthNew Zealand

Personalised recommendations