Skip to main content

Human TH17 Cells

  • Chapter
  • First Online:
TH17 Cells in Health and Disease

Abstract

CD4+ T helper (TH) lymphocytes represent a heterogeneous population of cells that play an essential role in adaptive immunity. In addition to type 1 (TH1) and type 2 (TH2) cells, a third subset of CD4+ TH effector cells have recently been discovered and named as type 17 (TH17), because of its unique ability to produce interleukin (IL)-17. Studies in humans have demonstrated the plasticity of TH17 cells and their possibility to shift to cells producing IL-17A and IFN-γ or IL-17A and IL-4. The plasticity of TH17 to TH1 cells has recently been confirmed in mice, where it has been found that TH17 cells are pathogenic only after their shifting to TH1 cells. Human TH17 are also different from murine TH17 cells because all of them express CD161. They exclusively originate from CD161+ precursors present in umbilical cord blood and newborn thymus after their culturing in presence of IL-1β plus IL-23, and whereas TGF-β is not critical, it plays an indirect role in fostering their development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta-Rodriguez EV, Rivino L, Geginat J, et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat. Immunol. 2007; 8:639–646.

    Article  PubMed  CAS  Google Scholar 

  • Annunziato F, Cosmi L, Santarlasci V, et al. Phenotypic and functional features of human Th17 cells. J. Exp. Med. 2007; 204:1849–1861.

    Article  PubMed  CAS  Google Scholar 

  • Annunziato F, Romagnani S. Do studies in humans better depict Th17 cells? Blood. 2009; 114:2213–9.

    Article  PubMed  CAS  Google Scholar 

  • Bending D, De La Peña H, Veldhoen M et al. Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice. J. Clin. Invest. 2009; 119:565–572.

    Article  PubMed  CAS  Google Scholar 

  • Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector Th17 and regulatory T cells. Nature. 2006; 44:235–238.

    Article  Google Scholar 

  • Chen Y, Thai P, Zhao YH, et al. Stimulation of airway mucin gene expression by interleukin (IL)-17 through IL-6 paracrine/autocrine loop. J. Biol. Chem. 2003; 278:17036–17043.

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Tato CM, Muul L, Laurence A, O’Shea JJ. Distinct regulation of interleukin-17 in human T helper lymphocytes. Arthritis Rheum. 2007; 56:2936–2946.

    Article  PubMed  CAS  Google Scholar 

  • Chung Y, Chang SH, Martinez GJ, et al. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity. 2009; 30:576–587.

    Article  PubMed  CAS  Google Scholar 

  • Collison LW, and Vignali DA. Interleukin-35: odd one out or part of the family? Immunol Rev. 2008; 226:248–262.

    Article  PubMed  CAS  Google Scholar 

  • Cosmi L, De Palma R, Santarlasci V, et al. Human interleukin-17-producing cells originate from a CD161+ CD4+ T-cell precursor. J. Exp. Med. 2008; 205:1903–1916.

    Article  PubMed  CAS  Google Scholar 

  • Cosmi L, Maggi L, Santarlasci V et al. Identification of a novel subset of human circulating memory CD4+ T cells that produce both IL-17A and IL-4. Journal Allergy Clin. Immunol. 2010; 125:222–30.

    Article  CAS  Google Scholar 

  • Cua DJ, Sherlock J, Chen Y et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for auto-immune inflammation of the brain. Nature. 2003; 421:744–748.

    Article  PubMed  CAS  Google Scholar 

  • Das J, Ren G, Zhang L, et al. Transforming growth factor beta is dispensable for the molecular orchestration of Th17 cell differentiation. J. Exp. Med. 2009; 206:2407–2416.

    Article  PubMed  CAS  Google Scholar 

  • de Beaucoudrey L, Puel A, Filipe-Santos O et al. Mutations in STAT3 and IL12RB1 impair the development of human IL-17-producing T cells. J. Exp. Med. 2008 7; 205:1543–1550.

    Google Scholar 

  • Doodes PD, Cao Y, Hamel KM et al. Development of proteoglycan-induced arthritis is independent of IL-17. J. Immunol. 2008; 181:329–337.

    PubMed  CAS  Google Scholar 

  • Dubin PJ, Kolls JK. Th17 cytokines and mucosal immunity. Immunol. Rev. 2008; 226:160–171.

    Article  PubMed  CAS  Google Scholar 

  • Fouser LA, Wright JF, Dunussi-Joannopoulos K, et al. Th17 cytokines and their emerging roles in inflammation and auto-immunity. Immunol. Rev. 2008; 226:87–102.

    Article  PubMed  CAS  Google Scholar 

  • Gately MK, Renzetti LM, Magram J et al. The interleukin-12/interleukin-12-receptor system: role in normal and pathologic immune responses. Annu. Rev. Immunol. 1998; 16:495–521.

    Article  PubMed  CAS  Google Scholar 

  • Harris TJ, Grosso JF, Yen HR, et al. An in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent auto-immunity. J. Immunol. 2007; 179:4313–4317.

    PubMed  CAS  Google Scholar 

  • Hofstetter HH, Ibrahim SM, Koczan D, et al. Therapeutic efficacy of IL-17 neutralization in murine experimental auto-immune encephalomyelitis. Cell. Immunol. 2005; 237:123–130.

    Article  PubMed  CAS  Google Scholar 

  • Kao CY, Chen Y, Thai P, et al. IL-17 markedly up-regulates beta-defensin-2 expression in human airway epithelium via JAK and NF-kappaB signaling pathways. J. Immunol. 2004. 173:3482–3491.

    PubMed  CAS  Google Scholar 

  • Kao CY, Huang F, Chen Y, Thaiet al. Up-regulation of CC chemokine ligand 20 expression in human airway epithelium by IL-17 through a JAK-independent but MEK/NF-kappaB-dependent signaling pathway. J. Immunol. 2005; 175:6676–6685.

    PubMed  CAS  Google Scholar 

  • Kisand K, Bøe Wolff AS, Podkrajsek KT, et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with auto-immunity to Th17-associated cytokines. J. Exp. Med. 2010; 207:299–308.

    Article  PubMed  CAS  Google Scholar 

  • Kleinschek MA, Boniface K, Sadekova S, et al. Circulating and gut-resident human Th17 cells express CD161 and promote intestinal inflammation. J. Exp. Med. 2009; 206:525–534.

    Article  PubMed  CAS  Google Scholar 

  • Komiyama Y, Nakae S, Matsuki T, et al. IL-17 plays an important role in the development of experimental auto-immune encephalomyelitis. J. Immunol. 2006; 177:566–573.

    PubMed  CAS  Google Scholar 

  • Korn T, Bettelli E, Gao W, et al. IL-21 initiates an alternative pathway to induce pro-inflammatory T(H)17 cells. Nature. 2007; 448:484–487.

    Article  PubMed  CAS  Google Scholar 

  • Kroenke MA, Carlson TJ, Andjelkovic AV, et al. IL-12- and IL-23-modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition. J. Exp. Med. 2009; 205:1535–1541.

    Article  Google Scholar 

  • Lanier LL, Chang C, Philips JH. Human NKR-P1A. A disulphide-linked homodimer of the C-type lectin superfamily expressed by a subset of NK and T lymphocytes. J. Immunol.1994; 153:2417–2428.

    PubMed  CAS  Google Scholar 

  • Laurence A, O’Shea JJ. T(H)-17 differentiation: of mice and men. Nat Immunol. 2007;8:903–905.

    Article  PubMed  CAS  Google Scholar 

  • Lee YK, Turner H, Maynard CL, et al. Late developmental plasticity in the T helper 17 lineage. Immunity. 2009; 30:92–107.

    Article  PubMed  CAS  Google Scholar 

  • Leonardi CL, Kimball AB, Papp KA, et al. Efficacy and safety of ustekinumab, a human ­interleukin-12/23 monoclonal antibody in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet. 2008; 371:1665–1674.

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Yang B, Zhou M, et al. Memory IL-22-producing CD4+ T cells specific for Candida ­albicans are present in humans. Eur. J. Immunol. 2009; 39:1472–1479.

    Article  PubMed  CAS  Google Scholar 

  • Luger D, Silver PB, Tang J, et al. Either a Th17 or a Th1 effector response can drive auto-immunity: conditions of disease induction affect dominant effector category. J. Exp. Med. 2008; 205: 799–810.

    Article  PubMed  CAS  Google Scholar 

  • Ma CS, Chew GY, Simpson N, et al. Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3. J. Exp. Med. 2008; 205:1551–1557.

    Article  PubMed  CAS  Google Scholar 

  • Manel N, Unutmaz D, Littman DR. The differentiation of human Th17 cells requires transforming growth factor-β and induction of the nuclear receptor RORγt. Nat. Immunol. 2008; 9:641–649.

    Article  PubMed  CAS  Google Scholar 

  • Mangan PR, Harrington LE, O’Quinn, et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature. 2006; 441:231–234.

    Article  PubMed  CAS  Google Scholar 

  • Marks BR, Nowyhed HN, Choi JY, et al. Thymic self-reactivity selects natural interleukin 17-producing T cells that can regulate peripheral inflammation. Nat. Immunol. 2009; 10:1125–1132.

    Article  PubMed  CAS  Google Scholar 

  • Martin-Orozco N, Chung Y, Chang SH, et al. Th17 cells promote pancreatic inflammation but only induce diabetes efficiently in lymphopenic hosts after conversion into Th1 cells. Eur. J. Immunol. 2009; 39:216–24.

    Article  PubMed  CAS  Google Scholar 

  • Mosmann TR, Cherwinski C, Bond MW, et al. Two types of murine helper T cell clones. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 1986; 136: 2348–2357.

    PubMed  CAS  Google Scholar 

  • Nurieva R, Yang XO, Martinez G, et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature. 2007; 448:480–483.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa A, Andoh A, Araki Y, et al. Neutralization of interleukin-17 aggravates dextran sulfate sodium-induced colitis in mice. Clin. Immunol. 2004; 110:55–62.

    Article  PubMed  CAS  Google Scholar 

  • Ouyang W, Koli JK, and Zheng Y. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity. 2008; 28:454–467.

    Article  PubMed  CAS  Google Scholar 

  • Papp KA, Langley RG, Lebwohl M, et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet. 2008; 371:1675–1684.

    Article  PubMed  CAS  Google Scholar 

  • Pelletier M., Maggi L, Micheletti A, et al., Evidence for a cross-talk between human neutrophils and Th17 cells. Blood. 2010; 115:335–343.

    Article  PubMed  CAS  Google Scholar 

  • O’Garra A, Stockinger B, Veldhoen M. Differentiation of human T(H)-17 cells does require TGF-beta! Nat. Immunol. 2008; 9:588–90.

    Google Scholar 

  • Oppman B, Lesley R, Blom B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity. 2000; 13:715–725.

    Article  Google Scholar 

  • Peck A, Mellins ED. Precarious balance: Th17 cells in host defense. Infect. Immun. 2010; 78:32–38.

    Article  PubMed  CAS  Google Scholar 

  • Puel A, Döffinger R, Natividad A, et al. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and auto-immune polyendocrine syndrome type I. J. Exp. Med. 2010; 207:291–297.

    Article  PubMed  CAS  Google Scholar 

  • Romagnani S. Human TH1 and TH2 subsets: doubt no more. Immunol Today 1991;12:256–257.

    Article  PubMed  CAS  Google Scholar 

  • Romagnani S. The Th1/Th2 paradigm. Immunol. Today. 1997; 18:263–266.

    Article  PubMed  CAS  Google Scholar 

  • Santarlasci V, Maggi L, Capone M et al. TGF-beta indirectly favors the development of human Th17 cells by inhibiting Th1 cells. Eur. J. Immunol. 2009;39: 207–215.

    Article  PubMed  CAS  Google Scholar 

  • Tato CM, Laurence A, O’Shea JJ. J Helper T cell differentiation enters a new era: le roi est mort; vive le roi! J. Exp. Med. 2006; 203:809–812.

    Google Scholar 

  • van Beelen AJ, Zelinkova Z, Taanman-Kueter EW et al. Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. Immunity. 2007a; 27:660–669.

    Article  PubMed  Google Scholar 

  • van Beelen AJ, Teunissen MB, Kapsenberg ML, de Jong EC. Interleukin-17 in inflammatory skin disorders. Curr. Opin. Allergy Clin. Immunol. 2007b; 7:374–381

    Google Scholar 

  • Veldhoen M, Hocking RJ, Atkins CJ, et al. TGF-beta in the context of an inflammatory cytokine milieu supports differentiation of IL-17-producing T cells. Immunity. 2006; 25:179–189.

    Article  Google Scholar 

  • Volpe E, Servant N, Zollinger R, et al. A critical function for transforming growth factor-β, interleukin-23 and pro-inflammatory cytokines in driving and modulating human Th17 responses. Nat. Immunol. 2008; 9: 650–657.

    Article  PubMed  CAS  Google Scholar 

  • Wilson NJ, Boniface K, Chan JR, et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat. Immunol. 2007; 8:950–957.

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Anderson DE, Baecher-Allan C, et al. IL-21 and TGF-beta are required for differentiation of human T(H)17 cells. Nature. 2008; 454:350–352.

    Article  PubMed  CAS  Google Scholar 

  • Yao Z, et al. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity. 1995; 3:811–821.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Romagnani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Annunziato, F., Cosmi, L., Liotta, F., Maggi, E., Romagnani, S. (2011). Human TH17 Cells. In: Jiang, S. (eds) TH17 Cells in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9371-7_12

Download citation

Publish with us

Policies and ethics