Skip to main content

Contractile Activity and Control of the Physical Process of Digestion Within a Gut Segment

  • Chapter
  • First Online:

Abstract

A broad overview is given of the nature and genesis of tonic and phasic contractile activity in the walls of the various segments of the gut, along with an examination of the role of local tension and stretch receptors in regard to the propulsion and mixing of liquid and semisolid digesta. Evidence regarding the control of tonic and phasic contractile activity at a segmental level is reviewed in relation to segmental capacity and to regulating the flow of digesta between the various segments of the gut. The mode of action of the various sphincters and junctions between the component segments of the gastrointestinal tract is then examined with particular attention to the flow dynamics and physical properties of the contents therein. An overview is given of the role of systems that secrete and absorb water in the various segments of the gut which links with more detailed material in Chap. 10.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andrews PL, Grundy D, Scratcherd T (1980) Vagal afferent discharge from mechanoreceptors in different regions of the ferret stomach. J Physiol 298:513-524

    CAS  Google Scholar 

  • Anuras S, Cooke AR, Christensen J (1974) An inhibitory innervation at the gastroduodenal junction. J Clin Invest 54:529-535

    CAS  Google Scholar 

  • Argent B, Case R (1994) Pancreatic ducts: Cellular mechanism and control of bicarbonate secretion. In: Johnson LR (ed) Physiology of the gastrointestinal tract. Raven, New York, pp 1473–1497

    Google Scholar 

  • Barlow JD, Gregersen H, Thompson DG (2002) Identification of the biomechanical factors associated with the perception of distension in the human esophagus. Am J Physiol 282:G683-689

    CAS  Google Scholar 

  • Barraya L, Pujol Soler R, Yvergneaux JP (1971) La région oddienne: Anatomie millimétrique. Presse Med 79:2527-2534

    CAS  Google Scholar 

  • Behar J, Biancani P (1980) Effect of cholecystokinin and the octapeptide of cholecystokinin on the feline sphincter of Oddi and gallbladder. Mechanisms of action. J Clin Invest 66:1231-1239

    CAS  Google Scholar 

  • Behar J, Biancani P (1987) Pharmacologic characterization of excitatory and inhibitory cholecystokinin receptors of the cat gallbladder and sphincter of Oddi. Gastroenterology 92:764-770

    CAS  Google Scholar 

  • Biancani P, Zabinski MP, Kerstein MD, Behar J (1980) Mechanical characteristics of the cat pylorus. Gastroenterology 78:301-309

    CAS  Google Scholar 

  • Boeckxstaens GE (2005) The lower oesophageal sphincter. Neurogastroenterol Mot 17:13-21

    Google Scholar 

  • Bonington A, Mahon M, Whitmore I (1988) A histological and histochemical study of the cricopharyngeus muscle in man. J Anat 156:27-37

    CAS  Google Scholar 

  • Bonington A, Whitmore I, Mahon M (1987) A histological and histochemical study of the cricopharyngeus muscle in the guinea-pig. J Anat 153:151-161

    CAS  Google Scholar 

  • Bornstein JC, Furness JB, Kunze WAA, Bertrand PP (2002) Enteric reflexes that influence motility. In: Brookes SJH, Costa M (eds) Innervation of the gastrointestinal tract. Taylor & Francis, London

    Google Scholar 

  • Bosch A, Pena LR (2007) The sphincter of Oddi. Dig Dis Sci 52:1211-1218

    Google Scholar 

  • Boyden EA (1937) The sphincter of Oddi in man and certain representative mammals. Surgery 1:25-37

    Google Scholar 

  • Brookes S, Costa M (2002) Innervation of the gastrointestinal tract. Taylor & Francis, London

    Google Scholar 

  • Brookes SJH, Chen BN, Costa M, Humphreys CMS (1999) Initiation of peristalsis by circumferential stretch of flat sheets of guinea-pig ileum. J Physiol 516:525-538

    CAS  Google Scholar 

  • Brown BP, Schulze-Delrieu K, Schrier JE, Abu-Yousef MM (1993) The configuration of the human gastroduodenal junction in the separate emptying of liquids and solids. Gastroenterology 105:433-440

    CAS  Google Scholar 

  • Cai WQ, Gabella G (1984) Structure and innervation of the musculature at the gastroduodenal junction of the guinea-pig. J Anat 139:93-104

    Google Scholar 

  • Calamita G, Mazzone A, Bizzoca A, Cavalier A, Cassano G, Thomas D, Svelto M (2001) Expression and immunolocalization of the aquaporin-8 water channel in rat gastrointestinal tract. Eur J Cell Biol 80:711-719

    CAS  Google Scholar 

  • Cannon WB (1911) The mechanical factors of digestion. Edward Arnold, London

    Google Scholar 

  • Castell DO, Cohen S, Harris LD (1970) Response of human ileocecal sphincter to gastrin. Am J Physiol 219:712-715

    CAS  Google Scholar 

  • Chen JWC, Saccone GTP, Toouli J (1998) Sphincter of Oddi dysfunction and acute pancreatitis. Gut 43:305-308

    CAS  Google Scholar 

  • Code CF, Schlegel JF (1973) The gastrointestinal interdigestive housekeeper: Motor correlates of the interdigestive myoelectric complex of the dog. Proceedings from the Fourth International Symposium on Gastro-Intestinal Motility. Mitchell Press, Vancouver, pp 631-634

    Google Scholar 

  • Conklin JL, Christensen J (1975) Local specialization at ileocecal junction of the cat and opossum. Am J Physiol 228:1075-1081

    CAS  Google Scholar 

  • Cook IJ, Dodds WJ, Dantas RO, Massey B, Kern MK, Lang IM, Brasseur JG, Hogan WJ (1989) Opening mechanisms of the human upper esophageal sphincter. Am J Physiol 257:G748-759

    CAS  Google Scholar 

  • Costa M, Sanders KM, Schemann M, Smith TK, Cook IJ, de Giorgio R, Dent J, Grundy D, Shea-Donohue T, Tonini M, Brookes SJ (2005) A teaching module on cellular control of small intestinal motility. Neurogastroenterol Mot 17(Suppl. 3):4-19

    Google Scholar 

  • Cowie AGA, Sutor DJ (1975) Viscosity and osmolality of abnormal biles. Digestion 13:312-315

    CAS  Google Scholar 

  • Cuche G, Malbert CH (1998) Relationships between cecoileal reflux and ileal motor patterns in conscious pigs. Am J Physiol 274:G35-41

    CAS  Google Scholar 

  • Curtis DJ (1982) Laryngeal dynamics. Crit Rev Diagn Imaging 18:29-80

    CAS  Google Scholar 

  • Daniel E, Tougas G, Allescher HD, Vergara P, Fox-Threlkeld JA (1994) Mediators and enteric nerve pathways controlling gastric emptying. Dig Dis Sci 39:61-68

    Google Scholar 

  • Dantas RO, Kern MK, Massey BT, Dodds WJ, Kahrilas PJ, Brasseur JG, Cook IJ, Lang IM (1990) Effect of swallowed bolus variables on oral and pharyngeal phases of swallowing. Am J Physiol 258:G675-681

    CAS  Google Scholar 

  • Davison JS, Clarke GD (1988) Mechanical properties and sensitivity to CCK of vagal gastric slowly adapting mechanoreceptors. Am J Physiol 255:G55-61

    CAS  Google Scholar 

  • Dellow D (1982) Studies on the nutrition of macropodine marsupials. 3. The flow of digesta through the stomach and intestine of macropodines and sheep. Aust J Zool 30:751–765

    Google Scholar 

  • Dent J, Dodds WJ, Sekiguchi T, Hogan WJ, Arndorfer RC (1983) Interdigestive phasic contractions of the human lower esophageal sphincter. Gastroenterology 84:453-460

    CAS  Google Scholar 

  • Dikeman C, Fahey G (2006) Viscosity as related to dietary fiber: A review. Crit Rev Food Sci Nutr 46:649-663

    CAS  Google Scholar 

  • Dinning PG, Bampton PA, Kennedy ML, Kajimoto T, Lubowski DZ, De Carle DJ, Cook IJ (1999) Basal pressure patterns and reflexive motor responses in the human ileocolonic junction. Am J Physiol 276:G331-340

    CAS  Google Scholar 

  • Dinning PG, Szczesniak MM, Cook IJ (2008) Determinants of postprandial flow across the human ileocaecal junction: A combined manometric and scintigraphic study. Neurogastroenterol Mot 20:1119-1126

    CAS  Google Scholar 

  • Dodds WJ (1990) Biliary tract motility and its relationship to clinical disorders. Am J Roentgenol 155:247-258

    CAS  Google Scholar 

  • Dodds WJ, Hogan WJ, Geenen JE (1989) Motility of the biliary system. In: Schultz SG (ed) Handbook of physiology the gastrointestinal system, pp 1055-1101

    Google Scholar 

  • Dooley CP, Di Lorenzo C, Valenzuela JE (1992) Variability of migrating motor complex in humans. Dig Dis Sci 37:723-728

    CAS  Google Scholar 

  • Duch BU, Petersen JAK, Gregersen H (1998) Luminal cross-sectional area and tension-strain relation of the porcine bile duct. Neurogastroenterol Mot 10:203-209

    CAS  Google Scholar 

  • Ehrlein HJ, Ruoff G (1982) Cecal motility and flow of ingesta from the ileum to the cecum, appendix, and colon in rabbits. In: Wienbeck M (ed) Motility of the digestive tract. Raven New York, pp 475–481

    Google Scholar 

  • Elliott TR, Barclay-Smith E (1904) Antiperistalsis and other muscular activities of the colon. J Physiol 31:272-304

    CAS  Google Scholar 

  • Fackler K, Klein L, Hiltner A (1981) Polarizing light microscopy of intestine and its relationship to mechanical behaviour. J Microsc 124:305-311

    CAS  Google Scholar 

  • Gao C, Arendt-Nielsen L, Liu W, Petersen P, Drewes AM, Gregersen H (2003) Sensory and biomechanical responses to ramp-controlled distension of the human duodenum. Am J Physiol 284:G461-471

    CAS  Google Scholar 

  • Geenen JE, Hogan WJ, Dodds WJ, Stewart ET, Arndorfer RC (1980) Intraluminal pressure recording from the human sphincter of Oddi. Gastroenterology 78:317-324

    CAS  Google Scholar 

  • Gottschalk M, Lochner A (1990) Behavior of postoperative viscosity of bile fluid from T-drainage. A contribution to cholelithogenesis. Gastroenterol J 50:65-67

    CAS  Google Scholar 

  • Granger DN, Perry MA, Kvietys PR (1983) The microcirculation and fluid transport in digestive organs. Fed Proc 42:1667-1672

    CAS  Google Scholar 

  • Gregersen H (2003) Biomechanics of the gastrointestinal tract: New perspectives in motility research and diagnostics. Springer Verlag, New York

    Google Scholar 

  • Gregersen H, Drewes AM, Gilja OH (2005) Tension receptors: Theoretical construct or fact? Gastroenterology 128:803-804

    Google Scholar 

  • Gregersen H, Hausken T, Yang J, Odegaard S, Gilja OH (2006) Mechanosensory properties in the human gastric antrum evaluated using B-mode ultrasonography during volume-controlled antral distension. Am J Physiol 290:G876-882

    CAS  Google Scholar 

  • Gregersen H, Kassab G (1996) Biomechanics of the gastrointestinal tract. Neurogastroenterol Mot 8:277-297

    CAS  Google Scholar 

  • Grivell MB, Woods CM, Grivell AR, Neild TO, Craig AG, Toouli J, Saccone GTP (2004) The possum sphincter of Oddi pumps or resists flow depending on common bile duct pressure: A multilumen manometry study. J Physiol 558:611-622

    CAS  Google Scholar 

  • Hall KE, El-Sharkawy TY, Diamant NE (1986) Vagal control of canine postprandial upper gastrointestinal motility. Am J Physiol 250:G501-510

    CAS  Google Scholar 

  • Hammer J, Camilleri M, Phillips SF, Aggarwal A, Haddad AM (1993) Does the ileocolonic junction differentiate between solids and liquids? Gut 34:222-226

    CAS  Google Scholar 

  • Hanyu N, Dodds WJ, Layman RD, Hogan WJ, Chey WY, Takahashi I (1990) Mechanism of cholecystokinin-induced contraction of the opossum gallbladder. Gastroenterology 98:1299-1396

    CAS  Google Scholar 

  • Harrington K, Bomzon A, Sharkey KA, Davison JS, Shaffer EA (1992) Differential sensitivities of the sphincter of Oddi and gallbladder to cholecystokinin in the guinea pig: Their role in transsphincteric bile flow. Can J Physiol Pharmacol 70:1336-1341

    CAS  Google Scholar 

  • Hashmonai M, Go VL, Szurszewski JH (1987a) Effect of total sympathectomy and of decentralization on migrating complexes in dogs. Gastroenterology 92:978-986

    CAS  Google Scholar 

  • Hashmonai M, Go VL, Yaksh T, Szurszewski JH (1987b) Effect of central administration of motilin on migrating complexes in the dog. Am J Physiol 252:G195-199

    CAS  Google Scholar 

  • Hausken T, Ødegaard S, Matre K, Berstad A (1992) Antroduodenal motility and movements of luminal contents studied by duplex sonography. Gastroenterology 102:1583-1590

    CAS  Google Scholar 

  • Heddle R, Fone D, Dent J, Horowitz M (1988) Stimulation of pyloric motility by intraduodenal dextrose in normal subjects. Br Med J 29:1349-1357

    CAS  Google Scholar 

  • Heitz PU, Kasper M, Krey G, Polak JM, Pearse AG (1978) Immunoelectron cytochemical localization of motilin in human duodenal enterochromaffin cells. Gastroenterology 74:713-717

    CAS  Google Scholar 

  • Hennig GW, Gregory S, Brookes SJH, Costa M (2010) Non-peristaltic patterns of motor activity in the guinea-pig proximal colon. Neurogastroenterol Mot 22:e207–217

    CAS  Google Scholar 

  • Hipper K, Ehrlein HJ (2001) Motility of the large intestine and flow of digesta in pigs. Res Vet Sci 71:93-100

    CAS  Google Scholar 

  • Hirsch DP, Tytgat GNJ, Boeckxstaens GEE (2002) Transient lower oesophageal sphincter relaxations-a pharmacological target for gastro-oesophageal reflux disease? Aliment Pharmacol Ther 16:17-26

    CAS  Google Scholar 

  • Holloway RH, Blank EL, Takahashi I, Dodds WJ, Dent J, Sarna SK (1987) Electrical control activity of the lower esophageal sphincter in unanesthetized opossums. Am J Physiol 252:G511-521

    CAS  Google Scholar 

  • Huge A, Weber E, Ehrlein H (1995) Effects of enteral feedback inhibition on motility, luminal flow, and absorption of nutrients in proximal gut of minipigs. Dig Dis Sci 40:1024-1034

    CAS  Google Scholar 

  • Hukuhara T, Neya T (1968) The movements of the colon of rats and guinea pigs. Jpn J Physiol 18:551-562

    CAS  Google Scholar 

  • Hurst AF (1931) Discussion on the function of the sympathetic nervous system. Proc R Soc Med 25:1597-1599

    Google Scholar 

  • Husebye E (1999) The patterns of small bowel motility: Physiology and implications in organic disease and functional disorders. Neurogastroenterol Mot 11:141-162

    CAS  Google Scholar 

  • Indireshkumar K, Brasseur JG, Faas H, Hebbard GS, Kunz P, Dent J, Feinle C, Li M, Boesiger P, Fried M (2000) Relative contributions of ”pressure pump” and ”peristaltic pump” to gastric emptying. Am J Physiol 278:G604-616

    CAS  Google Scholar 

  • Itoh Z, Takeuchi S, Aizawa I, Mori K, Taminato T, Seino Y, Imura H, Yanaihara N (1978) Changes in plasma motilin concentration and gastrointestinal contractile activity in conscious dogs. Dig Dis Sci 23:929-935

    CAS  Google Scholar 

  • Jacob P, Kahrilas PJ, Herzon G, McLaughlin B (1990) Determinants of upper esophageal sphincter pressure in dogs. Am J Physiol 259:G245-251

    CAS  Google Scholar 

  • Jean A (2001) Brain stem control of swallowing: Neuronal network and cellular mechanisms. Physiol Rev 81:929-969

    CAS  Google Scholar 

  • Jian C, Wang G (1991) Biomechanical study of the bile duct system outside the liver. Biomed Mater Eng 1:105-113

    CAS  Google Scholar 

  • Johnson LR (2006) Physiology of the gastrointestinal tract. Academic Press, San Diego

    Google Scholar 

  • Johnson PJ, Bornstein JC, Burcher E (1998) Roles of neuronal NK 1 and NK 3 receptors in synaptic transmission during motility reflexes in the guinea-pig ileum. Br J Pharmacol 124:1375-1384

    CAS  Google Scholar 

  • Johnson PJ, Bornstein JC, Yuan SY, Furness JB (1996) Analysis of contributions of acetylcholine and tachykinins to neuro-neuronal transmission in motility reflexes in the guinea-pig ileum. Br J Pharmacol 118:973-983

    CAS  Google Scholar 

  • Keinke O, Schemann M, Ehrlein HJ (1984) Mechanical factors regulating gastric emptying of viscous nutrient meals in dogs. Exp Physiol 69:781-795

    CAS  Google Scholar 

  • Kellow JE, Borody TJ, Phillips SF, Tucker RL, Haddad AC (1986) Human interdigestive motility: Variations in patterns from esophagus to colon. Gastroenterology 91:386-395

    CAS  Google Scholar 

  • Khosla R, Feely LC, Davis SS (1989) Gastrointestinal transit of non-disintegrating tablets in fed subjects. Int J Pharm 53:107-117

    CAS  Google Scholar 

  • King PM, Adam RD, Pryde A, McDicken WN, Heading RC (1984) Relationships of human antroduodenal motility and transpyloric fluid movement: Non-invasive observations with real-time ultrasound. Br Med J 25:1384-1391

    CAS  Google Scholar 

  • King PM, Heading RC, Pryde A (1985) Coordinated motor activity of the human gastroduodenal region. Dig Dis Sci 30:219-224

    CAS  Google Scholar 

  • Kosterlitz HW, Lees GM (1964) Pharmacological analysis of intrinsic intestinal reflexes. Pharmacol Rev 16:301-339

    CAS  Google Scholar 

  • Koyama Y, Yamamoto T, Tani T, Nihei K, Kondo D, Funaki H, Yaoita E, Kawasaki K, Sato N, Hatakeyama K (1999) Expression and localization of aquaporins in rat gastrointestinal tract. Am J Physiol 276:C621-627

    CAS  Google Scholar 

  • Krevsky B, Malmud LS, D’ercole F, Maurer AH, Fisher RS (1986) Colonic transit scintigraphy. A physiologic approach to the quantitative measurement of colonic transit in humans. Gastroenterology 91:1102-1112

    CAS  Google Scholar 

  • Kristmundsdottir F, Mahon M, Froes MMQ, Cumming WJK (1990) Histomorphometric and histopathological study of the human cricopharyngeus muscle: In health and in motor neuron disease. Neuropathol Appl Neurobiol 16:461-475

    CAS  Google Scholar 

  • Kruis W, Azpiroz F, Phillips SF (1985) Contractile patterns and transit of fluid in canine terminal ileum. Am J Physiol 249:G264-270

    CAS  Google Scholar 

  • Kunze WAA, Clerc N, Bertrand PP, Furness JB (1999) Contractile activity in intestinal muscle evokes action potential discharge in guinea-pig myenteric neurons. J Physiol 517:547-561

    CAS  Google Scholar 

  • Kwiatek MA, Menne D, Steingoetter A, Goetze O, Forras-Kaufman Z, Kaufman E, Fruehauf H, Boesiger P, Fried M, Schwizer W (2009) Effect of meal volume and calorie load on postprandial gastric function and emptying: Studies under physiological conditions by combined fiber-optic pressure measurement and MRI. Am J Physiol 297:G894-901

    CAS  Google Scholar 

  • Larson M, Schulze K (2002) Appearance of peristaltic reflex in isolated guinea pig ileum in response to boluses of air, water, oil, and cellulose. Dig Dis Sci 47:2644-2650

    CAS  Google Scholar 

  • Lentle RG, Janssen PWM (2008) Physical characteristics of digesta and their influence on flow and mixing in the mammalian intestine: A review. J Comp Physiol B178:673-690

    CAS  Google Scholar 

  • Lentle RG, Janssen PWM, Asvarujanon P, Chambers P, Stafford KJ, Hemar Y (2007) High definition mapping of circular and longitudinal motility in the terminal ileum of the brushtail possum trichosurus vulpecula with watery and viscous perfusates. J Comp Physiol B177:543-556

    Google Scholar 

  • Lentle RG, Janssen PWM, Goh K, Chambers P, Hulls C (2010) Quantification of the effects of the volume and viscosity of gastric contents on antral and fundic activity in the rat stomach maintained ex vivo. Dig Dis Sci DOI 10.1007/s10620-010-1164-y:1-12

    Google Scholar 

  • Lentle RG, Janssen PWM, Hume ID (2009) The roles of filtration and expression in the processing of digesta with high solid phase content. Comp Biochem Physiol A 154:1-9

    Google Scholar 

  • Lin TM, Spray GF (1969) Effect of pentagastrin, cholecystokinin, caerulein, and glucagon on the choledochal resistance and bile flow of conscious dog. Gastroenterology 56:1178

    Google Scholar 

  • Liu YF, Saccone GT, Thune A, Baker RA, Harvey JR, Toouli J (1992) Sphincter of Oddi regulates flow by acting as a variable resistor to flow. Am J Physiol 263:G683-689

    CAS  Google Scholar 

  • Loo DDF, Zeuthen T, Chandy G, Wright EM (1996) Cotransport of water by the Na+/glucose cotransporter. Proc Natl Acad Sci USA 93:13367-13370

    CAS  Google Scholar 

  • Ma T, Verkman AS (1999) Aquaporin water channels in gastrointestinal physiology. J Physiol 517:317-326

    CAS  Google Scholar 

  • Mack AJ, Todd JK (1968) A study of human gall bladder muscle in vitro. Br Med J 9:546-549

    CAS  Google Scholar 

  • MacPherson BR, Scott GW, Chansouria JPN, Fisher AWF (1984) The muscle layer of the canine gallbladder and cystic duct. Cells Tissues Organs 120:117-122

    CAS  Google Scholar 

  • Malbert CH (2005) The ileocolonic sphincter. Neurogastroenterol Mot 17:41-49

    Google Scholar 

  • Malbert CH, Mathis C, Laplace JP (1995) Vagal control of pyloric resistance. Am J Physiol 269:G558-569

    CAS  Google Scholar 

  • Marik F, Code CF (1975) Control of the interdigestive myoelectric activity in dogs by the vagus nerves and pentagastrin. Gastroenterology 69:387-395

    CAS  Google Scholar 

  • Marinelli RA, Pham L, Agre P, LaRusso NF (1997) Secretin promotes osmotic water transport in rat cholangiocytes by increasing aquaporin-1 water channels in plasma membrane. Evidence for a secretin-induced vesicular translocation of aquaporin-1. J Biol Chem 272:12984-12988

    CAS  Google Scholar 

  • Marinelli RA, Tietz PS, Pham LD, Rueckert L, Agre P, LaRusso NF (1999) Secretin induces the apical insertion of aquaporin-1 water channels in rat cholangiocytes. Am J Physiol 276:G280-286

    CAS  Google Scholar 

  • Matsuzaki T, Tajika Y, Ablimit A, Aoki T, Hagiwara H, Takata K (2004) Aquaporins in the digestive system. Med Electron Microsc 37:71-80

    CAS  Google Scholar 

  • Mawe GM, Saccone GT, Pozo MJ (2006) Neural control of the gallbladder and sphincter of Oddi. In: Johnson LR (ed) Physiology of the gastrointestinal tract. Academic Press, San Diego, pp 841–849

    Google Scholar 

  • Meinild AK, Klaerke DA, Loo DDF, Wright EM, Zeuthen T (1998) The human Na+–glucose cotransporter is a molecular water pump. J Physiol 508:15-21

    CAS  Google Scholar 

  • Mellander A, Jarbur K, Hemlin M, Sjovall H (2001) Effects of motility on epithelial transport in the human descending duodenum. Acta Physiol Scand 172:69-80

    CAS  Google Scholar 

  • Meyer JH, Tabrizi Y, DiMaso N, Hlinka M, Raybould HE (1998) Length of intestinal contact on nutrient-driven satiety. Am J Physiol 275:R1308-1319

    CAS  Google Scholar 

  • Mittal RK, Balaban DH (1997) The esophagogastric junction. N Engl J Med 336:924-932

    CAS  Google Scholar 

  • Mittal RK, Liu J, Puckett JL, Bhalla V, Bhargava V, Tipnis N, Kassab G (2005) Sensory and motor function of the esophagus: Lessons from ultrasound imaging. Gastroenterology 128:487-497

    Google Scholar 

  • Mittal RK, McCallum RW (1987) Characteristics of transient lower esophageal sphincter relaxation in humans. Am J Physiol 252:G636-641

    CAS  Google Scholar 

  • Monges H, Salducci J, Naudy B (1978) The upper esophageal sphincter during vomiting, eructation, and distension of the cardia: An electromyographic study in the unanesthetized dog. In: Duthie HL (ed) Gastrointestinal motility in health and disease. MTP Press, Lancaster, pp 575–583

    Google Scholar 

  • Mroz C, Kelly K (1977) The role of the extrinsic antral nerves in the regulation of gastric emptying. Surg Gynecol Obstet 145:369

    CAS  Google Scholar 

  • Mu L, Sanders I (1996) The innervation of the human upper esophageal sphincter. Dysphagia 11:234-238

    CAS  Google Scholar 

  • Nauntofte B (1992) Regulation of electrolyte and fluid secretion in salivary acinar cells. Am J Physiol 263:G823-837

    CAS  Google Scholar 

  • Nielsen S, Chou CL, Marples D, Christensen EI, Kishore BK, Knepper MA (1995) Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc Natl Acad Sci USA 92:1013-1017

    CAS  Google Scholar 

  • Ohta T, Nagakawa T, Kobayashi H, Kayahara M, Ueno K, Konishi I, Miyazaki I (1991) Histomorphological study on the minor duodenal papilla. J Gastroenterol 26:356-362

    CAS  Google Scholar 

  • Ooi RC, Luo XY, Chin SB, Johnson AG, Bird NC (2004) The flow of bile in the human cystic duct. J Biomech 37:1913-1922

    CAS  Google Scholar 

  • Orberg J, Baer E, Hiltner A (1983) Organization of collagen fibers in the intestine. Connect Tissue Res 11:285-297

    CAS  Google Scholar 

  • Ozaki N, Sengupta JN, Gebhart GF (1999) Mechanosensitive properties of gastric vagal afferent fibers in the rat. J Neurophysiol 82:2210-2220

    CAS  Google Scholar 

  • Pallotta N, Cicala M, Frandina C, Corazziari E (1998) Antro-pyloric contractile patterns and transpyloric flow after meal ingestion in humans. Am J Gastroenterol 93:2513-2522

    CAS  Google Scholar 

  • Parr EJ, Kennedy AL, Mawe GM (2003) Lack of evidence for the existence of interstitial cells of Cajal in the gallbladder. Gastroenterology 124:A347

    Google Scholar 

  • Pedley KC, Naftalin RJ (1993) Evidence from fluorescence microscopy and comparative studies that rat, ovine and bovine colonic crypts are absorptive. J Physiol 460:525-547

    CAS  Google Scholar 

  • Penry DL, Jumars PA (1987) Modeling animal guts as chemical reactors. Am Nat 129:69-96

    CAS  Google Scholar 

  • Phillip J, Koch H, Classen M (1974) Variations and anomalies of the papilla of vater, the pancreas and the biliary duct system. Endoscopy 6:70-77

    Google Scholar 

  • Pluja L, Alberti E, Fernandez E, Mikkelsen HB, Thuneberg L, Jimenez M (2001) Evidence supporting presence of two pacemakers in rat colon. Am J Physiol 281:G255-266

    CAS  Google Scholar 

  • Powell A, Bywater R (2001) Endogenous nitric oxide release modulates the direction and frequency of colonic migrating motor complexes in the isolated mouse colon. Neurogastroenterol Mot 13:221-228

    CAS  Google Scholar 

  • Quigley EM, Phillips SF, Dent J (1984) Distinctive patterns of interdigestive motility at the canine ileocolonic junction. Gastroenterology 87:836-844

    CAS  Google Scholar 

  • Ramkumar D, Schulze KS (2005) The pylorus. Neurogastroenterol Mot 17:22-30

    Google Scholar 

  • Rao S, Lu C, Schulze-Delrieu K (1996) Duodenum as a immediate brake to gastric outflow: A videofluoroscopic and manometric assessment. Gastroenterology 110:740-747

    CAS  Google Scholar 

  • Romański KW (2009) Migrating motor complex in biological sciences: Characterization, animal models and disturbances. Indian J Exp Biol 47:229-244

    Google Scholar 

  • Ryan J, Cohen S (1976) Gallbladder pressure-volume response to gastrointestinal hormones. Am J Physiol 230:1461-1465

    CAS  Google Scholar 

  • Sand J, Arvola P, Jantti V, Oja S, Singaram C, Baer G, Pasricha PJ, Nordback I (1997) The inhibitory role of nitric oxide in the control of porcine and human sphincter of Oddi activity. Br Med J 41:375-380

    CAS  Google Scholar 

  • Sanders KM, Koh SD, Ward SM (2006) Organization and electrophysiology of interstitial cells of Cajal and smooth muscle cells in the gastrointestinal tract. In: Johnson LR (ed) Physiology of the gastrointestinal tract. Elsevier, San Diego, pp 533–576

    Google Scholar 

  • Sanders KM, Stevens R, Burke E, Ward SW (1990) Slow waves actively propagate at submucosal surface of circular layer in canine colon. Am J Physiol 259:G258-263

    CAS  Google Scholar 

  • Sarles JC, Bidart JM, Devaux MA, Echinard C, Castagnini A (1976) Action of cholecystokinin and caerulein on the rabbit sphincter of Oddi. Digestion 14:415-423

    CAS  Google Scholar 

  • Sarna S, Condon RE, Cowles V (1983) Enteric mechanisms of initiation of migrating myoelectric complexes in dogs. Gastroenterology 84:814-822

    CAS  Google Scholar 

  • Sarna SK (1985) Cyclic motor activity; migrating motor complex: 1985. Gastroenterology 89:894-913

    CAS  Google Scholar 

  • Sarna SK (1996) Nitronergic regulation of gastric motility and emptying. Curr Opin Gastroenterol 12:512-516

    CAS  Google Scholar 

  • Sarna SK, Condon R, Cowles V (1984) Colonic migrating and nonmigrating motor complexes in dogs. Am J Physiol 246:G355-360

    CAS  Google Scholar 

  • Sarna SK, Gleysteen JJ, Lang IM (1985) Is gastric cyclic motor activity a migrating motor complex. Gastroenterology 88:1570

    Google Scholar 

  • Savoye-Collet C, Savoye G, Smout A (2003) Determinants of transpyloric fluid transport: A study using combined real-time ultrasound, manometry, and impedance recording. Am J Physiol 285:G1147-1152

    CAS  Google Scholar 

  • Savoye G, Savoye-Collet C, Oors J, Smout A (2003) Interdigestive transpyloric fluid transport assessed by intraluminal impedance recording. Am J Physiol 284:G663-669

    CAS  Google Scholar 

  • Schulze-Delrieu K (1991) Intrinsic differences in the filling responses of the guinea pig duodenum and ileum. J Lab Clin Med 117:44-50

    CAS  Google Scholar 

  • Shi LB, Skach WR, Verkman AS (1994) Functional independence of monomeric chip28 water channels revealed by expression of wild-type mutant heterodimers. J Biol Chem 269:10417-10422

    CAS  Google Scholar 

  • Singh S, Hamdy S (2005) The upper oesophageal sphincter. Neurogastroenterol Mot 17:3-12

    Google Scholar 

  • Snipes RL (1979) Anatomy of the rabbit cecum. Anat Embryol (Berl) 155:57-80

    Google Scholar 

  • Soergel K, Whalen G, Harris J (1968) Passive movement of water and sodium across the human small intestinal mucosa. J Appl Physiol 24:40-48

    CAS  Google Scholar 

  • Song X, Chen BN, Zagorodnyuk VP, Lynn PA, Blackshaw LA, Grundy D, Brunsden AM, Costa M, Brookes SJH (2009) Identification of medium/high-threshold extrinsic mechanosensitive afferent nerves to the gastrointestinal tract. Gastroenterology 137:274-284

    Google Scholar 

  • Spencer NJ, Smith CB, Smith TK (2001) Role of muscle tone in peristalsis in guinea-pig small intestine. J Physiol 530:295-306

    CAS  Google Scholar 

  • Spencer NJ, Walsh M, Smith TK (1999) Does the guinea-pig ileum obey the ‘law of the intestine’? J Physiol 517:889-898

    CAS  Google Scholar 

  • Spiller RC, Brown ML, Phillips SF (1987) Emptying of the terminal ileum in intact humans. Influence of meal residue and ileal motility. Gastroenterology 92:724-729

    CAS  Google Scholar 

  • Spiller RC, Trotman IF, Higgins BE, Ghatei MA, Grimble GK, Lee YC, Bloom SR, Misiewicz JJ, Silk DB (1984) The ileal brake-inhibition of jejunal motility after ileal fat perfusion in man. Br Med J 25:365-374

    CAS  Google Scholar 

  • Steinberg WM (2003) Controversies in clinical pancreatology: Should the sphincter of Oddi be measured in patients with idiopathic recurrent acute pancreatitis, and should sphincterotomy be performed if the pressure is high? Pancreas 27:118-121

    Google Scholar 

  • Stevens CE, Hume ID (1995) Comparative physiology of the vertebrate digestive system. Cambridge University Press, New York

    Google Scholar 

  • Strege PR, Ou Y, Sha L, Rich A, Gibbons SJ, Szurszewski JH, Sarr MG, Farrugia G (2003) Sodium current in human intestinal interstitial cells of Cajal. Am J Physiol 285:G1111-1121

    CAS  Google Scholar 

  • Tack J, Caenepeel P, Corsetti M, Janssens J (2004) Role of tension receptors in dyspeptic patients with hypersensitivity to gastric distention. Gastroenterology 127:1058-1066

    Google Scholar 

  • Takahashi I, Kern MK, Dodds WJ, Hogan WJ, Sarna SK, Soergel KH, Itoh Z (1986) Contraction pattern of opossum gallbladder during fasting and after feeding. Am J Physiol 250:G227-235

    CAS  Google Scholar 

  • Takeshima T (1971) Functional classification of the vagal afferent discharges in the dog’s stomach. Nippon Heikatsukin Gakkai Zasshi 7:19-27

    CAS  Google Scholar 

  • Thune A, Saccone GT, Scicchitano JP, Toouli J (1991) Distension of the gall bladder inhibits sphincter of Oddi motility in humans. Br Med J 32:690-693

    CAS  Google Scholar 

  • Thuneberg L (1999) One hundred years of interstitial cells of Cajal. Microsc Res Tech 47:223-238

    CAS  Google Scholar 

  • Timmermans JP (2001) Interstitial cells of Cajal: Is their role in gastrointestinal function in view of therapeutic perspectives underestimated or exaggerated? Folia Morphol 60:1-9

    CAS  Google Scholar 

  • Toouli J, Baker RA (1991) Innervation of the sphincter of Oddi: Physiology and considerations of pharmacological intervention in biliary dyskinesia. Pharmacol Ther 49:269-281

    CAS  Google Scholar 

  • Toouli J, Hogan WJ, Geenen JE, Dodds WJ, Arndorfer RC (1982) Action of cholecystokinin-octapeptide on sphincter of Oddi basal pressure and phasic wave activity in humans. Surgery 92:497-503

    CAS  Google Scholar 

  • Wang KS, Ma T, Filiz F, Verkman AS, Bastidas JA (2000) Colon water transport in transgenic mice lacking aquaporin-4 water channels. Am J Physiol 279:G463-470

    CAS  Google Scholar 

  • Wang XY, Lammers W, Bercik P, Huizinga JD (2005) Lack of pyloric interstitial cells of Cajal explains distinct peristaltic motor patterns in stomach and small intestine. Am J Physiol 289:G539-549

    CAS  Google Scholar 

  • Wang ZY, Han YF, Huang X, Zhao P, Lu HL, Kim YC, Xu WX (2010) Pacemaking activity is regulated by membrane stretch via the CICR pathway in cultured interstitial cells of Cajal from murine intestine. J Biomech 43:2214-2220

    Google Scholar 

  • Waterman SA, Tonini M, Costa M (1994) The role of ascending excitatory and descending inhibitory pathways in peristalsis in the isolated guinea-pig small intestine. J Physiol 481:223-232

    CAS  Google Scholar 

  • Wehrmann T, Stergiou N, Riphaus A, Lembcke B (2001) Correlation between sphincter of Oddi manometry and intraductal ultrasound morphology in patients with suspected sphincter of Oddi dysfunction. Endoscopy 33:773-777

    CAS  Google Scholar 

  • White CM, Poxon V, Alexander-Williams J (1983) Effects of nutrient liquids on human gastroduodenal motor activity. Br Med J 24:1109-1116

    CAS  Google Scholar 

  • Wilding IR, Hardy JG, Maccari M, Ravelli V, Davis SS (1991) Scintigraphic and pharmacokinetic assessment of a multiparticulate sustained release formulation of diltiazem. Int J Pharm 76:133-143

    CAS  Google Scholar 

  • Williams JA (1962) Closure of the pylorus. Br J Radiol 35:653-670

    Google Scholar 

  • Wilmer A, Tack J, Coremans G, Janssens J, Peeters T, Vantrappen G (1993) 5-hydroxytryptamine-3 receptors are involved in the initiation of gastric phase-3 motor activity in humans. Gastroenterology 105:773-780

    CAS  Google Scholar 

  • Wood JD (2006) Integrative functions of the enteric nervous system. In: Johnson LR (ed) Physiology of the gastrointestinal tract. Academic Press, San Diego, pp 665–684

    Google Scholar 

  • Woods CM, Mawe GM, Toouli J, Saccone GTP (2005) The sphincter of Oddi: Understanding its control and function. Neurogastroenterol Mot 17:31-40

    Google Scholar 

  • Yokohata K, Tanaka M (2000) Cyclic motility of the sphincter of Oddi. J Hepatobiliary Pancreat Surg 7:178-182

    CAS  Google Scholar 

  • Yuan SY, Costa M, Brookes SJH (2001) Neuronal control of the pyloric sphincter of the guinea-pig. Neurogastroenterol Mot 13:187-198

    CAS  Google Scholar 

  • Zagorodnyuk VP, Chen BN, Brookes SJH (2001) Intraganglionic laminar endings are mechano-transduction sites of vagal tension receptors in the guinea-pig stomach. J Physiol 534:255-268

    CAS  Google Scholar 

  • Zhang EB (1996) Intestinal water and electrolyte transport. In: Zhang EB, Sitrin MD, Black DB (eds) Gastrointestinal, hepatobilliary, and nutritional physiology. Lippincott-Raven, Philadelphia, pp 91–118

    Google Scholar 

  • Zhao J, Liao D, Gregersen H (2005) Tension and stress in the rat and rabbit stomach are location and direction dependent. Neurogastroenterol Mot 17:388-398

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick W. M. Janssen .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lentle, R.G., Janssen, P.W. (2011). Contractile Activity and Control of the Physical Process of Digestion Within a Gut Segment. In: The Physical Processes of Digestion. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9449-3_7

Download citation

Publish with us

Policies and ethics