Advertisement

Inorganic Nanotubes

  • Maja Remskar
Chapter

Abstract

Since the first report on synthesis of the WS2 nanotubes in 1992, the number of articles on successful growth of different inorganic nanotubes increases rapidly revealing the importance of this field for nanotechnology. Although some geometrical similarities with carbon nanotubes, inorganic nanotubes distinguish themselves by important peculiarities, from the growth mechanisms to the physical and chemical properties attractive for possible applications. Their structural properties, important for potential applications for biosensors, drug delivery, safe containers, nanoreactors and strengthening fibres are discussed in this chapter.

Keywords

Carbon Nanotubes Molecular Layer Tungsten Oxide Cylindrical Geometry Interlayer Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).CrossRefGoogle Scholar
  2. 2.
    Tenne, R., Margulis, L., Genut, M., Hodes, G. Polyhedral and cylindrical structures of tungsten disulfide. Nature 360, 444–446 (1992).CrossRefGoogle Scholar
  3. 3.
    Margulis, L., Salitra, G., Tenne, R., Talianker, M. Nested fullerene-like structures. Nature 365, 113–114 (1993).CrossRefGoogle Scholar
  4. 4.
    Chopra, N. G., et al. Boron-nitride nanotubes. Science 269, 966–967 (1995).CrossRefGoogle Scholar
  5. 5.
    Nakamura, H., Matsui, Y. Silica gel nanotubes obtained by sol-gel method. J. Am. Chem. Soc. 117, 2651–2652 (1995).CrossRefGoogle Scholar
  6. 6.
    Hoyer, P. Formation of a titanium dioxide nanotube array. Langmuir 12, 1411–1413 (1996).CrossRefGoogle Scholar
  7. 7.
    Spahr, M. E., et al. Redox-active nanotubes of vanadium oxide. Angew. Chem., Int. Ed. 37, 1263–1265 (1998).CrossRefGoogle Scholar
  8. 8.
    Hacohen, Y. R., Grunbaum, E., Tenne, R., Sloan, J., Hutchison, J. L. Cage structures and nanotubes of NiCl2. Nature 395, 336–337 (1998).CrossRefGoogle Scholar
  9. 9.
    Galvan, D. H., Kim, J. H., Maple, M. B., Avalos-Berja, M., Adem, E. Formation of NbSe2 nanotubes by electron irradiation. Fullerene Sci. Technol. 8, 143–151 (2000).Google Scholar
  10. 10.
    Hutleen, J. C., Jirage, K. B., Martin, C. R. Introducing chemical transport selectivity into gold nanotubule membrane. J. Am. Chem. Soc. 120, 6603–6604 (1998).CrossRefGoogle Scholar
  11. 11.
    Tourillon, G., Pontonnier, L., Levy, J. P., Langlais, V. Electrochemically synthesized Co and Fe nanowires and nanotubes. Electrochem. Solid-State Lett. 3, 20–23 (2000).CrossRefGoogle Scholar
  12. 12.
    Rao, C. N. R., Govindaraj, A. G., Deepak, F. L., Gunari, N. A., Nath, M. Surfactant-assisted synthesis of semiconductor nanotubes and nanowires. Appl. Phys. Lett. 78, 1853–1855 (2001).CrossRefGoogle Scholar
  13. 13.
    Govindaraj, A., Deepak, F. L., Gunari, N. A., Rao, C. N. R. Semiconductor nanorods: Cu, Zn, and Cd chalcogenides. Israel J. Chem. 41, 23–30 (2001).CrossRefGoogle Scholar
  14. 14.
    Dloczik, L., et al. Hexagonal nanotubes of ZnS by chemical conversion of monochrystalline ZnO columns. Appl. Phys. Lett. 78, 3687–3689 (2001).CrossRefGoogle Scholar
  15. 15.
    Jiang, X., Xie, Y., Zhu, L., He, W., Qian, Y. Synthesis of novel nickel sulfide layer-rolled structures. Adv. Mater. 13, 1278–1281 (2001).CrossRefGoogle Scholar
  16. 16.
    Peng, Y. Y., et al. Cu5.5FeS6.5 nanotubes – a new kind of ternary sulfide nanotube. New J. Chem. 25, 1359–1361 (2001).CrossRefGoogle Scholar
  17. 17.
    Pu, L., Bao, X., Zou, J., Feng, D. Individual alumina nanotubes. Angew. Chem., Int. Ed. 40, 1490–1493 (2001).CrossRefGoogle Scholar
  18. 18.
    Cheng, B., Samulski, E. T. Fabrication and characterization of nanotubular semiconductor oxides In2O3 and Ga2O3. J. Mater. Chem. 11, 2901–2902 (2001).CrossRefGoogle Scholar
  19. 19.
    Li, J. Y., Chen, X. L., Qiao, Z. Y., Cao, Y. G., Li, H. Synthesis of GaN nanotubes. J. Mater. Sci. Lett. 20, 1987–1988 (2001).CrossRefGoogle Scholar
  20. 20.
    Nath, M., Rao, C. N. R. Nanotubes of group 4 metal disulfides. Angew. Chem., Int. Ed. 41, 3451–3454 (2002).CrossRefGoogle Scholar
  21. 21.
    Nath, M., Rao, C. N. R. New metal disulfide nanotubes. J. Am. Chem. Soc. 123, 4841–4842 (2001).CrossRefGoogle Scholar
  22. 22.
    Yada, M., Mihara, M., Mouri, S., Kuroki, M., Kijima, T. Rare earth (Er, Tm, Yb, Lu) oxide nanotubes templated by dodecylsulfate assemblies. Adv. Mater. 14, 309–313 (2002).CrossRefGoogle Scholar
  23. 23.
    Wu, J., Liu, S., Wu, C., Chen, K., Chen, L. Heterostructures of ZnO-Zn coaxial nanocables and ZnO nanotubes. Appl. Phys. Lett. 81, 1312–1314 (2002).CrossRefGoogle Scholar
  24. 24.
    Hernandez, B. A., Chang, K. S., Fisher, E. R., Dorhout, P. K. Sol-gel template synthesis and characterization of BaTiO3 and PbTiO3 nanotubes. Chem. Mater. 14, 480–482 (2002).CrossRefGoogle Scholar
  25. 25.
    Han, C. C., Bai, M. Y., Lee, J. T. A new and easy method for making Ni and Cu microtubules and their regurarly assembled structures. Chem. Mater. 13, 4260–4268 (2001).CrossRefGoogle Scholar
  26. 26.
    Mayers, B., Xia, Y. Formation of tellurium nanotubes through concentration depletion at the surfaces of seeds. Adv. Mater. 14, 279–282 (2002).CrossRefGoogle Scholar
  27. 27.
    Brorson, M., Hansen, T. W., Jacobsen, C. J. H. J. Rhenium(IV) sulfide nanotubes. Am. Chem. Soc. 124, 11582–11583 (2002).CrossRefGoogle Scholar
  28. 28.
    Sha, J., et al. Silicon nanotubes. Adv. Mater. 14, 1219–1221 (2002).CrossRefGoogle Scholar
  29. 29.
    Tenne, R., Zettl, A. K. Nanotubes from inorganic materials. Top. Appl. Phys. 80, 81–112 (2001).CrossRefGoogle Scholar
  30. 30.
    Pokropivnyi, V. V. Nanostructured materials: Non-carbon nanotubes – Properties and applications. Powder Metallurg. Metal Ceram. 41, 123–135 (2002).CrossRefGoogle Scholar
  31. 31.
    Patzke, G. R., Krumeich, F., Nesper, R. Oxidic nanotubes and nanorods-anisotropic modules for a future nanotechnology. Angew. Chem., Int. Ed. 41, 2446–2461 (2002).CrossRefGoogle Scholar
  32. 32.
    Rao Rao, C. N. R., Nath, M. Inorganic nanotubes. Dalton Trans. 1, 1–24 (2003).CrossRefGoogle Scholar
  33. 33.
    Tenne, R. Fullerene-like materials and nanotubes from inorganic compounds with a layered (2-D) structure. Colloids and Surfaces A: Physicochem. Eng. Aspects 208, 83–92 (2002).CrossRefGoogle Scholar
  34. 34.
    Tenne, R. Inorganic nanotubes and fullerene-like nanoparticles. Nat. Nanotechnol. 1, 103–111 (2006).CrossRefGoogle Scholar
  35. 35.
    Ivanovskii, A. L. Non-carbon nanotubes: synthesis and simulation. Russ. Chem. Rev. 71, 175–194 (2002).CrossRefGoogle Scholar
  36. 36.
    Remskar, M. Inorganic nanotubes. Adv. Mater. 16, 1497–1504 (2004).CrossRefGoogle Scholar
  37. 37.
    Halford, B. Inorganic menagerie. Chem. Eng. News 83, 30–33 (2005).Google Scholar
  38. 38.
    Enyashin, A., Gemming, S., Seifert, G. Nanosized allotropes of molybdenum disulfide. Eur. Phys. J. Spec. Top. 149, 103–125 (2007).CrossRefGoogle Scholar
  39. 39.
    Li, Q., et al. Molybdenum Disulfide nanowires and nanoribbons by electrochemical/chemical synthesis. J. Phys. Chem. B 109, 3169–3182 (2005).CrossRefGoogle Scholar
  40. 40.
    Kopnov, F., Yoffe, A., Leitus, G., Tenne, R. Transport properties of fullerene-like WS2 nanoparticles. Phys. Stat. Sol. B 234, 1229–1240 (2006).CrossRefGoogle Scholar
  41. 41.
    Remskar, M., Skraba, Z., Cleton, F., Sanjines, R., Levy, F. MoS2 as microtubes. Appl. Phys. Lett. 69, 351–353 (1996).CrossRefGoogle Scholar
  42. 42.
    Remskar, M., Skraba, Z., Sanjines, R., Levy, F. Syntactic coalescence of WS2 nanotubes. Appl. Phys. Lett. 74, 3633–3635 (1999).CrossRefGoogle Scholar
  43. 43.
    Bernaerts, D., Amelincx, S., Van Tendeloo, G., Van Landuyt, J. Microstructure and formation mechanisms of cylindrical and conical scrolls of the misfit layer compounds PbNbnS2n+1. J. Cryst. Growth 172, 433–439 (1997).CrossRefGoogle Scholar
  44. 44.
    Whitby, R. L. D., Hsu, W. K., Boothroyd, C. B., Kroto, H. W., Walton, D. R. M. Tungsten disulphide coated multi-walled carbon nanotubes. Chem. Phys. Lett. 359, 121–126 (2002).CrossRefGoogle Scholar
  45. 45.
    Whitby, R. L. D., et al. WS2 layer formation on multi-walled carbon nanotubes. Appl. Phys. A 76, 527–532 (2003).CrossRefGoogle Scholar
  46. 46.
    Du, G., Yu, Y., Peng, L. M. Hexaniobate nanotubes with variable interlayer spacings. Chem. Phys. Lett. 400, 536–540 (2004).CrossRefGoogle Scholar
  47. 47.
    Seifert, G., Köhler, T., Tenne, R. Stability of metal chalcogenide nanotubes. J. Phys. Chem. B 106, 2497–2501 (2002).CrossRefGoogle Scholar
  48. 48.
    Srolovitz, D. J., Safran, S. A., Tenne, R. Elastic equilibrium of curved thin films. Phys. Rev. E 49, 5260–5270 (1994).CrossRefGoogle Scholar
  49. 49.
    Mendelev, M. I., Srolovitz, D. J., Safran, S. A., Tenne, R. Equilibrium structure of multilayer van der Waals films and nanotubes. Phys. Rev. B 65, 075402 1–12 (2002).Google Scholar
  50. 50.
    Seifert, G., Terrones, H., Terrones, M., Jungnickel, G., Frauenheim, T. Structure and electronic properties of MoS2 nanotubes. Phys. Rev. Lett. 85, 146–149 (2000).CrossRefGoogle Scholar
  51. 51.
    Seifert, G., Köhler, T., Tenne, R. Stability of metal chalcogenide nanotubes. J. Phys. Chem. B 106, 2497–2501 (2002).CrossRefGoogle Scholar
  52. 52.
    Bar-Sadan, M., et al. Structure and stability of molybdenum sulfide fullerenes. J. Phys. Chem. B 110, 25399–25410 (2006).CrossRefGoogle Scholar
  53. 53.
    Nath, M., Rao, C. N. R. MoSe2 and WSe2 nanotubes and related structures. Chem.Commun. 21, 2236–2237 (2001).CrossRefGoogle Scholar
  54. 54.
    Chen, J., Li, S. L., Tao, Z. L., Gao, F. Low-temperature synthesis of titanium disulfide nanotubes. Chem. Commun. 8, 980–981 (2003).CrossRefGoogle Scholar
  55. 55.
    Therese, H. A., et al. VS2 nanotubes containing organic-amine templates from the NT-VOx precursors and reversible copper intercalation in NT-VS2. Angew. Chem. Int. Ed. 44, 262–265 (2005).CrossRefGoogle Scholar
  56. 56.
    Hu, J., Bando, Y., Liu, Z. Synthesis of gallium-filled gallium oxide-zinc oxide composite coaxial nanotubes. Adv. Mater. 15, 1000–1003 (2003).CrossRefGoogle Scholar
  57. 57.
    Niederberger, M., et al. Low-cost synthesis of vanadium oxide nanotubes via two novel non-alkoxide routes. Chem. Mater. 12, 1995–2000 (1995).CrossRefGoogle Scholar
  58. 58.
    Hu, W. B., et al. Generation of hollow crystalline tungsten oxide fibres. Appl. Phys. A 70, 231–233 (2000).CrossRefGoogle Scholar
  59. 59.
    Satshkumar, B. C., Govindaraj, A., Erasmus, M. V., Basumallick, L., Rao, C. N. R. Oxide nanotubes prepared using carbon nanotubes as templates. J. Mater. Res. 12, 604–606 (1997).CrossRefGoogle Scholar
  60. 60.
    Lu, J. G., Zhang, J., Ding, W. P., Shen, B., Guo, X. F. Synthesis and Characterization of Boehmite AIOOH Nanotubes. Chinese J. Inorg. Chem. 23, 897–900 (2007).Google Scholar
  61. 61.
    Wang, Y., Cao, G. Z. Synthesis and electrochemical properties of InVO4 nanotube arrays. J. Mater. Chem. 17, 894–899 (2007).CrossRefGoogle Scholar
  62. 62.
    Luo, Y., et al. Nanoshell tubes of ferroelectric lead zirconate titanate and barium titanate. Appl. Phys. Lett. 83, 440–442 (2003).CrossRefGoogle Scholar
  63. 63.
    Wang, Y., Lee, J. Y., Zeng, H. C. Polycrystalline SnO2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical applications. Chem. Mater. 17, 3899–3903 (2005).CrossRefGoogle Scholar
  64. 64.
    Fan, H., et al. Single-crystalline MgAl2O4 spinel nanotubes using a reactive and removable MgO nanowire template. Nanotechnology 17, 5157–5162 (2006).CrossRefGoogle Scholar
  65. 65.
    Satishkumar, B. C., Govindaraj, A., Nath, M., Rao, C. N. R. Synthesis of metal oxide nanorods using carbon nanotubes as templates. J. Mater. Chem. 10, 2115–2119 (2000).CrossRefGoogle Scholar
  66. 66.
    Foresti, E., et al. Morphological and chemical/physical characterization of Fe-doped synthetic chrysolite nanotubes. Adv. Func. Mater. 15, 1009–1016 (2005).CrossRefGoogle Scholar
  67. 67.
    Liu, G. X., Hong, G. Y. Synthesis and photoluminescence of Y2O3:RE3+ (RE = Eu, Tb, Dy) porous nanotubes templated by carbon nanotubes. J. Nanosci. Nanotech. 6, 120–124 (2006).Google Scholar
  68. 68.
    Yada, M., et al. Hierarhical two- and three-dimensional microstructures composed of rare-earth compound nanotubes. Adv. Mater. 16, 1448–1453 (2004).CrossRefGoogle Scholar
  69. 69.
    Bernaerts, D., Amelincx, S., Van Tendeloo, G., Van Landuyt, J. Microstructure and formation mechanism of cylindrical and conical scrolls of the misfit layer compounds PbNbnS2n+1. J. Cryst. Growth 172, 433–439 (1997).CrossRefGoogle Scholar
  70. 70.
    Nath, M., Mukhopadhyay, K., Rao, C. N. R. Mo1-xWxS2 nanotubes. Chem. Phys. Lett. 352, 163–168 (2002).CrossRefGoogle Scholar
  71. 71.
    Hsu, W. K., et al. Mixed-phase WxMoyCzS2 nanotubes. Chem. Mater. 12, 3541–3546 (2000).CrossRefGoogle Scholar
  72. 72.
    Zhu, Y. Q., et al. Niobium-doped WS2 nanotubes. Chem. Phys. Lett. 342, 15–21 (2001).CrossRefGoogle Scholar
  73. 73.
    Zhu, Y. Q., Hsu, W. K., Kroto, H. W., Walton, D. R. M. An alternative route to NbS2 nanotubes. J. Phys. Chem. B 106, 7623–7626 (2002).CrossRefGoogle Scholar
  74. 74.
    Remskar, M., Skraba, Z., Stadelmann, P., Levy, F. Structural stabilization of new compounds: MoS2 and WS2 micro- and nanotubes alloyed with gold and silver. Adv. Mater. 12, 814–818 (2000).CrossRefGoogle Scholar
  75. 75.
    Li, D., et al. Multi-phase equilibrium microemulsions-based routes to synthesize nanoscale BaWO4 spheres, cylinders and rods. Colloids Surf. A 274, 18–23 (2006).CrossRefGoogle Scholar
  76. 76.
    Malliakas, C. D., Kanatzidis, M. G. Inorganic single wall nanotubes of SbPS4-xSex (0 ≤ x ≤ 3) with tunable band gap. J. Am. Chem. Soc. 128, 6538–6539 (2006).CrossRefGoogle Scholar
  77. 77.
    Prinz, A. V., Prinz, V. Ya. Application of semiconductor micro- and nanotubes in biology. Surf. Sci. 532–535, 911–915 (2003).CrossRefGoogle Scholar
  78. 78.
    Stephan, O., et al. Doping graphitic and carbon nanotube structures with boron and nitrogen. Science 266, 1683–1685 (1994).CrossRefGoogle Scholar
  79. 79.
    Han, C. C., Bai, M. Y., Lee, J. T. A new and easy method for making Ni and Cu microtubules and their regularly assembled structures. Chem. Mater. 13, 4260–4268 (2001).CrossRefGoogle Scholar
  80. 80.
    Li, Y. D., et al. Bismuth nanotubes: a rational low-temperature synthetic route. J. Am. Chem. Soc. 123, 9904–9905 (2001).CrossRefGoogle Scholar
  81. 81.
    Chou, S. L., Cheng, F. Y., Chen, J. Electrochemical deposition of Ni(OH)2 and Fe-doped Ni(OH)2 tubes. Eur. J. Inorg. Chem. 20, 4035–4039 (2005).CrossRefGoogle Scholar
  82. 82.
    Tagliazucchi, M., Sanches, R. D., Troiani, H. E., Calvo, E. J. Synthesis of lanthanum nickelate perovskite nanotubes by using a template-inorganic precursor. Solid State Comm. 137, 212–215 (2006).CrossRefGoogle Scholar
  83. 83.
    Liang, L. F., et al. Hydrothermal synthesis of prismatic NaHoF4 microtubes and NaSmF4 nanotubes. Inorg. Chem. 43, 1594–1596 (2004).CrossRefGoogle Scholar
  84. 84.
    Li, D., Xia, Y. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett. 4, 933–938 (2004).CrossRefGoogle Scholar
  85. 85.
    Krivovichev, S. V., et al. Highly porous uranyl selenate nanotubules. J. Am. Chem. Soc. 127, 1072–1073 (2005).CrossRefGoogle Scholar
  86. 86.
    Fu, L., et al. Coating carbon nanotubes with rare earth oxide multiwalled nanotubes. Adv. Mater. 16, 350–352 (2004).CrossRefGoogle Scholar
  87. 87.
    Wu, Q., et al. Synthesis and characterization of faceted hexagonal aluminum nitride nanotubes. Am. Chem. Soc. 125, 10176–10177 (2003).CrossRefGoogle Scholar
  88. 88.
    Pol, S. V., Pol, V. G., Gedanken, A. Synthesis of WC nanotubes. Adv. Mater. 18, 2023–2027 (2006).CrossRefGoogle Scholar
  89. 89.
    Goldberger, J., et al. Single-crystal gallium nitride nanotubes. Nature 422, 599–602 (2003).CrossRefGoogle Scholar
  90. 90.
    Rothschild, A., Popovitz-Biro, R., Lourie, O., Tenne, R. Morphology of multiwall WS2 nanotubes. J. Phys. Chem. B 104, 8976–8981 (2000).CrossRefGoogle Scholar
  91. 91.
    Remskar, M., Virsek, M., Jesih, A. WS2 nanobuds as a new hybrid nanomaterial. Nano Lett. 8, 76–80 (2008).CrossRefGoogle Scholar
  92. 92.
    Remskar, M., Mrzel, A., Jesih, A., Lévy, F. Metal-alloyed NbS2 nanotubes synthesised by the self-assembly of nanoparticles. Adv. Mater. 14, 680–684 (2002).CrossRefGoogle Scholar
  93. 93.
    Remskar, M., Skraba, Z., Ballif, C., Sanjines, R., Levy, F. New crystal structures of WS2: microtubes, ribbons and ropes. Adv. Mater. 10, 246–249 (1998).CrossRefGoogle Scholar
  94. 94.
    Margulis, L., Dluzewski, P., Feldman, Y., Tenne, R. TEM study of chirality in MoS2 nanotubes. Journal of Microscopy 181, 68–71 (1996).CrossRefGoogle Scholar
  95. 95.
    Remskar, M., Skraba, Z., Ballif, C., Sanjines, R., Levy, F. Stabilization of the rhombohedral polytype in MoS2 and WS2 microtubes: TEM and AFM study. Surf. Sci. 433/435, 637–641 (1999).CrossRefGoogle Scholar
  96. 96.
    Virsek, M., Jesih, A., Milosevic, I., Damnjanovic, M., Remskar, M. Raman scattering of the MoS2 and WS2 single nanotubes. Surf. Sci. 601, 2868–2872 (2007).CrossRefGoogle Scholar
  97. 97.
    Frey, G. L., Tenne, R., Matthews, M. J., Dresselhaus, M. S., Dresselhaus, G. Raman and resonance Raman investigation of MoS2 nanoparticles. Phys. Rev. B 60, 2883–2892 (1999).CrossRefGoogle Scholar
  98. 98.
    Remskar, M., Mrzel, A., Virsek, M., Jesih, A. Inorganic nanotubes as nanoreactors: the first MoS2 nanopods. Adv. Mater 19, 4276–4278 (2007).CrossRefGoogle Scholar
  99. 99.
    Srolovitz, D. J., Safran, S. A., Homyonfer, M., Tenne, R. Morphology of nested fullerenes. Phys. Rev. Lett. 74, 1779–1782 (1995).CrossRefGoogle Scholar
  100. 100.
    Feldman, Y., Wasserman, E., Srolovitz, D. J., Tenne, R. High-rate gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 276, 222–225 (1995).CrossRefGoogle Scholar
  101. 101.
    Remskar, M., Skraba, Z., Sanjines, R., Levy, F. MoS2 and WS2 nanotubes alloyed with gold and silver. Surf. Rev. Lett. 6, 1283–1287 (1999).CrossRefGoogle Scholar
  102. 102.
    Kralj-Iglič, V., Remskar, M., Iglič, A. Deviatoric elasticity as a mechanism describing stable shapes of nanotubes. Reimer, A. (Ed.). Horizons in world physics. 244, Hauppauge (NY): Nova Science Publishers, 111–156 (2004).Google Scholar
  103. 103.
    Perrin, C., Cordier, S., Gulo, F., Perrin, A. The octahedral cluster compounds of early transition metals: an original class of dielectric materials. Ferroelectrics 254, 83–90 (2001).CrossRefGoogle Scholar
  104. 104.
    Wilson, J. A., Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18, 193–335 (1969).CrossRefGoogle Scholar
  105. 105.
    Remskar, M. Inorganic nanotubes synthesized by chemical transport reactions. Schwarz, J. A. (Ed.). Dekker encyclopedia of nanoscience and nanotechnology. Part 1, New York, Basel: Publ. Marcel Dekker, 1457–1465 (2004).Google Scholar
  106. 106.
    Zhu, Y. Q., Hsu, W. K., Kroto, H. W., Walton, D. R. M. An Alternative route to NbS2 nanotubes. J. Phys. Chem. B 106, 7623–7626 (2002).CrossRefGoogle Scholar
  107. 107.
    Jaszczak, J. A. Graphite: Flat, Fibrous and Spherical. G. D.Mendenhall, J.Liebman, A. Greenberg (Eds.). Mesomolecules: from molecules to materials. 1, New York: Chapman & Hall, 161–180 (1995)Google Scholar
  108. 108.
    Rosentsveig, R., Margolin, A., Feldman, Y., Popovitz-Biro, R., Tenne, R. Bundels and foils of WS2 nanotubes. Appl. Phys. A 74, 367–369 (2002).CrossRefGoogle Scholar
  109. 109.
    Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., Niihara, K. Formation of titanium oxide nanotube. Langmuir 14, 3160–3163 (1998).CrossRefGoogle Scholar
  110. 110.
    Du, G. H., Chen, Q., Che, R. C., Yuan, Z. Y., Peng, L.-M. Preparation and structure analysis of titanium oxide nanotubes. Appl. Phys. Lett. 79, 3702–3704 (2001).CrossRefGoogle Scholar
  111. 111.
    Zhang, S., et al. Formation mechanism of H2Ti3O7 nanotubes. Phys. Rev. Lett. 91, 256103 1–4 (2003).Google Scholar
  112. 112.
    Rafailov, P. M., Thomsen, C., Gartsman, K., Kaplan-Ashiri, I., Tenne, R. Orientation dependence of the polarizability of an individual WS2 nanotube by resonant Raman spectroscopy. Phys. Rev. B 72, 205436 1–4 (2005).Google Scholar
  113. 113.
    Dobardzic, E., Daki, B., Damnjanovic, M., Milosevic, I. Zero m phonons in MoS2 nanotubes. Phys. Rev. B 71, 121405 1–4 (2005).Google Scholar
  114. 114.
    Tenne, R. Inorganic nanotubes and fullerene-like nanoparticles. J. Mater. Res. 21, 2726–2743 (2006).CrossRefGoogle Scholar
  115. 115.
    Bar-Sadan, M., Kaplan-Ashiri, I., Tenne, R. Inorganic fullerenes and nanotubes: Wealth of materials and morphologies. Eur. Phys. J. Special Topics 149, 71–101 (2007).CrossRefGoogle Scholar
  116. 116.
    Chopra, N. G., Zettl, A. Measurement of the elastic modulus of a multi-wall boron nitride nanotube. Solid State Commun. 105, 297–300 (1998).CrossRefGoogle Scholar
  117. 117.
    Hung, S. C., Su, Y. K., Fang, T. H., Chang, S. J., Ji, L. W. Buckling instabilities in GaN nanotubes under uniaxial compression. Nanotechnology 16, 2203–2208 (2005).CrossRefGoogle Scholar
  118. 118.
    Kaplan-Ashiri, I., et al. Mechanical behavior of individual WS2 nanotubes. J. Mater. Res. 19, 454–459 (2004).Google Scholar
  119. 119.
    Kaplan-Ashiri, I., et al. On the mechanical behavior of WS2 nanotubes under axial tension and compression. Proc. Natl. Acad. Sci. USA. 103, 523–528 (2006).CrossRefGoogle Scholar
  120. 120.
    Yu, M. F., Files, B. S., Arepalli, S., Ruoff, R. S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84, 5552–5555 (2000).CrossRefGoogle Scholar
  121. 121.
    Yu, M. F., et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637–640 (2000).CrossRefGoogle Scholar
  122. 122.
    Remskar, M., Mrzel, A. High-temperature fibres composed of transition metal inorganic nanotubes. Curr. Opin. Solid State Mater. Sci. 8, 121–125 (2004).CrossRefGoogle Scholar
  123. 123.
    Horváth, L., Gault, R. A. The mineralogy of Mont Saint-Hilaire, Quebec. Mineralog. Record 21, 281–362 (1990).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Jozef Stefan InstituteLjubljanaSlovenia

Personalised recommendations