Tonal Languages and Cochlear Implants

  • Li XuEmail author
  • Ning Zhou
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 39)


As a major part of world languages, tonal languages are spoken in every continent except for Australia. In a tonal language, voice pitch variation (i.e., tone) at the monosyllabic level is a segmental structure that conveys lexical meaning of a word (Duanmu 2000). Mandarin Chinese, a tonal language, is spoken by more people than any other single language, including non-tonal languages. While some dialects in southern Mexico may distinguish as many as 14 tones, Chinese dialects typically have 4–6 contrastive tones.


Pitch Perception Temporal Envelope Voice Pitch Temporal Fine Structure Tonal Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Heather Schultz and Marisol Gliatas for the technical support during the preparation of the manuscript. The work was supported in part by NIH NIDCD Grants R03-DC006161, R15-DC009504, and F31-DC009919.


  1. Abramson, A. S. (1978). Static and dynamic acoustic cues in distinctive tone. Language Speech, 21, 319–325.Google Scholar
  2. Arnoldner, C., Riss, D., Brunner, M., Durisin, M., Baumgartner, W.-D., & Hamzavi, J.-S. (2007). Speech and music perception with the new fine structure speech coding strategy: preliminary results. Acta Oto-Laryngologica, 127, 1298–1303.PubMedCrossRefGoogle Scholar
  3. Barry, J. G., & Blamey, P. J. (2004). The acoustic analysis of tone differentiation as a means for assessing tone production in speakers of Cantonese. Journal of the Acoustical Society of America, 116, 1739–1748.PubMedCrossRefGoogle Scholar
  4. Barry, J. G., Blamey, P. J., Martin, L. F. A., Lee, K. Y. S., Tang, T., Ming, Y. Y., & Van Hasselt, C. A. (2002). Tone discrimination in Cantonese-speaking children using a cochlear implant. Clinical Linguistics & Phonetics, 16, 79–99.CrossRefGoogle Scholar
  5. Baskent, D., & Shannon, R. V. (2003). Speech recognition under conditions of frequency-place compression and expansion. Journal of the Acoustical Society of America, 113, 2064–2076.PubMedCrossRefGoogle Scholar
  6. Baskent, D., & Shannon, R. V. (2005). Interactions between cochlear implant electrode insertion depth and frequency-place mapping. Journal of the Acoustical Society of America, 117, 1405–1416.PubMedCrossRefGoogle Scholar
  7. Baskent, D., & Shannon, R. V. (2006). Frequency transposition around dead regions simulated with a noiseband vocoder. Journal of the Acoustical Society of America, 119, 1156–1163.PubMedCrossRefGoogle Scholar
  8. Bonham, B. H., & Litvak, L. M. (2008). Current focusing and steering: modeling, physiology, and psychophysics. Hearing Research, 242, 141–153.PubMedCrossRefGoogle Scholar
  9. Chang, Y. T., Yang, H. M., Lin, Y. H., Liu S. H., & Wu, J. L. (2009). Tone discrimination and speech perception benefit in Mandarin speaking children fit with HiRes fidelity 120 sound processing. Otology & Neurotology, 30, 750–757.CrossRefGoogle Scholar
  10. Chao, Y. R. (1951). The Cantian idiolect: an analysis of the Chinese spoken by a twenty-eight-month-old child. In C. A. Ferguson & D. I. Slobin (Eds.), Studies of child language development. New York: Holt, Rinehart and Winston, Inc.Google Scholar
  11. Ciocca, V., Francis, A. L., Aisha, R., & Wong, L. (2002). The perception of Cantonese lexical tones by early-deafened cochlear implantees. Journal of the Acoustical Society of America, 111, 2250–2256.PubMedCrossRefGoogle Scholar
  12. Dorman, M. F., Loizou, P. C., & Rainey D. (1997). Simulating the effect of cochlear implant electrode insertion depth on speech understating. Journal of the Acoustical Society of America, 102, 2993–2996.PubMedCrossRefGoogle Scholar
  13. Duanmu, S. (2000). The phonology of standard Chinese. Oxford: Oxford University Press.Google Scholar
  14. Firszt, J. B., Holden, L. K., Reeder, R. M., & Skinner, M. W. (2009). Speech recognition in cochlear implant recipients: comparisons of standard HiRes and HiRes120 sound processing. Otology & Neurotology, 30, 146–152CrossRefGoogle Scholar
  15. Fu, Q.-J., & Shannon, R. V. (1999). Recognition of spectrally degraded and frequency-shifted vowels in acoustic and electric hearing. Journal of the Acoustical Society of America, 105, 1889–1990.PubMedCrossRefGoogle Scholar
  16. Fu, Q.-J., & Zeng, F.-G. (2000). Identification of temporal envelope cues in Chinese tone recognition. Asia Pacific Journal of Speech, Language and Hearing, 5, 45–57.Google Scholar
  17. Fu, Q.-J., Zeng, F.-G., Shannon, R. V., & Soli, S. D. (1998). Importance of tonal envelope cues in Chinese speech recognition. Journal of the Acoustical Society of America 104, 505–510.PubMedCrossRefGoogle Scholar
  18. Fu, Q.-J., Hsu, C. J., & Horng, M. J. (2004). Effects of speech processing strategy on Chinese tone recognition by nucleus-24 cochlear implant users. Ear and Hearing, 25, 501–508.PubMedCrossRefGoogle Scholar
  19. Fujita, S., & Ito, J. (1999). Ability of nucleus cochlear implantees to recognize music. Annals of Otology, Rhinology & Laryngology, 108, 634–640.Google Scholar
  20. Gfeller, K., Woodworth, G., Robin, D. A., Witt, S., & Knutson, J. F. (1997). Perception of rhythmic and sequential pitch patterns by normally hearing adults and adult cochlear implant users. Ear and Hearing 18, 252–260.PubMedCrossRefGoogle Scholar
  21. Gfeller, K., Turner, C., Mehr, M., Woodworth, G., Fearn, R., Knutson, J. F., Witt, S., & Stordahl, J. (2002). Recognition of familiar melodies by adult cochlear implant recipients and normal-hearing adults. Cochlear Implant International, 3, 29–53.CrossRefGoogle Scholar
  22. Gfeller, K., Turner, C., Oleson, J., Zhang, X. Y., Gantz, B., Froman, R., & Olszewski, C. (2007). Accuracy of cochlear implant recipients on pitch perception, melody recognition, and speech reception in noise. Ear and Hearing, 28, 412–23.PubMedCrossRefGoogle Scholar
  23. Gottfried, T. L., & Suiter, T. L. (1997). Effect of linguistic experience on the identification of Mandarin Chinese vowels and tones. Journal of Phonetics, 25, 207–231.CrossRefGoogle Scholar
  24. Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. New York: Wiley.Google Scholar
  25. Greenwood, D. D. (1990). A cochlear frequency-position function for several species-29 years later. Journal of the Acoustical Society of America, 87, 2952–2605.CrossRefGoogle Scholar
  26. Han, D., Zhou, N., Li, Y., Chen, X., Zhao, X., & Xu, L. (2007). Tone production of Mandarin Chinese speaking children with cochlear implants. International Journal of Pediatric Otorhinolaryngology, 71, 875–880.PubMedCrossRefGoogle Scholar
  27. Han, D., Liu, B., Zhou, N., Chen, X., Kong, Y., Liu, H., Zheng, Y., & Xu, L. (2009). Lexical Tone recognition with HiResolution® 120 Speech-Processing Strategy in Mandarin-Speaking Children. Ear and Hearing 30, 169–177.PubMedCrossRefGoogle Scholar
  28. Howie, J. (1976). An acoustic study of Mandarin tones and vowels. London: Cambridge University Press.Google Scholar
  29. Kang, R., Nimmons, G. L., Drennan, W., Longnion, J., Ruffin, C., Nie, K., Won, J. H., Worman, T., Yueh, B., & Rubinstein, J. (2009). Development and validation of the University of Washington Clinical Assessment of Music Perception test. Ear and Hearing, 30, 411–418.PubMedCrossRefGoogle Scholar
  30. Koch, D. B., Osberger, M. J., Segel, P., & Kessler, D. (2004). HiResolutionTM and conventional sound processing in the HiResolutionTM bionic ear: using appropriate outcome measures to assess speech recognition ability. Audiology & Neurotology, 9, 214–223.CrossRefGoogle Scholar
  31. Kong, Y. Y., & Zeng, F. G. (2006). Temporal and spectral cues in Mandarin tone recognition. Journal of the Acoustical Society of America 120(5), 2830–2840.PubMedCrossRefGoogle Scholar
  32. Kong, Y. Y. Cruz, R., Jones, J. A., & Zeng, F. G. (2004). Music perception with temporal cues in acoustic and electric hearing. Ear and Hearing 25, 173–185.PubMedCrossRefGoogle Scholar
  33. Kuo, Y.-C., Rosen, S., & Faulkner, A. (2008). Acoustic cues to tonal contrasts in Mandarin: Implications for cochlear implants. Journal of the Acoustical Society of America, 123(5), 2815–2824.PubMedCrossRefGoogle Scholar
  34. Lan, N., Nie, K., Gao, S., & Zeng, F. G. (2004). A novel speech-processing strategy incorporating tonal information for cochlear implants. IEEE Transactions on Biomedical Engineering, 51, 752–60.PubMedCrossRefGoogle Scholar
  35. Lassaletta, L., Castro, A., Bastarrica, M., Perez-Mora, R., Madero, R., de Sarria, J., & Gavilan, J. (2007). Does music perception have an impact on quality of life following cochlear implantation? Acta Oto-Laryngologica, 127, 682–686.PubMedCrossRefGoogle Scholar
  36. Leal, M. C., Shin, Y. J., Laborde, M. L., Calmels, M. N., Verges, S., Lugardon, S., Andrieu, S., Deguine, O., & Fraysse, B. (2003). Music perception in adult cochlear implant recipients. Acta Oto-Laryngologica, 123, 826–835.PubMedCrossRefGoogle Scholar
  37. Lee, C.-Y. (2009). Identifying isolated, multispeaker Mandarin tones from brief acoustic input: A perceptual and acoustic study. Journal of the Acoustical Society of America, 125, 1125–1137.PubMedCrossRefGoogle Scholar
  38. Lee, C.-Y., & Hung, T.-H. (2008). Identification of Mandarin tones by English-speaking musicians and nonmusicians. Journal of the Acoustical Society of America 5, 3235–3248.CrossRefGoogle Scholar
  39. Lee, K. Y. S., van Hasselt, C. A., Chiu, S. N., & Cheung, D. M. C. (2002). Cantonese tone recognition ability of cochlear implant children in comparison with normal-hearing children. International Journal of Pediatric Otorhinolaryngology, 63, 137–147.PubMedCrossRefGoogle Scholar
  40. Lee, K. Y. S., van Hasselt, C. A., & Tong, M. C. F. (2010). Age sensitivity in the acquisition of lexical tone production: evidence from children with profound congenital hearing impairment after cochlear implantation. Annals of Otology, Rhinology & Laryngology, 119, 258–265.Google Scholar
  41. Li, C. N., & Thompson, S. A. (1977). The acquisition of tone in Mandarin-speaking children. Journal of Child Language, 4, 185–199.CrossRefGoogle Scholar
  42. Liang, Z. A. (1963). Tonal discrimination of Mandarin Chinese. Acta Physiologica Sinica 26, 85–91.Google Scholar
  43. Lin, M.-C. (1988). The acoustic characteristics and perceptual cues of tones in standard Chinese. Zhongguo Yuwen 204, 182–193.Google Scholar
  44. Liu, S., & Samuel, A. G. (2004). Perception of Mandarin lexical tones when f0 information is neutralized. Language and Speech, 47, 109–138.PubMedCrossRefGoogle Scholar
  45. Liu, T.-C., Chen, H.-P., & Lin, H.-C. (2004) Effects of limiting the number of active electrodes on mandarin tone perception in young children using cochlear implants. Acta Oto-Laryngologica, 124, 1149–1154.PubMedCrossRefGoogle Scholar
  46. Loizou P.C. (2006). Speech processing in vocoder-centric cochlear implants. Advances in Otorhinolaryngology, 64, 109–143.Google Scholar
  47. Looi, V., McDermott, H., McKay, C., & Hickson, L. (2008). Music perception of cochlear implant users compared with that of hearing aid users. Ear and Hearing, 29, 421–434.PubMedCrossRefGoogle Scholar
  48. Lorenzi, C., Gilbert, G., Carn, H., Garnier, S., & Moore, B. C. J. (2006) Speech perception problems of the hearing impaired reflect inability to use temporal fine structure. Proceedings of the National Academy of Science, 103, 18866–18869.CrossRefGoogle Scholar
  49. Luo, C., & Wang, J. (1981). Putong yuyinxue gangyao [Outline of general phonetics], new ed. Beijing: Shangwu Yinshuguan.Google Scholar
  50. Luo, X., & Fu, Q. (2004). Enhancing Chinese tone recognition by manipulating amplitude envelope: Implications for cochlear implant. Journal of the Acoustical Society of America, 116, 3659–3667.PubMedCrossRefGoogle Scholar
  51. Luo, X., Fu, Q.-J., Wei, C.-G., & Cao, K.-L. (2008). Speech recognition and temporal amplitude modulation processing by Mandarin-speaking cochlear implant users. Ear and Hearing, 29, 957–970.PubMedCrossRefGoogle Scholar
  52. McKay, C. M., McDermott, H. J., & Clark, G. M. (1994). Pitch percepts associated with amplitude-modulated current pulse trains in cochlear implantees. Journal of the Acoustical Society of America, 96, 2664–2673.PubMedCrossRefGoogle Scholar
  53. Miller, J.D. (1961). Word tone recognition in Vietnamese whispered speech. Word 17, 11–15.Google Scholar
  54. Nakata, T., Trehub, S. E., Mitani, C., Kanda, Y., Shibasaki, A., & Schellenberg, E. G. (2005). Music recognition by Japanese children with cochlear implants. Journal of Physiological Anthropology & Applied Human Sciences, 24, 29–32.CrossRefGoogle Scholar
  55. Nie, K. B., Stickney, G. S., & Zeng, F-.G. (2005). Encoding frequency modulation to improve cochlear implant performance in noise. IEEE Transactions on Biomedical Engineering, 52, 64–73.PubMedCrossRefGoogle Scholar
  56. Nimmons, G. L., Kang, R. S., Drennan, W. R., Longnion, J., Ruffin, C., Worman, T., Yueh, B., & Rubinstein, J. T. (2008). Clinical assessment of music perception in cochlear implant listeners. Otology & Neurotology, 29, 149–155.CrossRefGoogle Scholar
  57. Peng, S. C., Tomblin, J. B., Cheung, C., Lin, Y.-S., & Wang, L. (2004). Perception and production of Mandarin tones in prelingually deaf children with cochlear implants. Ear and Hearing, 25, 251–264.PubMedCrossRefGoogle Scholar
  58. Peng, S. C., Tomblin, J. B., Spencer, L. J., & Hurtig, R. R. (2007). Imitative production of rising speech intonation in pediatric cochlear implant recipients. Journal of Speech, Language, and Hearing Research 50, 1210–1227.PubMedCrossRefGoogle Scholar
  59. Pfingst, B. E., Franck, K. H., Xu, L., Bauer, E. M., & Zwolan, T. A. (2001). Effects of electrode configuration and place of stimulation on speech perception with cochlear prostheses. Journal of the Association for Research in Otolaryngology, 2, 87–103.PubMedGoogle Scholar
  60. Pretorius, L. L., & Hanekom, J. J. (2008). Free field frequency discrimination abilities of cochlear implant users. Hearing Research, 244, 77–84.PubMedCrossRefGoogle Scholar
  61. Riss, D., Arnoldner, C., Reiss, S., Baumgartner, W. D., & Hamzavi, J. S. (2009). 1-year results using the Opus speech processor with the fine structure speech coding strategy. Acta Oto-Laryngologica 129, 988–991.PubMedCrossRefGoogle Scholar
  62. Schatzer, R., Krenmayr, A., Au, D. K. K., Kals, M., & Zierhofer, C. (2010). Temporal fine structure in cochlear implants: preliminary speech perception results in Cantonese-speaking implant users. Acta Oto-Laryngologica, 130, 1031–1039.PubMedCrossRefGoogle Scholar
  63. Schouten, J. F., Ritsma, R. J., & Cardoz, B. L. (1962). Pitch of the residue. Journal of the Acoustical Society of America 34, 1418–1424.CrossRefGoogle Scholar
  64. Shannon, R. V., Galvin, J. J., 3 rd, & Baskent, D. (2002). Holes in hearing. Journal of the Association for Research in Otolaryngology, 3, 185–199.PubMedCrossRefGoogle Scholar
  65. Smith Z. M., Delgutte B., & Oxenham A. J. (2002). Chimaeric sounds reveal dichotomies in auditory perception. Nature, 416, 87–90.PubMedCrossRefGoogle Scholar
  66. Sucher, C. M. & McDermott, H. J. (2007). Pitch ranking of complex tones by normally hearing subjects and cochlear implant users. Hearing Research, 230, 80–87.PubMedCrossRefGoogle Scholar
  67. Tse, J. K., (1978). Tone acquisition in Cantonese: a longitudinal case study. Journal of Child Language 5, 191–204.CrossRefGoogle Scholar
  68. Vandali, A. E., Sucher, C., Tsang, D. J., McKay C. M., Chew J. W. D., & McDermott, H. J. (2005). Pitch ranking ability of cochlear implant recipients: a comparison of sound-processing strategies. Journal of the Acoustical Society of America, 117, 3126–3138.PubMedCrossRefGoogle Scholar
  69. Wang, S., Xu, L., & Mannell, R. (2010). Lexical tone recognition in sensorineurally hearing impaired listeners using temporal cues. Paper presented at the American Auditory Society Annual Meeting, Scottsdale, AZ.Google Scholar
  70. Wang, W., Zhou, N., & Xu, L. (2010). Musical pitch and lexical tone recognition with cochlear implants. International Journal of Audiology, 50, 270–278.Google Scholar
  71. Wei, C., Cao, K., & Zeng, F. G. (2004). Mandarin tone recognition in cochlear-implant subjects. Hearing Research 197, 87–95.PubMedCrossRefGoogle Scholar
  72. Wei, W. I., Wong, R., Hui, Y., Au, D. K. K., Wong, B. Y. K., Ho, W. K., Tsang, A., Kung P., & Chung, E. (2000). Chinese tonal language rehabilitation following cochlear implantation in children. Acta Oto-Laryngologica, 120, 218–221.PubMedCrossRefGoogle Scholar
  73. Wei, C., Cao, K., Jin, X., Chen, X., & Zeng, F. G. (2007). Psychophysical performance and Mandarin tone recognition in noise by cochlear implant users. Ear and Hearing, 28(2), 62 S–65 S.PubMedCrossRefGoogle Scholar
  74. Whalen, D. H., & Xu, Y. (1992). Information for Mandarin tones in the amplitude contour and in brief segments. Phonetica, 49, 25–47.PubMedCrossRefGoogle Scholar
  75. Wong, A. O. C., & Wong, L. L. N. (2004). Tone recognition of Cantonese-speaking prelingually hearing-impaired children with cochlear implants. Otolaryngology-Head and Neck Surgery, 130, 751–758.PubMedCrossRefGoogle Scholar
  76. Wong, L. L. N., & Soli, S. D. (2005). Development of the Cantonese HINT. Ear and Hearing, 26, 276–289.PubMedCrossRefGoogle Scholar
  77. Wong, L. L. N., Vandali, A. E., Ciocca, V., Luk, B., Ip, V. W. K., Murray, B., Yu, H. C., & Chung, I. (2008). New cochlear implant coding strategy for tonal language speakers. International Journal of Audiology 47, 337–347.PubMedCrossRefGoogle Scholar
  78. Wong, P., Schwartz, R. G., & Jenkins, J. J (2005). Perception and production of lexical tones by 3-year-old, Mandarin-speaking children. Journal of Speech, Language, and Hearing Research, 48, 1065–1079.PubMedCrossRefGoogle Scholar
  79. Xu, L., & Pfingst, B. E., (2003). Relative importance of temporal envelope and fine structure in lexical-tone recognition. Journal of the Acoustical Society of America, 114, 3024–3027.PubMedCrossRefGoogle Scholar
  80. Xu, L. & Pfingst, B. E. (2008). Spectral and temporal cues for speech recognition: Implications for auditory prostheses. Hearing Research, 242, 132–140.PubMedCrossRefGoogle Scholar
  81. Xu, L., Tsai, Y., & Pfingst. B. E. (2002). Features of stimulation affecting tonal-speech perception: implications for cochlear prostheses. Journal of the Acoustical Society of America, 112, 247–258.PubMedCrossRefGoogle Scholar
  82. Xu, L., Li, Y., Hao, J. P., Chen, X. W., Xue, S. A., et al. (2004). Tone production in Mandarin-speaking children with cochlear implants: a preliminary study. Acta Oto-Laryngologica, 124, 363–367.PubMedCrossRefGoogle Scholar
  83. Xu, L., Zhang, W., Zhou, N., Lee, C.-Y., Li, Y., et al. (2006). Mandarin Chinese tone recognition with an artificial neural network. Journal of Otology, 1, 30–34.Google Scholar
  84. Xu, L., Chen, X., Zhou, N., Li, Y., Zhao, X., et al. (2007) Recognition of lexical tone production of children with an artificial neural network. Acta Oto-Laryngologica, 127, 365–369.PubMedCrossRefGoogle Scholar
  85. Xu, L., Zhou, N., Chen, X., Li, Y., Schultz, H. M., et al. (2009a). Vocal singing by prelingually-deafened children with cochlear implants. Hearing Research, 255, 129–134.PubMedCrossRefGoogle Scholar
  86. Xu, L., Zhou, N., Huang, J., Chen, X., Li, Y., et al. (2009b). Lexical tone development in prelingually-deafened children with cochlear implants. Paper presented at The 12th International Symposium on Cochlear Implants in Children, Seattle, WA.Google Scholar
  87. Xu, L., Chen, X., Lu, H., Zhou, N., Wang S., et al. (2010) Tone recognition and production in pediatric cochlear implants users. Acta Oto-Laryngologica, 131, 395–398.PubMedCrossRefGoogle Scholar
  88. Yuan, M., Lee, T., Yuen, K. C. P., Soli, S. D., van Hasselt, C. A., et al. (2009). Cantonese tone recognition with enhanced temporal periodicity cues. Journal of the Acoustical Society of America, 126, 327–337.PubMedCrossRefGoogle Scholar
  89. Yuen, K. C. P., Yuan, M., Lee, T., Soli, S., Tong, M. C. F., & van Hasselt, C. A. (2007) Frequency-specific temporal envelope and periodicity components for lexical tone identification in Cantonese. Ear and Hearing, 28, 107 S–113S.PubMedCrossRefGoogle Scholar
  90. Zhou, N., & Xu, L. (2008a). Development and evaluation of methods for assessing tone production skills in Mandarin-speaking children with cochlear implants. Journal of the Acoustical Society of America, 123, 1653–1664.PubMedCrossRefGoogle Scholar
  91. Zhou, N., & Xu, L. (2008b). Lexical tone recognition with spectrally mismatched envelopes. Hearing Research, 46, 36–43CrossRefGoogle Scholar
  92. Zhou, N., Zhang, W., Lee, C.-Y., & Xu, L. (2008). Lexical tone recognition by an artificial neural network. Ear and Hearing, 29, 326–335.PubMedCrossRefGoogle Scholar
  93. Zhou, N., Xu, L. & Lee, C.-Y. (2010). The effects of frequency-place mismatch on consonant confusion. Journal of the Acoustical Society of America, 128, 401–409.PubMedCrossRefGoogle Scholar
  94. Zhu, H., & Dodd, B. (2000). The phonological acquisition of Putonghua (Modern Standard Chinese). Journal of Child Language, 27, 3–42.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of Rehabilitation and Communication SciencesOhio UniversityAthensUSA

Personalised recommendations