Skip to main content

The Roles of IL-22 and Its Related Family Members in the Pathogenesis of Psoriasis

  • Chapter
  • First Online:
TH17 Cells in Health and Disease
  • 954 Accesses

Abstract

IL-22 is a TH17 cytokine. It belongs to IL-10 family of cytokines that also includes IL-10, IL-19, IL-20, IL-24, and IL-26. IL-26 is also produced by TH17 cells, while IL-24 is a TH2 cytokine. All of these cytokines can also be produced by other leukocytes. Cytokine networks play essential roles in the pathogenesis of psoriasis. In psoriatic skin, the expression of IL-19, IL-20, IL-22, IL-24 and IL-26 is elevated. Infiltrating immune cells are the primary cellular sources. However, the receptors for these cytokines are expressed mainly on epithelial cells, including keratinocytes, but not on leukocytes. In psoriatic skin, these cytokines induce epidermal keratinocytes to display many pathogenic features, including hyperplasia, abnormal differentiation, and overexpression of psoriasin and other psoriatic markers. These cytokines mediate the crosstalk between infiltrating immune cells and epidermal keratinocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggarwal, S., N. Ghilardi, et al. (2003). “Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17.” J Biol Chem 278(3): 1910–4.

    Article  PubMed  CAS  Google Scholar 

  • Aggarwal, S., M. H. Xie, et al. (2001). “Acinar cells of the pancreas are a target of interleukin-22.” J Interferon Cytokine Res 21(12): 1047–53.

    Article  PubMed  CAS  Google Scholar 

  • Aujla, S. J., Y. R. Chan, et al. (2008). “IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia.” Nat Med 14(3): 275–81.

    Article  PubMed  CAS  Google Scholar 

  • Awasthi, A., L. Riol-Blanco, et al. (2009). “Cutting edge: IL-23 receptor gfp reporter mice reveal distinct populations of IL-17-producing cells.” J Immunol 182(10): 5904–8.

    Article  PubMed  CAS  Google Scholar 

  • Bettaccini, A. A., A. Baj, et al. (2005). “Proliferative activity of extracellular HIV-1 Tat protein in human epithelial cells: expression profile of pathogenetically relevant genes.” BMC Microbiol 5(1): 20.

    Article  PubMed  CAS  Google Scholar 

  • Bettelli, E., Y. Carrier, et al. (2006). “Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells.” Nature 441(7090): 235–8.

    Article  PubMed  CAS  Google Scholar 

  • Blumberg, H., D. Conklin, et al. (2001). “Interleukin 20: discovery, receptor identification, and role in epidermal function.” Cell 104(1): 9–19.

    Article  PubMed  CAS  Google Scholar 

  • Boniface, K., F. X. Bernard, et al. (2005). “IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes.” J Immunol 174(6): 3695–702.

    PubMed  CAS  Google Scholar 

  • Boniface, K., E. Guignouard, et al. (2007). “A role for T cell-derived interleukin 22 in psoriatic skin inflammation.” Clin Exp Immunol 150(3): 407–15.

    Article  PubMed  CAS  Google Scholar 

  • Caproni, M., E. Antiga, et al. (2009). “Serum levels of IL-17 and IL-22 are reduced by etanercept, but not by acitretin, in patients with psoriasis: a randomized-controlled trial.” J Clin Immunol 29(2): 210–4.

    Article  PubMed  CAS  Google Scholar 

  • Caudell, E. G., J. B. Mumm, et al. (2002). “The protein product of the tumor suppressor gene, melanoma differentiation-associated gene 7, exhibits immunostimulatory activity and is designated IL-24.” J Immunol 168(12): 6041–6.

    PubMed  CAS  Google Scholar 

  • Cella, M., A. Fuchs, et al. (2009). “A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity.” Nature 457(7230): 722–5.

    Article  PubMed  CAS  Google Scholar 

  • Chan, J. R., W. Blumenschein, et al. (2006). “IL-23 stimulates epidermal hyperplasia via TNF and IL- 20R2-dependent mechanisms with implications for psoriasis pathogenesis.” J Exp Med 203(12): 2577–87.

    Article  PubMed  CAS  Google Scholar 

  • Chang, C., E. Magracheva, et al. (2003). “Crystal structure of interleukin-19 defines a new sub-family of helical cytokines.” J Biol Chem 278(5): 3308–13.

    Article  PubMed  CAS  Google Scholar 

  • Chung, Y., X. Yang, et al. (2006). “Expression and regulation of IL-22 in the IL-17-producing CD4+ T lymphocytes.” Cell Res 16(11): 902–7.

    Article  PubMed  CAS  Google Scholar 

  • Colonna, M. (2009). “Interleukin-22-producing natural killer cells and lymphoid tissue inducer-like cells in mucosal immunity.” Immunity 31(1): 15–23.

    Article  PubMed  CAS  Google Scholar 

  • Cua, D. J., J. Sherlock, et al. (2003). “Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain.” Nature 421(6924): 744–8.

    Article  PubMed  CAS  Google Scholar 

  • Cupedo, T., N. K. Crellin, et al. (2009). “Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells.” Nat Immunol 10(1): 66–74.

    Article  PubMed  CAS  Google Scholar 

  • Duhen, T., R. Geiger, et al. (2009). “Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells.” Nat Immunol 10(8): 857–63.

    Article  PubMed  CAS  Google Scholar 

  • Dumoutier, L., C. Leemans, et al. (2001a). “Cutting edge: STAT activation by IL-19, IL-20 and mda-7 through IL-20 receptor complexes of two types.” J Immunol 167(7): 3545–9.

    PubMed  CAS  Google Scholar 

  • Dumoutier, L., D. Lejeune, et al. (2001b). “Cloning and characterization of IL-22 binding protein, a natural antagonist of IL-10-related T cell-derived inducible factor/IL-22.” J Immunol 166(12): 7090–5.

    PubMed  CAS  Google Scholar 

  • Dumoutier, L., J. Louahed, et al. (2000a). “Cloning and characterization of IL-10-related T cell-derived inducible factor (IL-TIF), a novel cytokine structurally related to IL-10 and inducible by IL-9.” J Immunol 164(4): 1814–9.

    PubMed  CAS  Google Scholar 

  • Dumoutier, L., A. Tounsi, et al. (2004). “Role of the interleukin (IL)-28 receptor tyrosine residues for antiviral and antiproliferative activity of IL-29/interferon-lambda 1: similarities with type I interferon signaling.” J Biol Chem 279(31): 32269–74.

    Article  PubMed  CAS  Google Scholar 

  • Dumoutier, L., E. Van Roost, et al. (2000b). “IL-TIF/IL-22: genomic organization and mapping of the human and mouse genes.” Genes Immun 1(8): 488–94.

    Article  PubMed  CAS  Google Scholar 

  • Eyerich, S., K. Eyerich, et al. (2009). “Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling.” J Clin Invest 119(12): 3573–85.

    PubMed  CAS  Google Scholar 

  • Fisher, P. B. (2005). “Is mda-7/IL-24 a “magic bullet” for cancer?” Cancer Res 65(22): 10128–38.

    Article  PubMed  CAS  Google Scholar 

  • Fujita, H., K. E. Nograles, et al. (2009). “Human Langerhans cells induce distinct IL-22-producing CD4+ T cells lacking IL-17 production.” Proc Natl Acad Sci USA 106(51): 21795–800.

    Article  PubMed  CAS  Google Scholar 

  • Gallagher, G., H. Dickensheets, et al. (2000). “Cloning, expression and initial characterization of interleukin-19 (IL-19), a novel homologue of human interleukin-10 (IL-10).” Genes Immun 1(7): 442–50.

    Article  PubMed  CAS  Google Scholar 

  • Ghoreschi, K., P. Thomas, et al. (2003). “Interleukin-4 therapy of psoriasis induces Th2 responses and improves human autoimmune disease.” Nat Med 9(1): 40–6.

    Article  PubMed  CAS  Google Scholar 

  • He, M. and P. Liang (2010) “IL-24 Transgenic Mice: In Vivo Evidence of Overlapping Functions for IL-20, IL-22, and IL-24 in the Epidermis.” J Immunol 184(4):1793–8.

    Google Scholar 

  • Hor, S., H. Pirzer, et al. (2004). “The T-cell lymphokine interleukin-26 targets epithelial cells through the interleukin-20 receptor 1 and interleukin-10 receptor 2 chains.” J Biol Chem 279(32): 33343–51.

    Article  PubMed  CAS  Google Scholar 

  • Hosoi, T., S. Wada, et al. (2004). “Bacterial endotoxin induces IL-20 expression in the glial cells.” Brain Res Mol Brain Res 130(1-2): 23–9.

    Article  PubMed  CAS  Google Scholar 

  • Huang, F., S. Wachi, et al. (2008). “Potentiation of IL-19 expression in airway epithelia by IL-17A and IL- 4/IL-13: important implications in asthma.” J Allergy Clin Immunol 121(6): 1415–21, 1421 e1-3.

    Google Scholar 

  • Hummelshoj, L., L. P. Ryder, et al. (2006). “The role of the interleukin-10 subfamily members in immunoglobulin production by human B cells.” Scand J Immunol 64(1): 40–7.

    Article  PubMed  CAS  Google Scholar 

  • Hunt, D. W., W. A. Boivin, et al. (2006). “Ultraviolet B light stimulates interleukin-20 expression by human epithelial keratinocytes.” Photochem Photobiol 82(5): 1292–300.

    Article  PubMed  CAS  Google Scholar 

  • Infante-Duarte, C., H. F. Horton, et al. (2000). “Microbial lipopeptides induce the production of IL-17 in Th cells.” J Immunol 165(11): 6107–15.

    PubMed  CAS  Google Scholar 

  • Jiang, H., J. J. Lin, et al. (1995). “Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression.” Oncogene 11(12): 2477–86.

    PubMed  CAS  Google Scholar 

  • Jones, E. A. and R. A. Flavell (2005). “Distal enhancer elements transcribe intergenic RNA in the IL-10 family gene cluster.” J Immunol 175(11): 7437–46.

    PubMed  CAS  Google Scholar 

  • Jordan, W. J., J. Eskdale, et al. (2005). “Human IL-19 regulates immunity through auto-induction of IL-19 and production of IL-10.” Eur J Immunol 35(5): 1576–82.

    Article  PubMed  CAS  Google Scholar 

  • Kagami, S., H. L. Rizzo, et al. (2009). “Circulating Th17, Th22, and Th1 Cells Are Increased in Psoriasis.” J Invest Dermatol 130(5): 1373–83.

    Article  PubMed  CAS  Google Scholar 

  • Kastelein, R. A., C. A. Hunter, et al. (2007). “Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation.” Annu Rev Immunol 25: 221–42.

    Article  PubMed  CAS  Google Scholar 

  • Kingo, K., S. Koks, et al. (2004). “Polymorphisms in the interleukin-20 gene: relationships to plaque-type psoriasis.” Genes Immun 5(2): 117–21.

    Article  PubMed  CAS  Google Scholar 

  • Kingo, K., R. Mossner, et al. (2008). “Association analysis of IL20RA and IL20RB genes in psoriasis.” Genes Immun 9(5): 445–51.

    Article  PubMed  CAS  Google Scholar 

  • Knappe, A., S. Hor, et al. (2000). “Induction of a novel cellular homolog of interleukin-10, AK155, by transformation of T lymphocytes with herpesvirus saimiri.” J Virol 74(8): 3881–7.

    Article  PubMed  CAS  Google Scholar 

  • Koks, S., K. Kingo, et al. (2004). “Combined haplotype analysis of the interleukin-19 and -20 genes: relationship to plaque-type psoriasis.” Genes Immun 5(8): 662–7.

    Article  PubMed  CAS  Google Scholar 

  • Koks, S., K. Kingo, et al. (2005). “Possible relations between the polymorphisms of the cytokines IL-19, IL-20 and IL-24 and plaque-type psoriasis.” Genes Immun 6(5): 407–15.

    Article  PubMed  CAS  Google Scholar 

  • Kopp, T., P. Lenz, et al. (2003). “IL-23 production by cosecretion of endogenous p19 and transgenic p40 in keratin 14/p40 transgenic mice: evidence for enhanced cutaneous immunity.” J Immunol 170(11): 5438–44.

    PubMed  CAS  Google Scholar 

  • Korn, T., E. Bettelli, et al. (2007). “IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells.” Nature 448(7152): 484–7.

    Article  PubMed  CAS  Google Scholar 

  • Korn, T., E. Bettelli, et al. (2009). “IL-17 and Th17 Cells.” Annu Rev Immunol 27: 485–517.

    Article  PubMed  CAS  Google Scholar 

  • Kotenko, S. V., L. S. Izotova, et al. (2001a). “Identification of the functional interleukin-22 (IL-22) receptor complex: the IL-10R2 chain (IL-10Rbeta ) is a common chain of both the IL-10 and IL-22 (IL-10-related T cell-derived inducible factor, IL-TIF) receptor complexes.” J Biol Chem 276(4): 2725–32.

    Article  PubMed  CAS  Google Scholar 

  • Kotenko, S. V., L. S. Izotova, et al. (2001b). “Identification, cloning, and characterization of a novel soluble receptor that binds IL-22 and neutralizes its activity.” J Immunol 166(12): 7096–103.

    PubMed  CAS  Google Scholar 

  • Kreis, S., D. Philippidou, et al. (2008). “IL-24: a classic cytokine and/or a potential cure for cancer?” J Cell Mol Med. 12(6A): 2505–10.

    Google Scholar 

  • Kreis, S., D. Philippidou, et al. (2007). “Recombinant interleukin-24 lacks apoptosis-inducing properties in melanoma cells.” PLoS ONE 2(12): e1300.

    Article  PubMed  CAS  Google Scholar 

  • Krueger, G. G., R. G. Langley, et al. (2007). “A human interleukin-12/23 monoclonal antibody for the treatment of psoriasis.” N Engl J Med 356(6): 580–92.

    Article  PubMed  CAS  Google Scholar 

  • Kunz, S., K. Wolk, et al. (2006). “Interleukin (IL)-19, IL-20 and IL-24 are produced by and act on keratinocytes and are distinct from classical ILs.” Exp Dermatol 15(12): 991–1004.

    Article  PubMed  CAS  Google Scholar 

  • Langrish, C. L., Y. Chen, et al. (2005). “IL-23 drives a pathogenic T cell population that induces autoimmune inflammation.” J Exp Med 201(2): 233-40.

    Article  PubMed  CAS  Google Scholar 

  • Lee, E., W. L. Trepicchio, et al. (2004). “Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris.” J Exp Med 199(1): 125–30.

    Article  PubMed  CAS  Google Scholar 

  • Lejeune, D., L. Dumoutier, et al. (2002). “Interleukin-22 (IL-22) activates the JAK/STAT, ERK, JNK, and p38 MAP kinase pathways in a rat hepatoma cell line. Pathways that are shared with and distinct from IL-10.” J Biol Chem 277(37): 33676–82.

    Article  PubMed  CAS  Google Scholar 

  • Liang, S. C., X. Y. Tan, et al. (2006). “Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides.” J Exp Med 203(10): 2271–9.

    Article  PubMed  CAS  Google Scholar 

  • Liao, S. C., Y. C. Cheng, et al. (2004). “IL-19 induced Th2 cytokines and was up-regulated in asthma patients.” J Immunol 173(11): 6712–8.

    PubMed  CAS  Google Scholar 

  • Liao, Y. C., W. G. Liang, et al. (2002). “IL-19 induces production of IL-6 and TNF-alpha and results in cell apoptosis through TNF-alpha.” J Immunol 169(8): 4288–97.

    PubMed  CAS  Google Scholar 

  • Liu, L., C. Ding, et al. (2003). “Selective enhancement of multipotential hematopoietic progenitors in vitro and in vivo by IL-20.” Blood 102(9): 3206–9.

    Article  PubMed  CAS  Google Scholar 

  • Lowes, M. A., A. M. Bowcock, et al. (2007). “Pathogenesis and therapy of psoriasis.” Nature 445(7130): 866–73.

    Article  PubMed  CAS  Google Scholar 

  • Lowes, M. A., T. Kikuchi, et al. (2008). “Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells.” J Invest Dermatol 128(5): 1207–11.

    Article  PubMed  CAS  Google Scholar 

  • Luci, C., A. Reynders, et al. (2009). “Influence of the transcription factor RORgammat on the development of NKp46+ cell populations in gut and skin.” Nat Immunol 10(1): 75–82.

    Article  PubMed  CAS  Google Scholar 

  • Ma, H. L., S. Liang, et al. (2008). “IL-22 is required for Th17 cell-mediated pathology in a mouse model of psoriasis-like skin inflammation.” J Clin Invest 118(2): 597–607.

    PubMed  CAS  Google Scholar 

  • Mangan, P. R., L. E. Harrington, et al. (2006). “Transforming growth factor-beta induces development of the T(H)17 lineage.” Nature 441(7090): 231–4.

    Article  PubMed  CAS  Google Scholar 

  • Martin, B., K. Hirota, et al. (2009). “Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals.” Immunity 31(2): 321–30.

    Article  PubMed  CAS  Google Scholar 

  • Moore, K. W., R. de Waal Malefyt, et al. (2001). “Interleukin-10 and the interleukin-10 receptor.” Annu Rev Immunol 19: 683–765.

    Article  PubMed  CAS  Google Scholar 

  • Nagalakshmi, M. L., A. Rascle, et al. (2004). “Interleukin-22 activates STAT3 and induces IL-10 by colon epithelial cells.” Int Immunopharmacol 4(5): 679–91.

    Article  PubMed  CAS  Google Scholar 

  • Nickoloff, B. J. and F. O. Nestle (2004). “Recent insights into the immunopathogenesis of psoriasis provide new therapeutic opportunities.” J Clin Invest 113(12): 1664–75.

    PubMed  CAS  Google Scholar 

  • Nograles, K. E., L. C. Zaba, et al. (2009). “IL-22-producing T22 T cells account for upregulated IL-22 in atopic dermatitis despite reduced IL-17-producing TH17 T cells.” J Allergy Clin Immunol 123(6): 1244–52 e2.

    Google Scholar 

  • Oral, H. B., S. V. Kotenko, et al. (2006). “Regulation of T cells and cytokines by the interleukin-10 (IL-10)-family cytokines IL-19, IL-20, IL-22, IL-24 and IL-26.” Eur J Immunol 36(2): 380–8.

    Article  PubMed  CAS  Google Scholar 

  • Otkjaer, K., K. Kragballe, et al. (2005). “The dynamics of gene expression of interleukin-19 and interleukin-20 and their receptors in psoriasis.” Br J Dermatol 153(5): 911–8.

    Article  PubMed  CAS  Google Scholar 

  • Otkjaer, K., K. Kragballe, et al. (2007). “IL-20 gene expression is induced by IL-1beta through mitogenactivated protein kinase and NF-kappaB-dependent mechanisms.” J Invest Dermatol 127(6): 1326–36.

    Article  PubMed  CAS  Google Scholar 

  • Ouyang, W., J. K. Kolls, et al. (2008). “The biological functions of T helper 17 cell effector cytokines in inflammation.” Immunity 28(4): 454–67.

    Article  PubMed  CAS  Google Scholar 

  • Pan, H., F. Hong, et al. (2004). “Hydrodynamic gene delivery of interleukin-22 protects the mouse liver from concanavalin A-, carbon tetrachloride-, and Fas ligand-induced injury via activation of STAT3.” Cell Mol Immunol 1(1): 43–9.

    PubMed  CAS  Google Scholar 

  • Parrish-Novak, J., W. Xu, et al. (2002). “Interleukins 19, 20, and 24 signal through two distinct receptor complexes. Differences in receptor-ligand interactions mediate unique biological functions.” J Biol Chem 277(49): 47517–23.

    Article  PubMed  CAS  Google Scholar 

  • Pene, J., S. Chevalier, et al. (2008). “Chronically inflamed human tissues are infiltrated by highly differentiated Th17 lymphocytes.” J Immunol 180(11): 7423-30.

    PubMed  CAS  Google Scholar 

  • Pestka, S., C. D. Krause, et al. (2004). “Interleukin-10 and related cytokines and receptors.” Annu Rev Immunol 22: 929–79.

    Article  PubMed  CAS  Google Scholar 

  • Pickert, G., C. Neufert, et al. (2009). “STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing.” J Exp Med 206(7): 1465–72.

    Article  PubMed  CAS  Google Scholar 

  • Radaeva, S., R. Sun, et al. (2004). “Interleukin 22 (IL-22) plays a protective role in T cell-mediated murine hepatitis: IL-22 is a survival factor for hepatocytes via STAT3 activation.” Hepatology 39(5): 1332–42.

    Article  PubMed  CAS  Google Scholar 

  • Romer, J., E. Hasselager, et al. (2003). “Epidermal overexpression of interleukin-19 and -20 mRNA in psoriatic skin disappears after short-term treatment with cyclosporine a or calcipotriol.” J Invest Dermatol 121(6): 1306–11.

    Article  PubMed  CAS  Google Scholar 

  • Sa, S. M., P. A. Valdez, et al. (2007). “The effects of IL-20 subfamily cytokines on reconstituted human epidermis suggest potential roles in cutaneous innate defense and pathogenic adaptive immunity in psoriasis.” J Immunol 178(4): 2229–40.

    PubMed  CAS  Google Scholar 

  • Sakurai, N., T. Kuroiwa, et al. (2008). “Expression of IL-19 and its receptors in RA: potential role for synovial hyperplasia formation.” Rheumatology (Oxford) 47(6): 815–20.

    Article  CAS  Google Scholar 

  • Sanos, S. L., V. L. Bui, et al. (2009). “RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells.” Nat Immunol 10(1): 83–91.

    Article  PubMed  CAS  Google Scholar 

  • Sarkar, D., I. V. Lebedeva, et al. (2007). “Melanoma differentiation associated gene-7 (mda-7)/IL-24: a ‘magic bullet’ for cancer therapy?” Expert Opin Biol Ther 7(5): 577–86.

    Article  PubMed  CAS  Google Scholar 

  • Satoh-Takayama, N., C. A. Vosshenrich, et al. (2008). “Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense.” Immunity 29(6): 958–70.

    Article  PubMed  CAS  Google Scholar 

  • Schaefer, G., C. Venkataraman, et al. (2001). “Cutting edge: FISP (IL-4-induced secreted protein), a novel cytokine-like molecule secreted by Th2 cells.” J Immunol 166(10): 5859–63.

    PubMed  CAS  Google Scholar 

  • Sheikh, F., V. V. Baurin, et al. (2004). “Cutting edge: IL-26 signals through a novel receptor complex composed of IL-20 receptor 1 and IL-10 receptor 2.” J Immunol 172(4): 2006–10.

    PubMed  CAS  Google Scholar 

  • Sheppard, P., W. Kindsvogel, et al. (2003). “IL-28, IL-29 and their class II cytokine receptor IL-28R.” Nat Immunol 4(1): 63–8.

    Article  PubMed  CAS  Google Scholar 

  • Stenderup, K., C. Rosada, et al. (2009). “Interleukin-20 plays a critical role in maintenance and development of psoriasis in the human xenograft transplantation model.” Br J Dermatol 160(2): 284–96.

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto, K., A. Ogawa, et al. (2008). “IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis.” J Clin Invest 118(2): 534–44.

    PubMed  CAS  Google Scholar 

  • Sutton, C. E., S. J. Lalor, et al. (2009). “Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity.” Immunity 31(2): 331–41.

    Article  PubMed  CAS  Google Scholar 

  • Takatori, H., Y. Kanno, et al. (2009). “Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22.” J Exp Med 206(1): 35–41.

    Article  PubMed  CAS  Google Scholar 

  • Tohyama, M., Y. Hanakawa, et al. (2009). “IL-17 and IL-22 mediate IL-20 subfamily cytokine production in cultured keratinocytes via increased IL-22 receptor expression.” Eur J Immunol 39(10): 2779–88.

    Article  PubMed  CAS  Google Scholar 

  • Trifari, S., C. D. Kaplan, et al. (2009). “Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, T(H)1 and T(H)2 cells.” Nat Immunol 10(8): 864–71.

    Article  PubMed  CAS  Google Scholar 

  • Tritsaris, K., M. Myren, et al. (2007). “IL-20 is an arteriogenic cytokine that remodels collateral networks and improves functions of ischemic hind limbs.” Proc Natl Acad Sci U S A 104(39): 15364–9.

    Article  PubMed  CAS  Google Scholar 

  • Veldhoen, M., R. J. Hocking, et al. (2006). “TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells.” Immunity 24(2): 179–89.

    Article  PubMed  CAS  Google Scholar 

  • Wang, F., E. Lee, et al. (2006). “Prominent production of IL-20 by CD68+/CD11c+ myeloid-derived cells in psoriasis: Gene regulation and cellular effects.” J Invest Dermatol 126(7): 1590–9.

    Article  PubMed  CAS  Google Scholar 

  • Wang, M., Z. Tan, et al. (2002). “Interleukin 24 (MDA-7/MOB-5) signals through two heterodimeric receptors, IL-22R1/IL-20R2 and IL-20R1/IL-20R2.” J Biol Chem 277(9): 7341–7.

    Article  PubMed  CAS  Google Scholar 

  • Wegenka, U. M., N. Dikopoulos, et al. (2007). “The murine liver is a potential target organ for IL-19, IL-20 and IL-24: Type I Interferons and LPS regulate the expression of IL-20R2.”J Hepatol 46(2): 257–65.

    Article  PubMed  CAS  Google Scholar 

  • Whittington, H. A., L. Armstrong, et al. (2004). “Interleukin-22: a potential immunomodulatory molecule in the lung.” Am J Respir Cell Mol Biol 31(2): 220–6.

    Article  PubMed  CAS  Google Scholar 

  • Wolk, K., H. S. Haugen, et al. (2009a). “IL-22 and IL-20 are key mediators of the epidermal alterations in psoriasis while IL-17 and IFN-gamma are not.” J Mol Med 87(5): 523–36.

    Article  PubMed  CAS  Google Scholar 

  • Wolk, K., S. Kunz, et al. (2002). “Cutting edge: immune cells as sources and targets of the IL-10 family members?” J Immunol 168(11): 5397–402.

    PubMed  CAS  Google Scholar 

  • Wolk, K., S. Kunz, et al. (2004). “IL-22 increases the innate immunity of tissues.” Immunity 21(2): 241–54.

    Article  PubMed  CAS  Google Scholar 

  • Wolk, K., E. Witte, et al. (2006). “IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis.” Eur J Immunol 36(5): 1309–23.

    Article  PubMed  CAS  Google Scholar 

  • Wolk, K., E. Witte, et al. (2009b). “The Th17 cytokine IL-22 induces IL-20 production in keratinocytes: a novel immunological cascade with potential relevance in psoriasis.” Eur J Immunol 39(12): 3570–81.

    Article  PubMed  CAS  Google Scholar 

  • Wolk, K., K. Witte, et al. (2008). “Maturing dendritic cells are an important source of IL-29 and IL-20 that may cooperatively increase the innate immunity of keratinocytes.” J Leukoc Biol 83(5): 1181–93.

    Article  PubMed  CAS  Google Scholar 

  • Xie, M. H., S. Aggarwal, et al. (2000). “Interleukin (IL)-22, a novel human cytokine that signals through the interferon receptor-related proteins CRF2-4 and IL-22R.” J Biol Chem 275(40): 31335–9.

    Article  PubMed  CAS  Google Scholar 

  • Xu, W., S. R. Presnell, et al. (2001). “A soluble class II cytokine receptor, IL-22RA2, is a naturally occurring IL-22 antagonist.” Proc Natl Acad Sci USA 98(17): 9511–6.

    Article  PubMed  CAS  Google Scholar 

  • Yano, S., T. Banno, et al. (2008). “Transcriptional responses of human epidermal keratinocytes to cytokine interleukin-1.” J Cell Physiol 214(1): 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Zaba, L. C., I. Cardinale, et al. (2007). “Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses.” J Exp Med 204(13): 3183–94.

    Article  PubMed  CAS  Google Scholar 

  • Zdanov, A. (2004). “Structural features of the interleukin-10 family of cytokines.” Curr Pharm Des 10(31): 3873–84.

    Article  PubMed  CAS  Google Scholar 

  • Zenewicz, L. A., G. D. Yancopoulos, et al. (2007). “Interleukin-22 but not interleukin-17 provides protection to hepatocytes during acute liver inflammation.” Immunity 27(4): 647–59.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, Y., D. M. Danilenko, et al. (2007). “Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis.” Nature 445(7128): 648–51.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, Y., P. A. Valdez, et al. (2008). “Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens.” Nat Med 14(3): 282–9.

    Article  PubMed  CAS  Google Scholar 

  • Zhong, H., Y. Wu, et al. (2006). “A2B adenosine receptors induce IL-19 from bronchial epithelial cells, resulting in TNF-alpha increase.” Am J Respir Cell Mol Biol 35(5): 587–92.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Ouyang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Valdez, P., Ouyang, W. (2011). The Roles of IL-22 and Its Related Family Members in the Pathogenesis of Psoriasis. In: Jiang, S. (eds) TH17 Cells in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9371-7_24

Download citation

Publish with us

Policies and ethics