Skip to main content

Flow, Mixing and Absorption at the Mucosa

  • Chapter
  • First Online:
The Physical Processes of Digestion

Abstract

The functions of the various components of the gut wall are systematically reviewed i.e. the mucinous layers, the submucinous compartment and the morphological features and cellular components of the gut epithelium. Work describing the ‘unstirred water layer’ (UWL) is reviewed and related to work on paracellular and transcellular absorption. The molecular structure and physical properties of the mucinous layers are described and related to the functions of lubrication, protection and the permeation of nutrients and secretions within various segments of the gut. Interactions with commensal enteral microflora are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiba Y, Guth PH, Engel E, Nastaskin I, Kaunitz JD (2000) Dynamic regulation of mucus gel thickness in rat duodenum. Am J Physiol 279:G437-447

    CAS  Google Scholar 

  • Allen A (1978) Structure of gastrointestinal mucus glycoproteins and the viscous and gel-forming properties of mucus. Br Med Bull 34:28-33

    CAS  Google Scholar 

  • Allen A, Flemström G (2005) Gastroduodenal mucus bicarbonate barrier: protection against acid and pepsin. Am J Physiol 288:G1-19

    Google Scholar 

  • Amerongen HM, Weltzin R, Farnet CM, Michetti P, Haseltine WA, Neutra MR (1991) Transepithelial transport of HIV-1 by intestinal M cells: a mechanism for transmission of AIDS. J Acquir Immune Defic Syndr 4:760-765

    CAS  Google Scholar 

  • Amidon GL, Kou J, Elliott RL, Lightfoot EN (1980) Analysis of models for determining intestinal wall permeabilities. J Pharm Sci 69:1369-1373

    CAS  Google Scholar 

  • Amsden B (1998) Solute diffusion within hydrogels. Mechanisms and models. Macromolecules 31:8382-8395

    CAS  Google Scholar 

  • Amsden B (1999) An obstruction-scaling model for diffusion in homogeneous hydrogels. Macromolecules 32:874-879

    CAS  Google Scholar 

  • Amsden B, Turner N (1999) Diffusion characteristics of calcium alginate gels. Biotechnol Bioeng 65:605-610

    CAS  Google Scholar 

  • Andrews G, Laverty T, Jones D (2009) Mucoadhesive polymeric platforms for controlled drug delivery. Eur J Pharm Biopharm 71:505-518

    CAS  Google Scholar 

  • Assentoft JE, Gregersen H, O’Brien WD (2000) Determination of Biomechanical Properties in Guinea Pig Esophagus by Means of High Frequency Ultrasound and Impedance Planimetry. Dig Dis Sci 45:1260-1266

    CAS  Google Scholar 

  • Atuma C, Strugala V, Allen A, Holm L (2001) The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am J Physiol 280:G922-929

    CAS  Google Scholar 

  • Audie JP, Janin A, Porchet N, Copin MC, Gosselin B, Aubert JP (1993) Expression of human mucin genes in respiratory, digestive, and reproductive tracts ascertained by in situ hybridization. J Histochem Cytochem 41:1479-1485

    CAS  Google Scholar 

  • Axelsson MAB, Asker N, Hansson GC (1998) O-glycosylated MUC2 monomer and dimer from LS 174T cells are water-soluble, whereas larger MUC2 species formed early during biosynthesis are insoluble and contain nonreducible intermolecular bonds. J Biol Chem 273:18864-18870

    CAS  Google Scholar 

  • Ballard S, Hunter J, Taylor A (1995) Regulation of tight-junction permeability during nutrient absorption across the intestinal epithelium. Annu Rev Nutr 15:35-55

    CAS  Google Scholar 

  • Barker N, Van De Wetering M, Clevers H (2008) The intestinal stem cell. Genes Dev 22:1856-1864

    CAS  Google Scholar 

  • Barrios-Rodiles M, Brown KR, Ozdamar B, Bose R, Liu Z, Donovan RS, Shinjo F, Liu Y, Dembowy J, Taylor IW (2005) High-throughput mapping of a dynamic signaling network in mammalian cells. Science 307:1621-1625

    CAS  Google Scholar 

  • Barry Jr R (1976) Mucosal surface areas and villous morphology of the small intestine of small mammals: functional interpretations. J Mammal 57:273-290

    CAS  Google Scholar 

  • Bates JM, Akerlund J, Mittge E, Guillemin K (2007) Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe 2:371-382

    CAS  Google Scholar 

  • Bell L, Williams L (1982) A scanning and transmission electron microscopical study of the morphogenesis of human colonic villi. Anat Embryol (Berl) 165:437-455

    CAS  Google Scholar 

  • Beumer C, Wulferink M, Raaben W, Fiechter D, Brands R, Seinen W (2003) Calf intestinal alkaline phosphatase, a novel therapeutic drug for lipopolysaccharide (LPS)-mediated diseases, attenuates LPS toxicity in mice and piglets. J Pharmacol Exp Ther 307:737-744

    CAS  Google Scholar 

  • Bhaskar KR, Garik P, Turner BS, Bradley JD, Bansil R, Stanley HE, LaMont JT (1992) Viscous fingering of HCl through gastric mucin. Nature 360:458-461

    CAS  Google Scholar 

  • Bijlsma PB, Peeters RA, Groot JA, Dekker PR, Taminiau J, A,J.M, van der Meer R (1995) Differential in vivo and in vitro intestinal permeability to lactulose and mannitol in animals and humans: a hypothesis. Gastroenterology 108:687-696

    CAS  Google Scholar 

  • Bjarnason I, Macpherson A, Hollander D (1995) Intestinal permeability: an overview. Gastroenterology 108:1566-1581

    CAS  Google Scholar 

  • Bond JH, Levitt DG, Levitt MD (1977) Quantitation of countercurrent exchange during passive absorption from the dog small intestine: evidence for marked species differences in the efficiency of exchange. J Clin Invest 59:308-318

    CAS  Google Scholar 

  • Bongaerts G, Severijnen R, Timmerman H (2005) Effect of antibiotics, prebiotics and probiotics in treatment for hepatic encephalopathy. Med Hypotheses 64:64-68

    CAS  Google Scholar 

  • Bongaerts JHH, Rossetti D, Stokes JR (2007) The lubricating properties of human whole saliva. Trib Lett 27:277-287

    CAS  Google Scholar 

  • Boshi Y, Nezu R, Khan J (1996) Developmental changes in distribution of the mucous gel layer and intestinal permeability in rat small intestine. J Parenter Enteral Nutr 20:406-411

    Google Scholar 

  • Brown AL (1962) Microvilli of the human jejunal epithelial cell. J Cell Biol 12:623-627

    Google Scholar 

  • Bry L, Falk PG, Midtvedt T, Gordon JI (1996) A model of host-microbial interactions in an open mammalian ecosystem. Science 273:1380-1383

    CAS  Google Scholar 

  • Bustamante SA, Jodal M, Nilsson NJ, Lundgren O, Köhlin T (1989) Evidence for a countercurrent exchanger in the intestinal villi of suckling swine. Acta Physiol Scand 137:207-213

    CAS  Google Scholar 

  • Cammarota G, Martino A, Pirozzi GA, Cianci R, Cremonini F, Zuccalà G, Cuoco L, Ojetti V, Montalto M, Vecchio FM (2004) Direct visualization of intestinal villi by high-resolution magnifying upper endoscopy: a validation study. Gastrointest Endosc 60:732-738

    Google Scholar 

  • Cao X, Bansil R, Bhaskar K, Turner B, LaMont J, Niu N, Afdhal N (1999) pH-dependent conformational change of gastric mucin leads to sol-gel transition. Biophys J 76:1250-1258

    CAS  Google Scholar 

  • Carlstedt I, Sheehan JK (1984) Macromolecular properties and polymeric structure of mucus glycoproteins. Mucus and Mucosa, Ciba Found Symp. Pitman, pp 157-172

    Google Scholar 

  • Carrión F, Martínez-Nicolás G, Iglesias P, Sanes J, Bermúdez MD (2009) Liquid Crystals in Tribology. Int J Mol Sci 10:4102-4115

    Google Scholar 

  • Celli J, Gregor B, Turner B, Afdhal NH, Bansil R, Erramilli S (2005) Viscoelastic properties and dynamics of porcine gastric mucin. Biomacromolecules 6:1329-1333

    CAS  Google Scholar 

  • Celli JP, Turner BS, Afdhal NH, Ewoldt RH, McKinley GH, Bansil R, Erramilli S (2007) Rheology of Gastric Mucin Exhibits a pH-Dependent Sol-Gel Transition. Biomacromolecules 8:1580-1586

    CAS  Google Scholar 

  • Chambraud L, Bernadac A, Gorvel JP, Maroux S (1989) Renewal of goblet cell mucus granules during the cell migration along the crypt-villus axis in rabbit jejunum: an immunolabeling study. Biol Cell 65:159-162

    Google Scholar 

  • Chang EB, Rao MC (1994) Intestinal water and electrolyte transport: mechanisms of physiological and adaptive responses. In: Johnson LR (ed) Physiology of the Gastrointestinal Tract. Raven, New York, pp 2027-2081

    Google Scholar 

  • Chang SK, Dohrman AF, Basbaum CB, Ho SB, Tsuda T, Toribara NW, Gum JR, Kim YS (1994) Localization of mucin (MUC2 and MUC3) messenger RNA and peptide expression in human normal intestine and colon cancer. Gastroenterology 107:28-36

    CAS  Google Scholar 

  • Cone RA (1999) Mucus. In: Ogra PL, Mestecky J, Lamm ME, Strober W, Bienenstock J, McGhee JR (eds) Mucosal immunology. Academic Press, San Diego, pp 43-64

    Google Scholar 

  • Cone RA (2009) Barrier properties of mucus. Adv Drug Deliv Rev 61:75-85

    CAS  Google Scholar 

  • Copeman M, Matuz J, Leonard AJ, Pearson JP, Dettmar PW, Allen A (1994) The gastroduodenal mucus barrier and its role in protection against luminal pepsins: the effect of 16,16 dimethyl prostaglandin E2, carbopol-polyacrylate, sucralfate and bismuth subsalicylate. J Gastroenterol Hepatol 9:55-59

    Google Scholar 

  • Corfield AP, Wiggins R, Edwards C, Myerscough N, Warren BF, Soothill P, Millar MR, Homer P (2002) A sweet coating - how bacteria deal with sugars. In: Axford JS (ed) Glycobiology and Medicine, pp 3-15

    Google Scholar 

  • Corthesy B (2003) Recombinant secretory immunoglobulin A in passive immunotherapy: linking immunology and biotechnology. Curr Pharm Biotechnol 4:51-67

    CAS  Google Scholar 

  • Creamer B (1964) Variations in small-intestinal villous shape and mucosal dynamics. Br Med J 2:1371-1373

    CAS  Google Scholar 

  • Cu Y, Saltzman W (2009) Mathematical modeling of molecular diffusion through mucus. Adv Drug Deliv Rev 61:101-114

    CAS  Google Scholar 

  • Davies JM, Viney C (1998) Water–mucin phases: conditions for mucus liquid crystallinity. Thermochimica Acta 315:39-49

    CAS  Google Scholar 

  • Dawson M, Wirtz D, Hanes J (2003) Enhanced Viscoelasticity of Human Cystic Fibrotic Sputum Correlates with Increasing Microheterogeneity in Particle Transport. J Biol Chem 278:50393-50401

    CAS  Google Scholar 

  • De Bolós C, Garrido M, Real FX (1995) MUC6 apomucin shows a distinct normal tissue distribution that correlates with Lewis antigen expression in the human stomach. Gastroenterology 109:723-734

    Google Scholar 

  • De Santa Barbara P, Van Den Brink GR, Roberts DJ (2003) Development and differentiation of the intestinal epithelium. Cell Mol Life Sci 60:1322-1332

    Google Scholar 

  • Debnam ES, Levin RJ (1975) Effects of fasting and semistarvation on the kinetics of active and passive sugar absorption across the small intestine in vivo. J Physiol 252:681-700

    CAS  Google Scholar 

  • Deplancke B, Gaskins HR (2001) Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. Am J Clin Nutr 73:1131S-1141S

    CAS  Google Scholar 

  • Desai MA, Mutlu M, Vadgama P (1992) A study of macromolecular diffusion through native porcine mucus. Cell Mol Life Sci 48:22-26

    CAS  Google Scholar 

  • DeSimone JA (1983) Diffusion barrier in the small intestine. Science 220:221-222

    CAS  Google Scholar 

  • Diamond JM (1978) Channels in epithelial cell membranes and junctions. Fed Proc 37:2639-2643

    CAS  Google Scholar 

  • Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881-890

    Google Scholar 

  • Dou Y, Gregersen S, Zhao J, Zhuang F, Gregersen H (2002) Morphometric and biomechanical intestinal remodeling induced by fasting in rats. Dig Dis Sci 47:1158-1168

    Google Scholar 

  • Dresselhuis DM, De Hoog EHA, Cohen Stuart MA, Van Aken GA (2008) Application of oral tissue in tribological measurements in an emulsion perception context. Food Hydrocolloids 22:323-335

    CAS  Google Scholar 

  • Dyer J, Salmon K, Zibrik L, Shirazi-Beechey S (2005) Expression of sweet taste receptors of the T1R family in the intestinal tract and enteroendocrine cells. Biochem Soc Trans 33:302-305

    CAS  Google Scholar 

  • Enss ML, Müller H, Schmidt-Wittig U, Kownatzki R, Coenen M, Hedrich HJ (1996) Effects of perorally applied endotoxin on colonic mucins of germfree rats. Scand J Gastroenterol 31:868-874

    CAS  Google Scholar 

  • Fagerholm U, Lennernäs H (1995) Experimental estimation of the effective unstirred water layer thickness in the human jejunum, and its importance in oral drug absorption. Eur J Pharm Sci 3:247-253

    CAS  Google Scholar 

  • Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM (1998) The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem 273:29745-29753

    CAS  Google Scholar 

  • Fettiplace R, Haydon DA (1980) Water permeability of lipid membranes. Physiol Rev 60:510-550

    CAS  Google Scholar 

  • Fine KD, Santa Ana CA, Porter JL, Fordtran JS (1995) Effect of changing intestinal flow rate on a measurement of intestinal permeability. Gastroenterology 108:983-989

    CAS  Google Scholar 

  • Firth JA (2002) Endothelial barriers: From hypothetical pores to membrane proteins. J Anat 200:524-525

    Google Scholar 

  • Flint HJ, Duncan SH, Scott KP, Louis P (2007) Interactions and competition within the microbial community of the human colon: links between diet and health. Environ Microbiol 9:1101-1111

    CAS  Google Scholar 

  • Florey HW (1962) The secretion and function of intestinal mucus. Gastroenterology 43:326-329

    CAS  Google Scholar 

  • Frey A, Giannasca KT, Weltzin R, Giannasca PJ, Reggio H, Lencer WI, Neutra MR (1996) Role of the glycocalyx in regulating access of microparticles to apical plasma membranes of intestinal epithelial cells: implications for microbial attachment and oral vaccine targeting. J Exp Med 184:1045-1059

    CAS  Google Scholar 

  • Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S (1998) Claudin-1 and-2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol 141:1539-1550

    CAS  Google Scholar 

  • Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S (1993) Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123:1777-1788

    CAS  Google Scholar 

  • Goldberg R, Austen WG, Zhang X, Munene G, Mostafa G, Biswas S, McCormack M, Eberlin KR, Nguyen JT, Tatlidede HS (2008) Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition. Proc Natl Acad Sci USA 105:3551-3556

    CAS  Google Scholar 

  • Gonnella PA, Neutra MR (1984) Membrane-bound and fluid-phase macromolecules enter separate prelysosomal compartments in absorptive cells of suckling rat ileum. J Cell Biol 99:909-917

    CAS  Google Scholar 

  • Graf G, Matveev S, Smart E (1999) Class B scavenger receptors, caveolae and cholesterol homeostasis. Trends Cardiovasc Med 9:221-224

    CAS  Google Scholar 

  • Greenberg EP, Canale-Parola E (1977) Motility of flagellated bacteria in viscous environments. J Bacteriol 132:356-358

    CAS  Google Scholar 

  • Gregersen H (2003) Biomechanics of the gastrointestinal tract: new perspectives in motility research and diagnostics. Springer Verlag, New York

    Google Scholar 

  • Gregersen H, Kassab G (1996) Biomechanics of the gastrointestinal tract. Neurogastroenterol Mot 8:277-297

    CAS  Google Scholar 

  • Gregersen H, Kassab G, Pallencaoe E, Lee C, Chien S, Skalak R, Fung Y (1997) Morphometry and strain distribution in guinea pig duodenum with reference to the zero-stress state. American Journal of Physiology- Gastrointestinal and Liver Physiology 273:865

    Google Scholar 

  • Gruber P, Longer MA, Robinson JR (1987) Some biological issues in oral, controlled drug delivery. Adv Drug Deliv Rev 1:1-18

    CAS  Google Scholar 

  • Gruzdkov AA, Gusev V, Ugolev AM (1989) Mathematical modeling. In: Ugolev AM (ed) Membrane digestion: new facts and concepts. Mir, Moscow, pp 228–234

    Google Scholar 

  • Güldner FH, Wolff JR, Keyserlingk DG (1972) Fibroblasts as a part of the contractile system in duodenal villi of rat. Cell Tissue Res 135:349-360

    Google Scholar 

  • Gum JR, Hicks J, Toribara NW, Siddiki B, Kim Y (1994) Molecular cloning of human intestinal mucin (MUC2) cDNA. Identification of the amino terminus and overall sequence similarity to prepro-von Willebrand factor. J Biol Chem 269:2440-2446

    CAS  Google Scholar 

  • Gumbiner B (1987) Structure, biochemistry, and assembly of epithelial tight junctions. Am J Physiol 253:C749-758

    CAS  Google Scholar 

  • Haljamäe H, Jodal M, Lundgren O (1973) Countercurrent multiplication of sodium in intestinal villi during absorption of sodium chloride. Acta Physiol Scand 89:580-593

    Google Scholar 

  • Hallbäck DA, Hulten L, Jodal M, Lindhagen J, Lundgren O (1978) Evidence for the existence of a countercurrent exchanger in the small intestine in man. Gastroenterology 74:683-690

    Google Scholar 

  • Hallbäck DA, Jodal M, Mannischeff M, Lundgren O (1991) Tissue osmolality in intestinal villi of four mammals in vivo and in vitro. Acta Physiol Scand 143:271-277

    Google Scholar 

  • Hansen GH, Niels-Christiansen LL, Immerdal L, Danielsen EM (2003) Scavenger receptor class B type I (SR-BI) in pig enterocytes: trafficking from the brush border to lipid droplets during fat absorption. Gut 52:1424-1431

    CAS  Google Scholar 

  • Hansen GH, Niels-Christiansen LL, Immerdal L, Nystrom BT, Danielsen EM (2007) Intestinal alkaline phosphatase: selective endocytosis from the enterocyte brush border during fat absorption. Am J Physiol 293:G1325-1332

    CAS  Google Scholar 

  • Hansen GH, Rasmussen K, Niels-Christiansen LL, Danielsen EM (2009) Endocytic trafficking from the small intestinal brush border probed with FM dye. Am J Physiol 297:G708-715

    CAS  Google Scholar 

  • Harada N, Iijima S, Kobayashi K, Yoshida T, Brown WR, Hibi T, Oshima A, Morikawa M (1997) Human IgGFc binding protein (FcgBP) in colonic epithelial cells exhibits mucin-like structure. J Biol Chem 272:15232-15241

    CAS  Google Scholar 

  • Harris MS, Kennedy JG (1988) Relationship between distention and absorption in rat intestine. II. Effects of volume and flow rate on transport. Gastroenterology 94:1172-1179

    CAS  Google Scholar 

  • Hasan M, Ferguson A (1981) Measurements of intestinal villi non-specific and ulcer-associated duodenitis-correlation between area of microdissected villus and villus epithelial cell count. J Clin Pathol 34:1181-1186

    CAS  Google Scholar 

  • Haward SJ, Odell JA, Berry M, Hall T (2010) Extensional rheology of human saliva. Rheol Acta DOI 10.1007/s00397-010-0494-1

    Google Scholar 

  • Herrmann A, Davies JR, Lindell G, Mårtensson S, Packer NH, Swallow DM, Carlstedt I (1999) Studies on the “insoluble” glycoprotein complex from human colon. Identification of reduction-insensitive MUC2 oligomers and C-terminal cleavage. J Biol Chem 274:15828-15828

    CAS  Google Scholar 

  • Hill AE (2008) Fluid transport: a guide for the perplexed. J Membr Biol 223:1-11

    CAS  Google Scholar 

  • Ho SB, Anway RE, Ahmed Z (2000) Spatial organization of MUC5AC and MUC5 mucins within the surface mucous layer of the stomach. Gastroenterology 118:1396

    Google Scholar 

  • Hollander D (1992) The intestinal permeability barrier: a hypothesis as to its regulation and involvement in Crohn’s disease. Scand J Gastroenterol 27:721-726

    CAS  Google Scholar 

  • Holm L, Flemström G (1990) Microscopy of acid transport at the gastric surface in vivo. J Intern Med 732:91-95

    CAS  Google Scholar 

  • Holzheimer G, Winne D (1989) Influence of distension on absorption and villous structure in rat jejunum. Am J Physiol 256:G188-197

    CAS  Google Scholar 

  • Hong Z, Chasan B, Bansil R, Turner B, Bhaskar K, Afdhal N (2005) Atomic force microscopy reveals aggregation of gastric mucin at low pH. Biomacromolecules 6:3458-3466

    CAS  Google Scholar 

  • Hooper LV, Gordon JI (2001) Glycans as legislators of host-microbial interactions: spanning the spectrum from symbiosis to pathogenicity. Glycobiology 11:1R-10R

    CAS  Google Scholar 

  • Hooper LV, Xu J, Falk PG, Midtvedt T, Gordon JI (1999) A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc Natl Acad Sci USA 96:9833-9838

    CAS  Google Scholar 

  • Horiuchi K, Naito I, Nakano K, Nakatani S, Nishida K, Taguchi T, Ohtsuka A (2005) Three-dimensional ultrastructure of the brush border glycocalyx in the mouse small intestine: a high resolution scanning electron microscopic study. Arch Histol Cytol 68:51-56

    Google Scholar 

  • Hoskins LC, Boulding ET (1981) Mucin degradation in human colon ecosystems: evidence for the existence and role of bacterial subpopulations producing glycosidases as extracellular enzymes. J Clin Invest 67:163-172

    CAS  Google Scholar 

  • Hosoyamada Y, Sakai T (2007) Mechanical components of rat intestinal villi as revealed by ultrastructural analysis with special reference to the axial smooth muscle cells in the villi. Arch Histol Cytol 70:107-116

    Google Scholar 

  • Hume ID (1999) Marsupial Nutrition. Cambridge University Press, Cambridge

    Google Scholar 

  • Ihida K, Suganuma T, Tsutama S, Murata F (1988) Glycoconjugate histochemistry of the rat fundic gland using Griffonia simplicifolia agglutinin-II during the development. Am J Anat 182:250-256

    CAS  Google Scholar 

  • Ikonomov O, Simon M, Frömter E (1985) Electrophysiological studies on lateral intercellular spaces of Necturus gallbladder epithelium. Pflügers Arch 403:301-307

    CAS  Google Scholar 

  • Isberg R, Van Nhieu G (1994) Two mammalian cell internalization strategies used by pathogenic bacteria. Annu Rev Genet 28:395-422

    CAS  Google Scholar 

  • Ishihara K, Kurihara M, Eto H, Kasai K, Shimauchi S, Hotta K (1993) A monoclonal antibody against carbohydrate moiety of rat gastric surface epithelial cell-derived mucin. Hybridoma 12:609-620

    CAS  Google Scholar 

  • Ito S (1965) The enteric surface coat on cat intestinal microvilli. J Cell Biol 27:475-491

    CAS  Google Scholar 

  • Ito S (1974) Form and function of the glycocalyx on free cell surfaces. Philos Trans R Soc Lond B Biol Sci 268:55-66

    CAS  Google Scholar 

  • Johansson M, Synnerstad I, Holm L (2000) Acid transport through channels in the mucous layer of rat stomach. Gastroenterology 119:1297-1304

    CAS  Google Scholar 

  • Johansson MEV, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC (2008) The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci USA 105:15064-15069

    CAS  Google Scholar 

  • Johansson MEV, Thomsson KA, Hansson GC (2009) Proteomic analyses of the two mucus layers of the colon barrier reveal that their main component, the Muc2 mucin, is strongly bound to the FcgBP protein. J Proteome Res 8:3549-3557

    CAS  Google Scholar 

  • Johnson DA, Amidon GL (1988) Determination of intrinsic membrane transport parameters from perfused intestine experiments: a boundary layer approach to estimating the aqueous and unbiased membrane permeabilities. J Theor Biol 131:93-106

    CAS  Google Scholar 

  • Junqueira LC, Carneiro J (2005) Basic Histology: Text & Atlas. McGraw-Hill, New York

    Google Scholar 

  • Karlsson J, Artursson P (1991) A method for the determination of cellular permeability coefficients and aqueous boundary layer thickness in monolayers of intestinal epithelial (Caco-2) cells grown in permeable filter chambers. Int J Pharm 71:55-64

    CAS  Google Scholar 

  • Karlsson NG, Herrmann A, Karlsson H, Johansson ME, Carlstedt I, Hansson GC (1997) The glycosylation of rat intestinal Muc2 mucin varies between rat strains and the small and large intestine. J Biol Chem 272:27025-27034

    CAS  Google Scholar 

  • Karlsson NG, Johansson ME, Asker N, Karlsson H, Gendler SJ, Carlstedt I, Hansson GC (1996) Molecular characterization of the large heavily glycosylated domain glycopeptide from the rat small intestinal Muc2 mucin. Glycoconj J 13:823-831

    CAS  Google Scholar 

  • Kas HS (1997) Chitosan: properties, preparations and application to microparticulate systems. J Microencapsul 14:689-711

    CAS  Google Scholar 

  • Kellett GL (2001) The facilitated component of intestinal glucose absorption. J Physiol 531:585-595

    CAS  Google Scholar 

  • Kerss S, Allen A, Garner A (1982) A simple method for measuring thickness of the mucus gel layer adherent to rat, frog and human gastric mucosa: influence of feeding, prostaglandin, N-acetylcysteine and other agents. Clin Sci 63:187-195

    CAS  Google Scholar 

  • Khanvilkar K, Donovan MD, Flanagan DR (2001) Drug transfer through mucus. Adv Drug Deliv Rev 48:173-193

    CAS  Google Scholar 

  • Kinter IS, Wilson TH (1975) Autoradiographic study of sugar and amino acid transport by everted sacs of hamster intestine. J Cell Biol 25:19-39

    Google Scholar 

  • Kirjavainen PV, Ouwehand AC, Isolauri E, Salminen SJ (1998) The ability of probiotic bacteria to bind to human intestinal mucus. FEMS Microbiol Lett 167:185-189

    CAS  Google Scholar 

  • Kleessen B, Blaut M (2007) Modulation of gut mucosal biofilms. Br J Nutr 93:35-40

    Google Scholar 

  • Knutson T, Fridblom P, Ahlstrom H, Magnusson A, Tannergren C, Lennernas H (2009) Increased Understanding of Intestinal Drug Permeability Determined by the LOC-I-GUT Approach Using Multislice Computed Tomography. Mol Pharmaceut 6:2–10

    CAS  Google Scholar 

  • Knutton S, Limbrick AR, Robertson JD (1974) Regular structures in membranes: I. Membranes in the Endocytic Complex of Ileal Epithelial Cells. J Cell Biol 62:679-694

    CAS  Google Scholar 

  • Komuro T (1985) Fenestrations of the basal lamina of intestinal villi of the rat. Cell Tissue Res 239:183-188

    CAS  Google Scholar 

  • Komuro T, Hashimoto Y (1990) Three-dimensional structure of the rat intestinal wall (mucosa and submucosa). Arch Histol Cytol 53:1-21

    CAS  Google Scholar 

  • Lai S, Wang Y, Wirtz D, Hanes J (2009) Micro-and macrorheology of mucus. Adv Drug Deliv Rev 61:86-100

    CAS  Google Scholar 

  • Lee J (1969) A micropuncture study of water transport by dog jejunal villi in vitro. Am J Physiol 217:1528-1533

    CAS  Google Scholar 

  • Lee S, Muller M, Rezwan K, Spencer ND (2005) Porcine gastric mucin (PGM) at the water/poly (dimethylsiloxane)(PDMS) interface: influence of pH and ionic strength on its conformation, adsorption, and aqueous lubrication properties. Langmuir 21:8344-8353

    CAS  Google Scholar 

  • Lentle RG, Janssen PWM (2008) Physical characteristics of digesta and their influence on flow and mixing in the mammalian intestine: a review. J Comp Physiol B178:673-690

    Google Scholar 

  • Leung DW, Loo DDF, Hirayama BA, Zeuthen T, Wright EM (2000) Urea transport by cotransporters. J Physiol 528:251-257

    CAS  Google Scholar 

  • Levine MJ (1993) Salivary macromolecules. A structure/function synopsis. Ann N Y Acad Sci 694:11-16

    CAS  Google Scholar 

  • Levitt MD, Fetzer CA, Kneip JM, Bond JH, Levitt DG (1987) Quantitative assessment of luminal stirring in the perfused small intestine of the rat. Am J Physiol 252:G325-332

    CAS  Google Scholar 

  • Levitt MD, Furne JK, Strocchi A, Anderson BW, Levitt DG (1990) Physiological measurements of luminal stirring in the dog and human small bowel. J Clin Invest 86:1540-1547

    CAS  Google Scholar 

  • Levitt MD, Kneip JM, Levitt DG (1988) Use of laminar flow and unstirred layer models to predict intestinal absorption in the rat. J Clin Invest 81:1365-1369

    CAS  Google Scholar 

  • Lewandowski Z (2000) Structure and Function of Biofilms. In: Evans LV (ed) Biofilms: Recent advances in their study and control. Harwood Academic, Amsterdam, pp 1-17

    Google Scholar 

  • Leyton L (1975) Fluid behaviour in biological systems. Oxford University Press

    Google Scholar 

  • Lin JH, Chiba M, Baillie TA (1999) Is the role of the small intestine in first-pass metabolism overemphasized? Pharmacol Rev 51:135-157

    CAS  Google Scholar 

  • Loeschke K, Bentzel CJ (1994) Osmotic water flow pathways across Necturus gallbladder: role of the tight junction. Am J Physiol 266:G722-730

    CAS  Google Scholar 

  • Lu X, Gregersen H (2001) Regional distribution of axial strain and circumferential residual strain in the layered rabbit oesophagus. J Biomech 34:225-233

    CAS  Google Scholar 

  • Ma TY, Anderson JM (2006) Tight junctions and the intestinal barrier. In: Johnson LR (ed) Physiology of the Gastrointestinal Tract. Academic Press, San Diego, pp 1559-1594

    Google Scholar 

  • Ma TY, Hoa NT, Tran DD, Bui V, Pedram A, Mills S, Merryfield M (2000) Cytochalasin B modulation of Caco-2 tight junction barrier: role of myosin light chain kinase. Am J Physiol 279:G875-885

    CAS  Google Scholar 

  • Ma TY, Hollander D, Erickson RA, Truong H, Krugliak P (1991) Is the small intestinal epithelium truly ‘tight’ to inulin permeation? Am J Physiol 260:G669-676

    CAS  Google Scholar 

  • MacAulay N, Gether U, Klærke DA, Zeuthen T (2002) Passive water and urea permeability of a human Na+–glutamate cotransporter expressed in Xenopus oocytes. J Physiol 542:817-828

    CAS  Google Scholar 

  • Macfarlane S, Cummings JH, Macfarlane GT (1999) Bacterial colonisation of surfaces in the large intestine. In: Gibson GR, Roberfroid MB (eds) Colonic Microbiota, Nutrition and Health. Kluwer Academic, Dordrecht, pp 71–88

    Google Scholar 

  • Macfarlane S, Macfarlane GT (2004) Bacterial diversity in the human gut. Adv Appl Microbiol 54:261-289

    CAS  Google Scholar 

  • Macfarlane S, Macfarlane GT (2006) Composition and Metabolic Activities of Bacterial Biofilms Colonizing Food Residues in the Human Gut. Appl Environ Microbiol 72:6204-6211

    CAS  Google Scholar 

  • Mack DR, Michail S, Wei S, McDougall L, Hollingsworth MA (1999) Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Am J Physiol 276:G941-950

    CAS  Google Scholar 

  • Madara JL (1983) Increases in guinea pig small intestinal transepithelial resistance induced by osmotic loads are accompanied by rapid alterations in absorptive-cell tight-junction structure. J Cell Biol 97:125-136

    CAS  Google Scholar 

  • Madara JL, Carlson S (1991) Supraphysiologic L-tryptophan elicits cytoskeletal and macromolecular permeability alterations in hamster small intestinal epithelium in vitro. J Clin Invest 87:454-462

    CAS  Google Scholar 

  • Mailman D, Womack WA, Kvietys PR, Granger DN (1990) Villous motility and unstirred water layers in canine intestine. Am J Physiol 258:G238-246

    CAS  Google Scholar 

  • Marcial MA, Carlson SL, Madara JL (1984) Partitioning of paracellular conductance along the ileal crypt-villus axis: a hypothesis based on structural analysis with detailed consideration of tight junction structure-function relationships. J Membr Biol 80:59-70

    CAS  Google Scholar 

  • Marshman E, Booth C, Potten CS (2002) The intestinal epithelial stem cell. Bioessays 24:91-98

    Google Scholar 

  • Matsuo K, Ota H, Akamatsu T, Sugiyama A, Katsuyama T (1997) Histochemistry of the surface mucous gel layer of the human colon. Gut 40:782-789

    CAS  Google Scholar 

  • Matthes I, Nimmerfall F, Vonderscher J, Sucker H (1992) Mucus models for investigation of intestinal absorption mechanisms. 4. Comparison of mucus models with absorption models in vivo and in situ for prediction of intestinal drug absorption. Pharmazie 47:787-791

    CAS  Google Scholar 

  • Maury J, Nicoletti C, Guzzo-Chambraud L, Maroux S (1995) The filamentous brush border glycocalyx, a mucin-like marker of enterocyte hyper-polarization. Eur J Biochem 228:323-331

    CAS  Google Scholar 

  • McConnell RE, Higginbotham JN, Shifrin Jr DA, Tabb DL, Coffey RJ, Tyska MJ (2009) The enterocyte microvillus is a vesicle-generating organelle. J Cell Biol 185:1285-1298

    CAS  Google Scholar 

  • McConnell RE, Tyska MJ (2007) Myosin-1a powers the sliding of apical membrane along microvillar actin bundles. J Cell Biol 177:671-681

    CAS  Google Scholar 

  • Menzies IS (1984) Transmucosal passage of inert molecules in health and disease. In: Skadhauge E, Heintze K (eds) Intestinal absorption and secretion (Falk Symposium 36). MTP Press, Titisee, West Germany, pp 527–543

    Google Scholar 

  • Michel CC, Curry FE (1999) Microvascular permeability. Physiol Rev 79:703-761

    CAS  Google Scholar 

  • Minekus M, Smeets-Peeters M, Bernalier A, Marol-Bonnin S, Havenaar R, Marteau P, Alric M, Fonty G, Huis In’t Veld JHJ (1999) A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products. Appl Microbiol Biotechnol 53:108-114

    CAS  Google Scholar 

  • Mooseker M (1985) Organization, chemistry, and assembly of the cytoskeletal apparatus of the intestinal brush border. Annu Rev Cell Biol 1:209-241

    CAS  Google Scholar 

  • Mooseker MS, Coleman TR (1989) The 110-kD protein-calmodulin complex of the intestinal microvillus (brush border myosin I) is a mechanoenzyme. J Cell Biol 108:2395-2400

    CAS  Google Scholar 

  • Mooseker MS, Tilney LG (1975) Organization of an actin filament-membrane complex. Filament polarity and membrane attachment in the microvilli of intestinal epithelial cells. J Cell Biol 67:725-743

    CAS  Google Scholar 

  • Mullen TL, Muller M, Van Bruggen JT (1985) Role of solute drag in intestinal transport. J Gen Physiol 85:347-363

    CAS  Google Scholar 

  • Neutra M, Pringault E, Kraehenbuhl J (1996) Antigen sampling across epithelial barriers and induction of mucosal immune responses. Annu Rev Immunol 14:275-300

    CAS  Google Scholar 

  • Neutra MR, Giannasca PJ, Giannasca KT, Kraehenbuhl JP (1995) M cells and microbial pathogens. In: Blaser MJ, Ravdin JI, Greenberg HB, Guerrant RL (eds) Infections of the GI tract. Raven, New York, pp 163–178

    Google Scholar 

  • Neutra MR, Phillips TL, Mayer EL, Fishkind DJ (1987) Transport of membrane-bound macromolecules by M cells in follicle-associated epithelium of rabbit Peyer’s patch. Cell Tissue Res 247:537-546

    CAS  Google Scholar 

  • Nicholas CV, Desai M, Vadgama P, McDonnell MB, Lucas S (1991) pH dependence of hydrochloric acid diffusion through gastric mucus: correlation with diffusion through a water layer using a membrane-mounted glass pH electrode. Analyst 116:463-467

    CAS  Google Scholar 

  • Niibuchi JJ, Aramaki Y, Tsuchiya S (1986) Binding of antibiotics to rat intestinal mucin. Int J Pharm 30:181-187

    CAS  Google Scholar 

  • Nittmann J, Daccord G, Stanley HE (1985) Fractal growth of viscous fingers: quantitative characterization of a fluid instability phenomenon. Nature 314:141-144

    CAS  Google Scholar 

  • Nordman H, Davies JR, Lindell G, de Bolós C, Real F, Carlstedt I (2002) Gastric MUC5AC and MUC6 are large oligomeric mucins that differ in size, glycosylation and tissue distribution. Biochem J 364:191-200

    CAS  Google Scholar 

  • Odagi I, Kato T, Imazu H, Kaise M, Omar S, Tajiri H (2007) Examination of normal intestine using confocal endomicroscopy. J Gastroenterol Hepatol 22:658-662

    Google Scholar 

  • Offner GD, Troxler RF (2000) Heterogeneity of high-molecular-weight human salivary mucins. Adv Dent Res 14:69-75

    CAS  Google Scholar 

  • Olmsted SS, Padgett JL, Yudin AI, Whaley KJ, Moench TR, Cone RA (2001) Diffusion of macromolecules and virus-like particles in human cervical mucus. Biophys J 81:1930-1937

    CAS  Google Scholar 

  • Ouwehand AC, Isolauri E, Kirjavainen PV, Salminen SJ (1999) Adhesion of four Bifidobacterium strains to human intestinal mucus from subjects in different age groups. FEMS Microbiol Lett 172:61-64

    CAS  Google Scholar 

  • Palmai-Pallag T, Khodabukus N, Kinarsky L, Leir S, Sherman S, Hollingsworth M, Harris A (2005) The role of the SEA (sea urchin sperm protein, enterokinase and agrin) module in cleavage of membrane-tethered mucins. Febs J 272:2901-2911

    CAS  Google Scholar 

  • Pappenheimer JR (1988) Physiological regulation of epithelial junctions in intestinal epithelia. Acta Physiol Scand Suppl 571:43

    CAS  Google Scholar 

  • Pappenheimer JR (1990) Paracellular intestinal absorption of glucose, creatinine, and mannitol in normal animals: relation to body size. Am J Physiol 259:G290-299

    CAS  Google Scholar 

  • Pappenheimer JR (1998) Scaling of dimensions of small intestines in non-ruminant eutherian mammals and its significance for absorptive mechanisms. Comp Biochem Physiol A 121:45-58

    CAS  Google Scholar 

  • Pappenheimer JR (2001a) Intestinal absorption of hexoses and amino acids: from apical cytosol to villus capillaries. J Membr Biol 184:233-239

    CAS  Google Scholar 

  • Pappenheimer JR (2001b) Role of pre-epithelial ‘unstirred’ layers in absorption of nutrients from the human jejunum. J Membr Biol 179:185-204

    CAS  Google Scholar 

  • Pappenheimer JR, Dahl CE, Karnovsky ML, Maggio JE (1994) Intestinal absorption and excretion of octapeptides composed of D amino acids. Proc Natl Acad Sci USA 91:1942-1945

    CAS  Google Scholar 

  • Pappenheimer JR, Reiss KZ (1987) Contribution of solvent drag through intercellular junctions to absorption of nutrients by the small intestine of the rat. J Membr Biol 100:123-136

    CAS  Google Scholar 

  • Pedley KC, Naftalin RJ (1993) Evidence from fluorescence microscopy and comparative studies that rat, ovine and bovine colonic crypts are absorptive. J Physiol 460:525-547

    CAS  Google Scholar 

  • Peppas NA, Hansen PJ, Buri PA (1984) A theory of molecular diffusion in the intestinal mucus. Int J Pharm 20:107-118

    CAS  Google Scholar 

  • Phillips A, France N, Walker-Smith J (1979) The structure of the enterocyte in relation to its position on the villus in childhood: an electron microscopical study. Histopathology 3:117-130

    CAS  Google Scholar 

  • Pohl P, Saparov SM, Antonenko YN (1998) The size of the unstirred layer as a function of the solute diffusion coefficient. Biophys J 75:1403-1409

    CAS  Google Scholar 

  • Poulsen LK, Lan F, Kristensen CS, Hobolth P, Molin S, Krogfelt KA (1994) Spatial distribution of Escherichia coli in the mouse large intestine inferred from rRNA in situ hybridization. Infect Immun 62:5191-5194

    CAS  Google Scholar 

  • Powell DW (1981) Barrier function of epithelia. Am J Physiol 241:G275-288

    CAS  Google Scholar 

  • Powell DW (1986) Ion and water transport in the intestine. In: Andreoli TE, Hoffman JF, Faunstial DO, Schultz SG (eds) Physiology of membrane disorders. Plenum, New York, pp 559-596

    Google Scholar 

  • Pries AR, Secomb TW, Gaehtgens P (2000) The endothelial surface layer. Pflügers Arch 440:653-666

    CAS  Google Scholar 

  • Pries AR, Secomb TW, Jacobs H, Sperandio M, Osterloh K, Gaehtgens P (1997) Microvascular blood flow resistance: role of endothelial surface layer. Am J Physiol 273:H2272-2279

    CAS  Google Scholar 

  • Ranc H, Elkhyat A, Servais C, Mac-Mary S, Launay B, Humbert P (2006) Friction coefficient and wettability of oral mucosal tissue: Changes induced by a salivary layer. Colloid Surf A Physicochem Eng Aspects 276:155-161

    CAS  Google Scholar 

  • Raviv U, Klein J (2002) Fluidity of bound hydrate layers. Science 297:1540–1543

    CAS  Google Scholar 

  • Read NW, Levin RJ, Holdsworth CD (1976) Proceedings: Measurement of the functional unstirred layer thickness in the human jejunum in vivo. Gut 17:387

    CAS  Google Scholar 

  • Rees WD, Turnberg LA (1982) Mechanisms of gastric mucosal protection: a role for the ‘mucus-bicarbonate’ barrier. Clin Sci 62:343-348

    CAS  Google Scholar 

  • Rijnaarts HHM, Norde W, Bouwer EJ, Lyklema J, Zehnder AJB (1993) Bacterial adhesion under static and dynamic conditions. Appl Environ Microbiol 59:3255-3265

    CAS  Google Scholar 

  • Robbe C, Capon C, Maes E, Rousset M, Zweibaum A, Zanetta JP, Michalski JC (2003) Evidence of regio-specific glycosylation in human intestinal mucins. J Biol Chem 278:46337-46348

    CAS  Google Scholar 

  • Robert C, Bernalier-Donadille A (2003) The cellulolytic microflora of the human colon: evidence of microcrystalline cellulose degrading bacteria in methane excreting subjects. FEMS Microbiol Ecol 46:81-89

    CAS  Google Scholar 

  • Rodrigueza W, Thuahnai S, Temel R, Lund-Katz S, Phillips M, Williams D (1999) Mechanism of scavenger receptor class B type I-mediated selective uptake of cholesteryl esters from high density lipoprotein to adrenal cells. J Biol Chem 274:20344

    CAS  Google Scholar 

  • Rojas M, Ascencio F, Conway PL (2002) Purification and characterization of a surface protein from Lactobacillus fermentum 104R that binds to porcine small intestinal mucus and gastric mucin. Appl Environ Microbiol 68:2330-2336

    CAS  Google Scholar 

  • Rose MC, Voynow JA (2006) Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiol Rev 86:245-278

    CAS  Google Scholar 

  • Ross GA, Mayhew TM (1985) Effects of fasting on mucosal dimensions in the duodenum, jejunum and ileum of the rat. J Anat 142:191-200

    CAS  Google Scholar 

  • Ryu K, Grim E (1982) Unstirred water layer in canine jejunum. Am J Physiol 242:G364-369

    CAS  Google Scholar 

  • Salas PJI, Moreno JH (1982) Single-file diffusion multi-ion mechanism of permeation in paracellular epithelial channels. J Membr Biol 64:103-112

    CAS  Google Scholar 

  • Saltzman WM, Radomsky ML, Whaley KJ, Cone RA (1994) Antibody diffusion in human cervical mucus. Biophys J 66:508-515

    CAS  Google Scholar 

  • Sandzen B, Blom H, Dahlgren S (1988) Gastric Mucus Gel Layer Thickness Measured by Direct Light Microscopy: An Experimental Study in the Rat. Scand J Gastroenterol 23:1160-1164

    CAS  Google Scholar 

  • Sarosiek J, Marshall BJ, Peura DA, Hoffman S, Feng T, McCallum RW (1991) Gastroduodenal mucus gel thickness in patients with Helicobacter pylori: a method for assessment of biopsy specimens. Am J Gastroenterol 86:729-734

    CAS  Google Scholar 

  • Savidge TC, Smith MW, Mayel-Afshar S, Collins AJ, Freeman TC (1994) Selective regulation of epithelial gene expression in rabbit Peyer’s patch tissue. Pflügers Arch 428:391-399

    CAS  Google Scholar 

  • Sawaguchi A, Ishihara K, Kawano J, Oinuma T, Hotta K, Suganuma T (2002) Fluid dynamics of the excretory flow of zymogenic and mucin contents in rat gastric gland processed by high-pressure freezing/freeze substitution. J Histochem Cytochem 50:223-234

    CAS  Google Scholar 

  • Schafer JA, Andreoli TE (1986) Principles of water and nonelectrolyte transport across membranes. In: Andreoli TE, Hoffman JF, Fanestil DD, Schultz SG (eds) Physiology of Membrane Disorders. Plenum, New York, pp 177-190

    Google Scholar 

  • Schneider WR, Doetsch RN (1974) Effect of viscosity on bacterial motility. J Bacteriol 117:696-701

    CAS  Google Scholar 

  • Schultsz C, van den Berg FM, ten Kate FW, Tytgat GNJ, Dankert J (1999) The intestinal mucus layer from patients with inflammatory bowel disease harbors high numbers of bacteria compared with controls. Gastroenterology 117:1089-1097

    CAS  Google Scholar 

  • Sellers LA, Allen A, Morris ER, Ross-Murphy SB (1991) The rheology of pig small intestinal and colonic mucus: weakening of gel structure by non-mucin components. Biochim Biophys Acta 1115:174-179

    CAS  Google Scholar 

  • Semenza G (1986) Anchoring and biosynthesis of stalked brush border membrane proteins: glycosidases and peptidases of enterocytes and renal tubuli. Annu Rev Cell Biol 2:255-307

    CAS  Google Scholar 

  • Sheahan DG, Jervis HR (1976) Comparative histochemistry of gastrointestinal mucosubstances. Am J Anat 146:103-131

    CAS  Google Scholar 

  • Shen L, Turner JR (2006) Role of epithelial cells in initiation and propagation of intestinal inflammation. Eliminating the static: tight junction dynamics exposed. Am J Physiol 290:G577-582

    CAS  Google Scholar 

  • Shogren R, Gerken TA, Jentoft N (1989) Role of glycosylation on the conformation and chain dimensions of O-linked glycoproteins: light-scattering studies of ovine submaxillary mucin. Biochemistry 28:5525-5536

    CAS  Google Scholar 

  • Silver DL, Wang N, Xiao X, Tall AR (2001) High density lipoprotein (HDL) particle uptake mediated by scavenger receptor class B type 1 results in selective sorting of HDL cholesterol from protein and polarized cholesterol secretion. J Biol Chem 276:25287-25239

    CAS  Google Scholar 

  • Smart J (2005) The basics and underlying mechanisms of mucoadhesion. Adv Drug Deliv Rev 57:1556-1568

    CAS  Google Scholar 

  • Smith GW, Wiggins PM, Lee SP, Tasman-Jones C (1986) Diffusion of butyrate through pig colonic mucus in vitro. Clin Sci 70:271-276

    CAS  Google Scholar 

  • Smithson KW, Millar DB, Jacobs LR, Gray GM (1981) Intestinal diffusion barrier: unstirred water layer or membrane surface mucous coat? Science 214:1241-1244

    CAS  Google Scholar 

  • Snoeck V, Goddeeris B, Cox E (2005) The role of enterocytes in the intestinal barrier function and antigen uptake. Microbes and Infection 7:997-1004

    CAS  Google Scholar 

  • Specian RD, Oliver MG (1991) Functional biology of intestinal goblet cells. Am J Physiol 260:C183-193

    CAS  Google Scholar 

  • Stahl A (2004) A current review of fatty acid transport proteins (SLC27). Pflügers Arch 447:722-727

    CAS  Google Scholar 

  • Stein WD (1967) The movement of molecules across cell membranes. Academic Press, New York

    Google Scholar 

  • Stern M, Walker WA (1984) Food proteins and gut mucosal barrier I. Binding and uptake of cow’s milk proteins by adult rat jejunum in vitro. Am J Physiol 246:G556-562

    CAS  Google Scholar 

  • Strocchi A, Levitt MD (1993) Role of villous surface area in absorption science versus religion. Dig Dis Sci 38:385-387

    CAS  Google Scholar 

  • Strous GJ, Dekker J (1992) Mucin-type glycoproteins. Crit Rev Biochem Mol Biol 27:57-92

    CAS  Google Scholar 

  • Su F, Brands R, Wang Z, Verdant C, Bruhn A, Cai Y, Raaben W, Wulferink M, Vincent JL (2006) Beneficial effects of alkaline phosphatase in septic shock. Crit Care Med 34:2182-2187

    CAS  Google Scholar 

  • Swidsinski A, Loening-Baucke V, Theissig F, Engelhardt H, Bengmark S, Koch S, Lochs H, Doerffel Y (2007a) Comparative study of the intestinal mucus barrier in normal and inflamed colon. Gut 56:343-350

    Google Scholar 

  • Swidsinski A, Sydora BC, Doerffel Y, Loening-Baucke V, Vaneechoutte M, Lupicki M, Scholze J, Lochs H, Dieleman LA (2007b) Viscosity gradient within the mucus layer determines the mucosal barrier function and the spatial organization of the intestinal microbiota. Inflamm Bowel Dis 13:963-970

    Google Scholar 

  • Tajima K, Aminov RI, Nagamine T, Ogata K, Nakamura M, Matsui H, Benno Y (1999) Rumen bacterial diversity as determined by sequence analysis of 16S rDNA libraries. FEMS Microbiol Ecol 29:159-169

    CAS  Google Scholar 

  • Taylor C, Allen A, Dettmar PW, Pearson JP (2003) The gel matrix of gastric mucus is maintained by a complex interplay of transient and nontransient associations. Biomacromolecules 4:922-927

    CAS  Google Scholar 

  • Taylor C, Allen A, Dettmar PW, Pearson JP (2004) Two rheologically different gastric mucus secretions with different putative functions. Biochim Biophys Acta 1674:131-138

    CAS  Google Scholar 

  • Taylor C, Draget KI, Pearson JP, Smidsrød O (2005) Mucous systems show a novel mechanical response to applied deformation. Biomacromolecules 6:1524-1530

    CAS  Google Scholar 

  • Terra WR (2001) The origin and functions of the insect peritrophic membrane and peritrophic gel. Arch Insect Biochem Physiol 47:47-61

    CAS  Google Scholar 

  • Thomson AB, Dietschy JM (1977) Derivation of the equations that describe the effects of unstirred water layers on the kinetic parameters of active transport processes in the intestine. J Theor Biol 64:277-294

    CAS  Google Scholar 

  • Tirosh B, Rubinstein A (1998) Migration of adhesive and nonadhesive particles in the rat intestine under altered mucus secretion conditions. J Pharm Sci 87:453-456

    CAS  Google Scholar 

  • Travis S, Menzies I (1992) Intestinal permeability: functional assessment and significance. Clin Sci 82:471-488

    CAS  Google Scholar 

  • Tsai HH, Dwarakanath AD, Hart CA, Milton JD, Rhodes JM (1995) Increased faecal mucin sulphatase activity in ulcerative colitis: a potential target for treatment. Br Med J 36:570-576

    CAS  Google Scholar 

  • Turner JR, Rill BK, Carlson SL, Carnes D, Kerner R, Mrsny RJ, Madara JL (1997) Physiological regulation of epithelial tight junctions is associated with myosin light-chain phosphorylation. Am J Physiol 273:C1378-1385

    CAS  Google Scholar 

  • Turner NC, Martin GP, Marriott C (1985) The influence of native porcine gastric mucus gel on hydrogen ion diffusion: the effect of potentially ulcerogenic agents. J Pharm Pharmacol 37:776-780

    CAS  Google Scholar 

  • Ugolev A (1989) Membrane digestion: new facts and concepts. Mir Publishers

    Google Scholar 

  • Ugolev AM (1962) Membrane digestion. Bull Exp Biol Med 52:874-877

    CAS  Google Scholar 

  • Ugolev AM, De Laey P (1973) Membrane digestion a concept of enzymic hydrolysis on cell membranes. Biochim Biophys Acta 300:105-128

    CAS  Google Scholar 

  • Ugolev AM, Smirnova LF, Iezuitova NN, Timofeeva NM, Mityushova NM, Egorova VV, Parshkov EM (1979) Distribution of some adsorbed and intrinsic enzymes between the mucosal cells of the rat small intestine and the apical glycocalyx separated from them. FEBS Lett 104:35-38

    CAS  Google Scholar 

  • Van der Waaij LA (2003) The interaction between the mucosal immune system and the commensal microflora of the colon. Phd Thesis, Rijksuniversiteit, Groningen

    Google Scholar 

  • van Veen SQ, van Vliet AK, Wulferink M, Brands R, Boermeester MA, van Gulik TM (2005) Bovine Intestinal Alkaline Phosphatase Attenuates the Inflammatory Response in Secondary Peritonitis in Mice. Infect Immun 73:4309-4314

    CAS  Google Scholar 

  • Vecchi M, Torgano G, Monti M, Berti E, Agape D, Primignani M, Ronchi G, Franchis R (1987) Evaluation of structural and secretory glycoconjugates in normal human jejunum by means of lectin histochemistry. Histochem Cell Biol 86:359-364

    CAS  Google Scholar 

  • Velez M, De Keersmaecker S, Vanderleyden J (2007) Adherence factors of Lactobacillus in the human gastrointestinal tract. FEMS Microbiol Lett 276:140-148

    CAS  Google Scholar 

  • Verdugo P (1990) Goblet cells secretion and mucogenesis. Annu Rev Physiol 52:157-176

    CAS  Google Scholar 

  • Veerman EC, Valentijn-Benz M, Nieuw Amerongen AV (1989) Viscosity of human salivary mucins: Effect of pH and ionic strength and role of sialic acid. J Biol Buccale 17:297-306

    CAS  Google Scholar 

  • Waheed AA, Gupta PD (1997) Changes in structural and functional properties of rat intestinal brush border membrane during starvation. Life Sci 61:2425-2433

    CAS  Google Scholar 

  • Waigh TA, Papagiannopoulos A, Voice A, Bansil R, Unwin AP, Dewhurst CD, Turner B, Afdhal N (2002) Entanglement Coupling in Porcine Stomach Mucin. Langmuir 18:7188-7195

    CAS  Google Scholar 

  • Walker AW, Duncan SH, Harmsen HJM, Holtrop G, Welling GW, Flint HJ (2008) The species composition of the human intestinal microbiota differs between particle associated and liquid phase communities. Environ Microbiol 10:3275-3283

    CAS  Google Scholar 

  • Watson CJ, Rowland M, Warhurst G (2001) Functional modeling of tight junctions in intestinal cell monolayers using polyethylene glycol oligomers. Am J Physiol 281:C388-397

    CAS  Google Scholar 

  • Westergaard H, Dietschy JM (1974) Delineation of the dimensions and permeability characteristics of the two major diffusion barriers to passive mucosal uptake in the rabbit intestine. J Clin Invest 54:718-732

    CAS  Google Scholar 

  • Westergaard H, Holtermuller KH, Dietschy JM (1986) Measurement of resistance of barriers to solute transport in vivo in rat jejunum. Am J Physiol 250:G727-735

    CAS  Google Scholar 

  • Winne D (1978) Dependence of intestinal absorption in vivo on the unstirred layer. Naunyn Schmiedebergs Arch Pharmacol 304:175-181

    CAS  Google Scholar 

  • Winne D (1979) Rat jejunum perfused in situ: effect of perfusion rate and intraluminal radius on absorption rate and effective unstirred layer thickness. Naunyn Schmiedebergs Arch Pharmacol 307:265-274

    CAS  Google Scholar 

  • Winne D (1989) Effect of villosity and distension on the absorptive and secretory flux in the small intestine. J Theor Biol 139:155-186

    CAS  Google Scholar 

  • Winne D, Kopf S, Ulmer ML (1979) Role of unstirred layer in intestinal absorption of phenylalanine in vivo. Biochim Biophys Acta 550:120-130

    CAS  Google Scholar 

  • Womack WA, Mailman D, Kvietys PR, Granger DN (1988a) Neurohumoral control of villous motility. Am J Physiol 255:G162-167

    CAS  Google Scholar 

  • Womack WA, Tygart PK, Mailman D, Kvietys PR, Granger DN (1988b) Villous motility: relationship to lymph flow and blood flow in the dog jejunum. Gastroenterology 94:977-983

    CAS  Google Scholar 

  • Yakubov GE, McColl J, Bongaerts JH, Ramsden JJ (2009) Viscous Boundary Lubrication of Hydrophobic Surfaces by Mucin. Langmuir 25:2313-2321.

    CAS  Google Scholar 

  • Yakubov GE, Papagiannopoulos A, Rat E, Waigh TA (2007) Charge and interfacial behavior of short side-chain heavily glycosylated porcine stomach mucin. Biomacromolecules 8:3791-3799

    CAS  Google Scholar 

  • Yang DH, Kasamo H, Miyauchi M, Tsuyama S, Murata F (1996) Ontogeny of sulphated glycoconjugate-producing cells in the rat fundic gland. Histochem J 28:33-43

    CAS  Google Scholar 

  • Ymele-Leki P, Ross JM (2007) Erosion from Staphylococcus aureus biofilms grown under physiologically relevant fluid shear forces yields bacterial cells with reduced avidity to collagen. Appl Environ Microbiol 73:1834-1841

    CAS  Google Scholar 

  • Young KD (2006) The selective value of bacterial shape. Microbiol Mol Biol Rev 70:660-703

    Google Scholar 

  • Zeuthen T (1983) Ion activities in the lateral intercellular spaces of gallbladder epithelium transporting at low external osmolarities. J Membr Biol 76:113-122

    CAS  Google Scholar 

  • Zeuthen T (2010) Water-Transporting Proteins. J Membr Biol 234:57-73

    CAS  Google Scholar 

  • Zeuthen T, Hamann S, La Cour M (1996) Cotransport of H+, lactate and H2O by membrane proteins in retinal pigment epithelium of bullfrog. J Physiol 497:3-17

    CAS  Google Scholar 

  • Zeuthen T, Zeuthen E, MacAulay N (2007) Water transport by GLUT2 expressed in Xenopus laevis oocytes. J Physiol 579:345-361

    CAS  Google Scholar 

  • Zhao J, Liao D, Yang J, Gregersen H (2003) Viscoelastic behavior of small intestine in streptozotocin-induced diabetic rats. Dig Dis Sci 48:2271-2277

    Google Scholar 

  • Zheng D, Taylor GT, Gyananath G (1994) Influence of laminar flow velocity and nutrient concentration on attachment of marine bacterioplankton. Biofouling 8:107-120

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick W. M. Janssen .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lentle, R.G., Janssen, P.W. (2011). Flow, Mixing and Absorption at the Mucosa. In: The Physical Processes of Digestion. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9449-3_10

Download citation

Publish with us

Policies and ethics