Skip to main content

Inorganic Nanotubes

  • Chapter
  • First Online:
Molecular- and Nano-Tubes

Abstract

Since the first report on synthesis of the WS2 nanotubes in 1992, the number of articles on successful growth of different inorganic nanotubes increases rapidly revealing the importance of this field for nanotechnology. Although some geometrical similarities with carbon nanotubes, inorganic nanotubes distinguish themselves by important peculiarities, from the growth mechanisms to the physical and chemical properties attractive for possible applications. Their structural properties, important for potential applications for biosensors, drug delivery, safe containers, nanoreactors and strengthening fibres are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    Article  CAS  Google Scholar 

  2. Tenne, R., Margulis, L., Genut, M., Hodes, G. Polyhedral and cylindrical structures of tungsten disulfide. Nature 360, 444–446 (1992).

    Article  CAS  Google Scholar 

  3. Margulis, L., Salitra, G., Tenne, R., Talianker, M. Nested fullerene-like structures. Nature 365, 113–114 (1993).

    Article  CAS  Google Scholar 

  4. Chopra, N. G., et al. Boron-nitride nanotubes. Science 269, 966–967 (1995).

    Article  CAS  Google Scholar 

  5. Nakamura, H., Matsui, Y. Silica gel nanotubes obtained by sol-gel method. J. Am. Chem. Soc. 117, 2651–2652 (1995).

    Article  CAS  Google Scholar 

  6. Hoyer, P. Formation of a titanium dioxide nanotube array. Langmuir 12, 1411–1413 (1996).

    Article  CAS  Google Scholar 

  7. Spahr, M. E., et al. Redox-active nanotubes of vanadium oxide. Angew. Chem., Int. Ed. 37, 1263–1265 (1998).

    Article  CAS  Google Scholar 

  8. Hacohen, Y. R., Grunbaum, E., Tenne, R., Sloan, J., Hutchison, J. L. Cage structures and nanotubes of NiCl2. Nature 395, 336–337 (1998).

    Article  CAS  Google Scholar 

  9. Galvan, D. H., Kim, J. H., Maple, M. B., Avalos-Berja, M., Adem, E. Formation of NbSe2 nanotubes by electron irradiation. Fullerene Sci. Technol. 8, 143–151 (2000).

    CAS  Google Scholar 

  10. Hutleen, J. C., Jirage, K. B., Martin, C. R. Introducing chemical transport selectivity into gold nanotubule membrane. J. Am. Chem. Soc. 120, 6603–6604 (1998).

    Article  Google Scholar 

  11. Tourillon, G., Pontonnier, L., Levy, J. P., Langlais, V. Electrochemically synthesized Co and Fe nanowires and nanotubes. Electrochem. Solid-State Lett. 3, 20–23 (2000).

    Article  CAS  Google Scholar 

  12. Rao, C. N. R., Govindaraj, A. G., Deepak, F. L., Gunari, N. A., Nath, M. Surfactant-assisted synthesis of semiconductor nanotubes and nanowires. Appl. Phys. Lett. 78, 1853–1855 (2001).

    Article  CAS  Google Scholar 

  13. Govindaraj, A., Deepak, F. L., Gunari, N. A., Rao, C. N. R. Semiconductor nanorods: Cu, Zn, and Cd chalcogenides. Israel J. Chem. 41, 23–30 (2001).

    Article  CAS  Google Scholar 

  14. Dloczik, L., et al. Hexagonal nanotubes of ZnS by chemical conversion of monochrystalline ZnO columns. Appl. Phys. Lett. 78, 3687–3689 (2001).

    Article  CAS  Google Scholar 

  15. Jiang, X., Xie, Y., Zhu, L., He, W., Qian, Y. Synthesis of novel nickel sulfide layer-rolled structures. Adv. Mater. 13, 1278–1281 (2001).

    Article  CAS  Google Scholar 

  16. Peng, Y. Y., et al. Cu5.5FeS6.5 nanotubes – a new kind of ternary sulfide nanotube. New J. Chem. 25, 1359–1361 (2001).

    Article  CAS  Google Scholar 

  17. Pu, L., Bao, X., Zou, J., Feng, D. Individual alumina nanotubes. Angew. Chem., Int. Ed. 40, 1490–1493 (2001).

    Article  CAS  Google Scholar 

  18. Cheng, B., Samulski, E. T. Fabrication and characterization of nanotubular semiconductor oxides In2O3 and Ga2O3. J. Mater. Chem. 11, 2901–2902 (2001).

    Article  CAS  Google Scholar 

  19. Li, J. Y., Chen, X. L., Qiao, Z. Y., Cao, Y. G., Li, H. Synthesis of GaN nanotubes. J. Mater. Sci. Lett. 20, 1987–1988 (2001).

    Article  CAS  Google Scholar 

  20. Nath, M., Rao, C. N. R. Nanotubes of group 4 metal disulfides. Angew. Chem., Int. Ed. 41, 3451–3454 (2002).

    Article  CAS  Google Scholar 

  21. Nath, M., Rao, C. N. R. New metal disulfide nanotubes. J. Am. Chem. Soc. 123, 4841–4842 (2001).

    Article  CAS  Google Scholar 

  22. Yada, M., Mihara, M., Mouri, S., Kuroki, M., Kijima, T. Rare earth (Er, Tm, Yb, Lu) oxide nanotubes templated by dodecylsulfate assemblies. Adv. Mater. 14, 309–313 (2002).

    Article  CAS  Google Scholar 

  23. Wu, J., Liu, S., Wu, C., Chen, K., Chen, L. Heterostructures of ZnO-Zn coaxial nanocables and ZnO nanotubes. Appl. Phys. Lett. 81, 1312–1314 (2002).

    Article  CAS  Google Scholar 

  24. Hernandez, B. A., Chang, K. S., Fisher, E. R., Dorhout, P. K. Sol-gel template synthesis and characterization of BaTiO3 and PbTiO3 nanotubes. Chem. Mater. 14, 480–482 (2002).

    Article  CAS  Google Scholar 

  25. Han, C. C., Bai, M. Y., Lee, J. T. A new and easy method for making Ni and Cu microtubules and their regurarly assembled structures. Chem. Mater. 13, 4260–4268 (2001).

    Article  CAS  Google Scholar 

  26. Mayers, B., Xia, Y. Formation of tellurium nanotubes through concentration depletion at the surfaces of seeds. Adv. Mater. 14, 279–282 (2002).

    Article  CAS  Google Scholar 

  27. Brorson, M., Hansen, T. W., Jacobsen, C. J. H. J. Rhenium(IV) sulfide nanotubes. Am. Chem. Soc. 124, 11582–11583 (2002).

    Article  CAS  Google Scholar 

  28. Sha, J., et al. Silicon nanotubes. Adv. Mater. 14, 1219–1221 (2002).

    Article  CAS  Google Scholar 

  29. Tenne, R., Zettl, A. K. Nanotubes from inorganic materials. Top. Appl. Phys. 80, 81–112 (2001).

    Article  CAS  Google Scholar 

  30. Pokropivnyi, V. V. Nanostructured materials: Non-carbon nanotubes – Properties and applications. Powder Metallurg. Metal Ceram. 41, 123–135 (2002).

    Article  CAS  Google Scholar 

  31. Patzke, G. R., Krumeich, F., Nesper, R. Oxidic nanotubes and nanorods-anisotropic modules for a future nanotechnology. Angew. Chem., Int. Ed. 41, 2446–2461 (2002).

    Article  CAS  Google Scholar 

  32. Rao Rao, C. N. R., Nath, M. Inorganic nanotubes. Dalton Trans. 1, 1–24 (2003).

    Article  CAS  Google Scholar 

  33. Tenne, R. Fullerene-like materials and nanotubes from inorganic compounds with a layered (2-D) structure. Colloids and Surfaces A: Physicochem. Eng. Aspects 208, 83–92 (2002).

    Article  CAS  Google Scholar 

  34. Tenne, R. Inorganic nanotubes and fullerene-like nanoparticles. Nat. Nanotechnol. 1, 103–111 (2006).

    Article  CAS  Google Scholar 

  35. Ivanovskii, A. L. Non-carbon nanotubes: synthesis and simulation. Russ. Chem. Rev. 71, 175–194 (2002).

    Article  CAS  Google Scholar 

  36. Remskar, M. Inorganic nanotubes. Adv. Mater. 16, 1497–1504 (2004).

    Article  CAS  Google Scholar 

  37. Halford, B. Inorganic menagerie. Chem. Eng. News 83, 30–33 (2005).

    Google Scholar 

  38. Enyashin, A., Gemming, S., Seifert, G. Nanosized allotropes of molybdenum disulfide. Eur. Phys. J. Spec. Top. 149, 103–125 (2007).

    Article  Google Scholar 

  39. Li, Q., et al. Molybdenum Disulfide nanowires and nanoribbons by electrochemical/chemical synthesis. J. Phys. Chem. B 109, 3169–3182 (2005).

    Article  CAS  Google Scholar 

  40. Kopnov, F., Yoffe, A., Leitus, G., Tenne, R. Transport properties of fullerene-like WS2 nanoparticles. Phys. Stat. Sol. B 234, 1229–1240 (2006).

    Article  CAS  Google Scholar 

  41. Remskar, M., Skraba, Z., Cleton, F., Sanjines, R., Levy, F. MoS2 as microtubes. Appl. Phys. Lett. 69, 351–353 (1996).

    Article  CAS  Google Scholar 

  42. Remskar, M., Skraba, Z., Sanjines, R., Levy, F. Syntactic coalescence of WS2 nanotubes. Appl. Phys. Lett. 74, 3633–3635 (1999).

    Article  CAS  Google Scholar 

  43. Bernaerts, D., Amelincx, S., Van Tendeloo, G., Van Landuyt, J. Microstructure and formation mechanisms of cylindrical and conical scrolls of the misfit layer compounds PbNbnS2n+1. J. Cryst. Growth 172, 433–439 (1997).

    Article  CAS  Google Scholar 

  44. Whitby, R. L. D., Hsu, W. K., Boothroyd, C. B., Kroto, H. W., Walton, D. R. M. Tungsten disulphide coated multi-walled carbon nanotubes. Chem. Phys. Lett. 359, 121–126 (2002).

    Article  CAS  Google Scholar 

  45. Whitby, R. L. D., et al. WS2 layer formation on multi-walled carbon nanotubes. Appl. Phys. A 76, 527–532 (2003).

    Article  CAS  Google Scholar 

  46. Du, G., Yu, Y., Peng, L. M. Hexaniobate nanotubes with variable interlayer spacings. Chem. Phys. Lett. 400, 536–540 (2004).

    Article  CAS  Google Scholar 

  47. Seifert, G., Köhler, T., Tenne, R. Stability of metal chalcogenide nanotubes. J. Phys. Chem. B 106, 2497–2501 (2002).

    Article  CAS  Google Scholar 

  48. Srolovitz, D. J., Safran, S. A., Tenne, R. Elastic equilibrium of curved thin films. Phys. Rev. E 49, 5260–5270 (1994).

    Article  CAS  Google Scholar 

  49. Mendelev, M. I., Srolovitz, D. J., Safran, S. A., Tenne, R. Equilibrium structure of multilayer van der Waals films and nanotubes. Phys. Rev. B 65, 075402 1–12 (2002).

    Google Scholar 

  50. Seifert, G., Terrones, H., Terrones, M., Jungnickel, G., Frauenheim, T. Structure and electronic properties of MoS2 nanotubes. Phys. Rev. Lett. 85, 146–149 (2000).

    Article  CAS  Google Scholar 

  51. Seifert, G., Köhler, T., Tenne, R. Stability of metal chalcogenide nanotubes. J. Phys. Chem. B 106, 2497–2501 (2002).

    Article  CAS  Google Scholar 

  52. Bar-Sadan, M., et al. Structure and stability of molybdenum sulfide fullerenes. J. Phys. Chem. B 110, 25399–25410 (2006).

    Article  CAS  Google Scholar 

  53. Nath, M., Rao, C. N. R. MoSe2 and WSe2 nanotubes and related structures. Chem.Commun. 21, 2236–2237 (2001).

    Article  CAS  Google Scholar 

  54. Chen, J., Li, S. L., Tao, Z. L., Gao, F. Low-temperature synthesis of titanium disulfide nanotubes. Chem. Commun. 8, 980–981 (2003).

    Article  CAS  Google Scholar 

  55. Therese, H. A., et al. VS2 nanotubes containing organic-amine templates from the NT-VOx precursors and reversible copper intercalation in NT-VS2. Angew. Chem. Int. Ed. 44, 262–265 (2005).

    Article  CAS  Google Scholar 

  56. Hu, J., Bando, Y., Liu, Z. Synthesis of gallium-filled gallium oxide-zinc oxide composite coaxial nanotubes. Adv. Mater. 15, 1000–1003 (2003).

    Article  CAS  Google Scholar 

  57. Niederberger, M., et al. Low-cost synthesis of vanadium oxide nanotubes via two novel non-alkoxide routes. Chem. Mater. 12, 1995–2000 (1995).

    Article  CAS  Google Scholar 

  58. Hu, W. B., et al. Generation of hollow crystalline tungsten oxide fibres. Appl. Phys. A 70, 231–233 (2000).

    Article  CAS  Google Scholar 

  59. Satshkumar, B. C., Govindaraj, A., Erasmus, M. V., Basumallick, L., Rao, C. N. R. Oxide nanotubes prepared using carbon nanotubes as templates. J. Mater. Res. 12, 604–606 (1997).

    Article  Google Scholar 

  60. Lu, J. G., Zhang, J., Ding, W. P., Shen, B., Guo, X. F. Synthesis and Characterization of Boehmite AIOOH Nanotubes. Chinese J. Inorg. Chem. 23, 897–900 (2007).

    CAS  Google Scholar 

  61. Wang, Y., Cao, G. Z. Synthesis and electrochemical properties of InVO4 nanotube arrays. J. Mater. Chem. 17, 894–899 (2007).

    Article  CAS  Google Scholar 

  62. Luo, Y., et al. Nanoshell tubes of ferroelectric lead zirconate titanate and barium titanate. Appl. Phys. Lett. 83, 440–442 (2003).

    Article  CAS  Google Scholar 

  63. Wang, Y., Lee, J. Y., Zeng, H. C. Polycrystalline SnO2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical applications. Chem. Mater. 17, 3899–3903 (2005).

    Article  CAS  Google Scholar 

  64. Fan, H., et al. Single-crystalline MgAl2O4 spinel nanotubes using a reactive and removable MgO nanowire template. Nanotechnology 17, 5157–5162 (2006).

    Article  CAS  Google Scholar 

  65. Satishkumar, B. C., Govindaraj, A., Nath, M., Rao, C. N. R. Synthesis of metal oxide nanorods using carbon nanotubes as templates. J. Mater. Chem. 10, 2115–2119 (2000).

    Article  CAS  Google Scholar 

  66. Foresti, E., et al. Morphological and chemical/physical characterization of Fe-doped synthetic chrysolite nanotubes. Adv. Func. Mater. 15, 1009–1016 (2005).

    Article  CAS  Google Scholar 

  67. Liu, G. X., Hong, G. Y. Synthesis and photoluminescence of Y2O3:RE3+ (RE = Eu, Tb, Dy) porous nanotubes templated by carbon nanotubes. J. Nanosci. Nanotech. 6, 120–124 (2006).

    CAS  Google Scholar 

  68. Yada, M., et al. Hierarhical two- and three-dimensional microstructures composed of rare-earth compound nanotubes. Adv. Mater. 16, 1448–1453 (2004).

    Article  CAS  Google Scholar 

  69. Bernaerts, D., Amelincx, S., Van Tendeloo, G., Van Landuyt, J. Microstructure and formation mechanism of cylindrical and conical scrolls of the misfit layer compounds PbNbnS2n+1. J. Cryst. Growth 172, 433–439 (1997).

    Article  CAS  Google Scholar 

  70. Nath, M., Mukhopadhyay, K., Rao, C. N. R. Mo1-xWxS2 nanotubes. Chem. Phys. Lett. 352, 163–168 (2002).

    Article  CAS  Google Scholar 

  71. Hsu, W. K., et al. Mixed-phase WxMoyCzS2 nanotubes. Chem. Mater. 12, 3541–3546 (2000).

    Article  CAS  Google Scholar 

  72. Zhu, Y. Q., et al. Niobium-doped WS2 nanotubes. Chem. Phys. Lett. 342, 15–21 (2001).

    Article  CAS  Google Scholar 

  73. Zhu, Y. Q., Hsu, W. K., Kroto, H. W., Walton, D. R. M. An alternative route to NbS2 nanotubes. J. Phys. Chem. B 106, 7623–7626 (2002).

    Article  CAS  Google Scholar 

  74. Remskar, M., Skraba, Z., Stadelmann, P., Levy, F. Structural stabilization of new compounds: MoS2 and WS2 micro- and nanotubes alloyed with gold and silver. Adv. Mater. 12, 814–818 (2000).

    Article  CAS  Google Scholar 

  75. Li, D., et al. Multi-phase equilibrium microemulsions-based routes to synthesize nanoscale BaWO4 spheres, cylinders and rods. Colloids Surf. A 274, 18–23 (2006).

    Article  CAS  Google Scholar 

  76. Malliakas, C. D., Kanatzidis, M. G. Inorganic single wall nanotubes of SbPS4-xSex (0 ≤ x ≤ 3) with tunable band gap. J. Am. Chem. Soc. 128, 6538–6539 (2006).

    Article  CAS  Google Scholar 

  77. Prinz, A. V., Prinz, V. Ya. Application of semiconductor micro- and nanotubes in biology. Surf. Sci. 532–535, 911–915 (2003).

    Article  CAS  Google Scholar 

  78. Stephan, O., et al. Doping graphitic and carbon nanotube structures with boron and nitrogen. Science 266, 1683–1685 (1994).

    Article  CAS  Google Scholar 

  79. Han, C. C., Bai, M. Y., Lee, J. T. A new and easy method for making Ni and Cu microtubules and their regularly assembled structures. Chem. Mater. 13, 4260–4268 (2001).

    Article  CAS  Google Scholar 

  80. Li, Y. D., et al. Bismuth nanotubes: a rational low-temperature synthetic route. J. Am. Chem. Soc. 123, 9904–9905 (2001).

    Article  CAS  Google Scholar 

  81. Chou, S. L., Cheng, F. Y., Chen, J. Electrochemical deposition of Ni(OH)2 and Fe-doped Ni(OH)2 tubes. Eur. J. Inorg. Chem. 20, 4035–4039 (2005).

    Article  CAS  Google Scholar 

  82. Tagliazucchi, M., Sanches, R. D., Troiani, H. E., Calvo, E. J. Synthesis of lanthanum nickelate perovskite nanotubes by using a template-inorganic precursor. Solid State Comm. 137, 212–215 (2006).

    Article  CAS  Google Scholar 

  83. Liang, L. F., et al. Hydrothermal synthesis of prismatic NaHoF4 microtubes and NaSmF4 nanotubes. Inorg. Chem. 43, 1594–1596 (2004).

    Article  CAS  Google Scholar 

  84. Li, D., Xia, Y. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett. 4, 933–938 (2004).

    Article  CAS  Google Scholar 

  85. Krivovichev, S. V., et al. Highly porous uranyl selenate nanotubules. J. Am. Chem. Soc. 127, 1072–1073 (2005).

    Article  CAS  Google Scholar 

  86. Fu, L., et al. Coating carbon nanotubes with rare earth oxide multiwalled nanotubes. Adv. Mater. 16, 350–352 (2004).

    Article  CAS  Google Scholar 

  87. Wu, Q., et al. Synthesis and characterization of faceted hexagonal aluminum nitride nanotubes. Am. Chem. Soc. 125, 10176–10177 (2003).

    Article  CAS  Google Scholar 

  88. Pol, S. V., Pol, V. G., Gedanken, A. Synthesis of WC nanotubes. Adv. Mater. 18, 2023–2027 (2006).

    Article  CAS  Google Scholar 

  89. Goldberger, J., et al. Single-crystal gallium nitride nanotubes. Nature 422, 599–602 (2003).

    Article  CAS  Google Scholar 

  90. Rothschild, A., Popovitz-Biro, R., Lourie, O., Tenne, R. Morphology of multiwall WS2 nanotubes. J. Phys. Chem. B 104, 8976–8981 (2000).

    Article  CAS  Google Scholar 

  91. Remskar, M., Virsek, M., Jesih, A. WS2 nanobuds as a new hybrid nanomaterial. Nano Lett. 8, 76–80 (2008).

    Article  CAS  Google Scholar 

  92. Remskar, M., Mrzel, A., Jesih, A., Lévy, F. Metal-alloyed NbS2 nanotubes synthesised by the self-assembly of nanoparticles. Adv. Mater. 14, 680–684 (2002).

    Article  CAS  Google Scholar 

  93. Remskar, M., Skraba, Z., Ballif, C., Sanjines, R., Levy, F. New crystal structures of WS2: microtubes, ribbons and ropes. Adv. Mater. 10, 246–249 (1998).

    Article  CAS  Google Scholar 

  94. Margulis, L., Dluzewski, P., Feldman, Y., Tenne, R. TEM study of chirality in MoS2 nanotubes. Journal of Microscopy 181, 68–71 (1996).

    Article  CAS  Google Scholar 

  95. Remskar, M., Skraba, Z., Ballif, C., Sanjines, R., Levy, F. Stabilization of the rhombohedral polytype in MoS2 and WS2 microtubes: TEM and AFM study. Surf. Sci. 433/435, 637–641 (1999).

    Article  Google Scholar 

  96. Virsek, M., Jesih, A., Milosevic, I., Damnjanovic, M., Remskar, M. Raman scattering of the MoS2 and WS2 single nanotubes. Surf. Sci. 601, 2868–2872 (2007).

    Article  CAS  Google Scholar 

  97. Frey, G. L., Tenne, R., Matthews, M. J., Dresselhaus, M. S., Dresselhaus, G. Raman and resonance Raman investigation of MoS2 nanoparticles. Phys. Rev. B 60, 2883–2892 (1999).

    Article  CAS  Google Scholar 

  98. Remskar, M., Mrzel, A., Virsek, M., Jesih, A. Inorganic nanotubes as nanoreactors: the first MoS2 nanopods. Adv. Mater 19, 4276–4278 (2007).

    Article  CAS  Google Scholar 

  99. Srolovitz, D. J., Safran, S. A., Homyonfer, M., Tenne, R. Morphology of nested fullerenes. Phys. Rev. Lett. 74, 1779–1782 (1995).

    Article  CAS  Google Scholar 

  100. Feldman, Y., Wasserman, E., Srolovitz, D. J., Tenne, R. High-rate gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 276, 222–225 (1995).

    Article  Google Scholar 

  101. Remskar, M., Skraba, Z., Sanjines, R., Levy, F. MoS2 and WS2 nanotubes alloyed with gold and silver. Surf. Rev. Lett. 6, 1283–1287 (1999).

    Article  CAS  Google Scholar 

  102. Kralj-Iglič, V., Remskar, M., Iglič, A. Deviatoric elasticity as a mechanism describing stable shapes of nanotubes. Reimer, A. (Ed.). Horizons in world physics. 244, Hauppauge (NY): Nova Science Publishers, 111–156 (2004).

    Google Scholar 

  103. Perrin, C., Cordier, S., Gulo, F., Perrin, A. The octahedral cluster compounds of early transition metals: an original class of dielectric materials. Ferroelectrics 254, 83–90 (2001).

    Article  CAS  Google Scholar 

  104. Wilson, J. A., Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18, 193–335 (1969).

    Article  CAS  Google Scholar 

  105. Remskar, M. Inorganic nanotubes synthesized by chemical transport reactions. Schwarz, J. A. (Ed.). Dekker encyclopedia of nanoscience and nanotechnology. Part 1, New York, Basel: Publ. Marcel Dekker, 1457–1465 (2004).

    Google Scholar 

  106. Zhu, Y. Q., Hsu, W. K., Kroto, H. W., Walton, D. R. M. An Alternative route to NbS2 nanotubes. J. Phys. Chem. B 106, 7623–7626 (2002).

    Article  CAS  Google Scholar 

  107. Jaszczak, J. A. Graphite: Flat, Fibrous and Spherical. G. D.Mendenhall, J.Liebman, A. Greenberg (Eds.). Mesomolecules: from molecules to materials. 1, New York: Chapman & Hall, 161–180 (1995)

    Google Scholar 

  108. Rosentsveig, R., Margolin, A., Feldman, Y., Popovitz-Biro, R., Tenne, R. Bundels and foils of WS2 nanotubes. Appl. Phys. A 74, 367–369 (2002).

    Article  CAS  Google Scholar 

  109. Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., Niihara, K. Formation of titanium oxide nanotube. Langmuir 14, 3160–3163 (1998).

    Article  CAS  Google Scholar 

  110. Du, G. H., Chen, Q., Che, R. C., Yuan, Z. Y., Peng, L.-M. Preparation and structure analysis of titanium oxide nanotubes. Appl. Phys. Lett. 79, 3702–3704 (2001).

    Article  CAS  Google Scholar 

  111. Zhang, S., et al. Formation mechanism of H2Ti3O7 nanotubes. Phys. Rev. Lett. 91, 256103 1–4 (2003).

    Google Scholar 

  112. Rafailov, P. M., Thomsen, C., Gartsman, K., Kaplan-Ashiri, I., Tenne, R. Orientation dependence of the polarizability of an individual WS2 nanotube by resonant Raman spectroscopy. Phys. Rev. B 72, 205436 1–4 (2005).

    Google Scholar 

  113. Dobardzic, E., Daki, B., Damnjanovic, M., Milosevic, I. Zero m phonons in MoS2 nanotubes. Phys. Rev. B 71, 121405 1–4 (2005).

    Google Scholar 

  114. Tenne, R. Inorganic nanotubes and fullerene-like nanoparticles. J. Mater. Res. 21, 2726–2743 (2006).

    Article  CAS  Google Scholar 

  115. Bar-Sadan, M., Kaplan-Ashiri, I., Tenne, R. Inorganic fullerenes and nanotubes: Wealth of materials and morphologies. Eur. Phys. J. Special Topics 149, 71–101 (2007).

    Article  Google Scholar 

  116. Chopra, N. G., Zettl, A. Measurement of the elastic modulus of a multi-wall boron nitride nanotube. Solid State Commun. 105, 297–300 (1998).

    Article  CAS  Google Scholar 

  117. Hung, S. C., Su, Y. K., Fang, T. H., Chang, S. J., Ji, L. W. Buckling instabilities in GaN nanotubes under uniaxial compression. Nanotechnology 16, 2203–2208 (2005).

    Article  CAS  Google Scholar 

  118. Kaplan-Ashiri, I., et al. Mechanical behavior of individual WS2 nanotubes. J. Mater. Res. 19, 454–459 (2004).

    CAS  Google Scholar 

  119. Kaplan-Ashiri, I., et al. On the mechanical behavior of WS2 nanotubes under axial tension and compression. Proc. Natl. Acad. Sci. USA. 103, 523–528 (2006).

    Article  CAS  Google Scholar 

  120. Yu, M. F., Files, B. S., Arepalli, S., Ruoff, R. S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84, 5552–5555 (2000).

    Article  CAS  Google Scholar 

  121. Yu, M. F., et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637–640 (2000).

    Article  CAS  Google Scholar 

  122. Remskar, M., Mrzel, A. High-temperature fibres composed of transition metal inorganic nanotubes. Curr. Opin. Solid State Mater. Sci. 8, 121–125 (2004).

    Article  CAS  Google Scholar 

  123. Horváth, L., Gault, R. A. The mineralogy of Mont Saint-Hilaire, Quebec. Mineralog. Record 21, 281–362 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maja Remskar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Remskar, M. (2011). Inorganic Nanotubes. In: Hayden, O., Nielsch, K. (eds) Molecular- and Nano-Tubes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9443-1_11

Download citation

Publish with us

Policies and ethics