Skip to main content

Energy

  • Chapter
  • First Online:

Part of the book series: The Frontiers Collection ((FRONTCOLL))

Abstract

Energy is the capacity to cause changes in the world. It is stored in matter and force fields. The Sun produces energy by nuclear fusion. Solar irradiation, and reradiation and capture of the infrared by the greenhouse gases in the atmosphere, determine the climate on Earth and the environment for life. The combustion of coal, oil, and gas in heat engines, and non-fossil energy utilization, provide every citizen of the industrialized countries with energy services that are quantitatively equivalent to those of more than 40 hard-working men. They offer freedom from toil, comfort, mobility, information, and power. Transistors, running on electricity, work as powerful assistants to the human brain. A given energy quantity consists of a valuable part, called exergy, which can be converted into any form of physical work, and a useless part called anergy. Fossil and nuclear fuels, and solar radiation as well, are practically 100% exergy, and anergy is mostly heat at the temperature of the environment. All production processes in nature and industry decrease exergy and increase anergy. Energy consumption in this sense depletes the reserves of the easily accessible fossil fuels at a rate that, for oil, may soon culminate in peak Ooil. The potential of energy conservation and of non-fossil energy sources are assessed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    If m is the mass m 0 of a body at rest relative to an observer, this relation gives the amount of energy the observer would obtain from nuclear reactions that convert all of m 0 into energy. Similarly, if an electron and its antiparticle, the positron, meet, they annihilate and turn into photons, the quanta of electromagnetic radiation, whose energy is given by (2.1), m being the sum of the equal masses of the electron and the positron in this case. On the other hand, if a body moves with velocity v relative to the observer, one has \(m = {m}_{0}/{(1 -{\mathbf{v}}^{2}/{c}^{2})}^{1/2}\) in (2.1). A popular saying is that mass increases with velocity, although Einstein objected to talking about the mass of a moving body (letter dated June 19, 1948 to L. Barnett). Einstein preferred to describe the inertia of rapidly moving bodies by the concepts of energy, momentum and rest mass m 0 [2]. In any case, no rocket can exceed the velocity of light. Just to reach | v |  = c would require an infinite amount of energy. (That is why science fiction on space travel invented “jumps through hyperspace.”) Only massless “particles” such as photons propagate at the speed of light.

  2. 2.

    For instance, just to preserve the law of energy conservation for the β decay in nuclear reactions, Wolfgang Pauli postulated the existence of an uncharged particle with energy, spin 1/2, and vanishingly small mass in 1930. Enrico Fermi called it a “neutrino” in 1940. It was found experimentally in 1956.

  3. 3.

    The concept of “anergy” has been transferred from medicine and psychology. It has not yet been accepted as widely as “exergy,” where “availability” was one of the older names of the latter.

  4. 4.

    Inhibition of convection by the glass roof also contributes to warming.

  5. 5.

    Equations (2.27), (2.28), and (2.38) in Appendix 1 of Chap. 2 indicate how internal energy, i.e., chemical energy, is calculated and measured.

  6. 6.

    Switching devices such as relays and vacuum tubes are now information processors of minor importance.

  7. 7.

    Mc Cormick D-439: 26 kW, Fendt 824: 177 kW.

  8. 8.

    Lifting equipment 1,240 kW, scavenging pumps 720 kW, rotary table 360 kW (F. Holzförster, private communication). The power of drilling equipment units offered by Drill-Quest Engineering in Hünenberg, Switzerland, is 82.9 kW (112 hp) for a stationary diesel power unit and 555 kW (750 hp) for a mobile drilling rig.

  9. 9.

    The difference between the radiation energy in a room with wall temperature T and the same room with wall temperature T − ΔT is proportional to \({T}^{4} - {(T - \Delta T)}^{4} \approx 4{T}^{3}\Delta T\).

  10. 10.

    http://www.optoiq.com/index/photonics-technologies-applications/lfw-display/lfw-article-display/articles/optoiq2/photonics-technologies/news/applications-_markets/communications-_it/2010/8/BIANCHO-project.html.

  11. 11.

    OPEC is a cartel of 12 countries made up of Algeria, Angola, Ecuador, Iran, Iraq, Kuwait, Libya, Nigeria, Qatar, Saudi Arabia, the United Arab Emirates, and Venezuela. OPEC has maintained its headquarters in Vienna since 1965.

  12. 12.

    Fusion in the Sun provides all renewable energies, except tidal power and those geothermal energies that result from the radioactive decay of minerals and volcanic activity.

  13. 13.

    http://www.world-nuclear.org/info/reactors.html.

  14. 14.

    A comparison of geothermal power plants with others by the US Department of Energy estimated the total area per megawatt of a coal-fired power plant to exceed 70,000 m2 (probably assuming strip mining of coal); http://www1.eere.energy.gov/geothermal/geopower_landuse.html.

  15. 15.

    Erneuerbare Energien Gesetz (“Renewable Energy Law”).

  16. 16.

    International Energy Agency.

  17. 17.

    Industriegewerkschaft Bergbau, Chemie, Energie, “Brancheninfo: Elektrizitätswirtschaft, Fakten und Daten zur deutschen Elektrizitätswirtschaft 2007 und Ausblick.”

  18. 18.

    IEA Key World Energy Statistics.

  19. 19.

    “The Future of Geothermal Energy”, Massachusetts Institute of Technology 2006; http://geothermal.inel.gov/publications/future_of_geothermal_energy.pdf.

  20. 20.

    Where to draw the system boundaries properly is sometimes controversial. For instance, there are people who argue that photovoltaic cells will never reproduce the energy invested in their production, because in this energy one should include the fuel used by workers in factories producing photovoltaic cells, and during boat-trip vacations in the Caribbean, for example. Arguments of this quality are perhaps responsible for the persisting rumors that the harvest factors of photovoltaic cells and even wind power installations are less than 1.

  21. 21.

    CO2, NO x , SO2, and dust.

  22. 22.

    Emission reductions roughly follow energy savings.

  23. 23.

    The law (Erneuerbare Energien Gesetz) that stimulates the enormous growth of wind power and photovoltaics entitles windmill owners to feed their electricity into the grid at guaranteed feed-in tariffs, no matter whether the grid can take it or not.

  24. 24.

    In fact, 20 years later, Germany is the country with the highest electricity prices in Europe.

  25. 25.

    Häfele et al. [57] estimated that fusion reactors will produce about as much radioactive waste as fast breeder reactors. However, the radioactivity of the confinement material, which must be replaced periodically because of damage by neutron bombardment, dies off much more rapidly than the radioactivity of spent fuel rods from fission reactors.

  26. 26.

    Source: Max-Planck-Institut für Plasmaphysik, http://www.ipp.mpg.de/.

  27. 27.

    The German Physical Society has more than 55,000 members and is the biggest physical society in the world.

  28. 28.

    The mathematician Joseph Lagrange discovered five special points in the vicinity of two orbiting masses where a third, smaller mass can orbit at a fixed distance from the larger masses. The Lagrange points mark the positions where the gravitational pull of the two large masses precisely provides the centripetal force required to rotate with them. Of the five Lagrange points, three are unstable and two are stable. The unstable Lagrange points – labeled L1, L2, and L3 – lie along the line connecting the two large masses. The stable Lagrange points – labeled L4 and L5 – form the apex of two equilateral triangles that have the large masses at their vertices.

  29. 29.

    http://www.esa.int/gsp/ACT/publications/index.htm.

  30. 30.

    More generally \({E}_{\mathrm{kin}} = (m - {m}_{0}){c}^{2} \approx (1/2){m}_{0}{\mathbf{v}}^{2} + (3{\mathbf{v}}^{2}/8{c}^{2}){m}_{0}{\mathbf{v}}^{2} + \ldots \). This becomes important when | v| approaches c, so \(m = {m}_{0}/{(1 -{\mathbf{v}}^{2}/{c}^{2})}^{1/2}\) differs substantially from m 0.

  31. 31.

    Quantum mechanics computes E r as the expectation value of the Hamiltonian (2.27) with | Φ r  > : \({E}_{r} =< {\Phi }_{r}\vert \mathcal{H}\vert {\Phi }_{r}\,>\).

  32. 32.

    Heat production is inconvenient for further evolution of computers, which has been characterized during the last four decades by a doubling of the density of transistors on a microchip every 18 months. If this trend and current trends of power consumption continue, the computer industry could possibly face the so-called Problem 2020, when the temperature of a miniaturized computer would be equal to the Sun’s temperature, because the Joule heat could no longer escape sufficiently rapidly out of the densely packed compound of transistors.

  33. 33.

    For instance, if one puts a pot of cold water on a hot plate, the heating process is not quasistatic, but the heat given off by the hot plate to the water can be simply calculated as the difference between the enthalpies of the water in the hot and in the cold state.

References

  1. Ostwald, W.: Die Energie, Verlag von Johann Ambrosius Barth, Leipzig (1908)

    Google Scholar 

  2. Lindner, A.: Grundkurs Theoretische Physik, p. 235. Teubner, Stuttgart (1994)

    Google Scholar 

  3. Fetter, A.L., Walecka, J.D.: Quantum Theory of Many-Particle Systems. McGraw-Hill, New York (1971)

    Google Scholar 

  4. Dreizler, R. M., Gross, E. K. U.: Density Functional Theory. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  5. Baehr, H. D.: Thermodynamik, 5. Ed. Springer, Berlin, Heidelberg (1984)

    Google Scholar 

  6. Fricke, J., Schüssler, U., Kümmel, R.: CO2-Entsorgung. Phys. Unserer Zeit, 20, No. 2, 56–61 (1989)

    Google Scholar 

  7. Ullmanns Encyclopädie der Technischen Chemie, 14. Verlag Chemie, Weinheim (1977)

    Google Scholar 

  8. Giovanelli, R.G.: Secrets of the Sun. Cambridge University Press, Cambridge (1984)

    Google Scholar 

  9. Berthomieu, G., Cribier, M. (Eds.): Inside the Sun, Kluwer, Dordrecht (1990)

    Google Scholar 

  10. Dearborn, D. S. P.: Standard Solar Models. In: [11], pp. 159–174

    Google Scholar 

  11. Sonett, C.P., Giampapa, M.S., Mathews, M.S.: The Sun in Time. The University of Arizona Press, Tucson (1991)

    Google Scholar 

  12. Stix, M.: The Sun. Springer, Heidelberg (1989)

    Book  Google Scholar 

  13. German Bundestag (ed.): Protecting the Earth ’s Atmosphere, Bonn (1989); Fig. 8, p.359

    Google Scholar 

  14. Eddy, J. A.: Variability of the present and ancient Sun: A test of solar uniformitarianism. In: [15]

    Google Scholar 

  15. Stephenson, F.R., Wolfendale, A.W. (Eds.): Secular Solar and Geomagnetic Variations in the Last 10 000 Years, Kluwer, Dordrecht (1988)

    Google Scholar 

  16. Labitzke, K.: On the interannual variability of the middle stratosphere during northern winter. J. Meteor. Soc. Japan 60, 124–139 (1990)

    Google Scholar 

  17. Wigley, T.M.L.: The climate of the past 10 000 years and the role of the Sun. In: [15], pp. 209–223

    Google Scholar 

  18. Schönwiese, C.-D., Walter, A., Brinckmann, S.: Statistical assessments of anthropogenic and natural global climate forcing. An update. Meteorol. Z. 19 (1), 003–010 (2010)

    Article  Google Scholar 

  19. Sybesma, C.: Biophysics. Kluwer, Dordrecht (1989)

    Book  Google Scholar 

  20. Sieferle, R. P.: Das vorindustrielle Solarenergiesystem. In: Brauch, H. G. (ed.) Energiepolitik, pp. 27–46. Springer, Berlin (1997)

    Chapter  Google Scholar 

  21. Wikipedia, the free encyclopedia

    Google Scholar 

  22. Heinloth, K.: Energie und Umwelt. B.G. Teubner, Stuttgart (1993)

    Google Scholar 

  23. Institut der deutschen Wirtschaft Köln: Deutschland in Zahlen 2006: Wirtschaftszahlen, Internationale Vergleiche, Primärenergieverbrauch, 12.22, online service.

    Google Scholar 

  24. Institut der deutschen Wirtschaft Köln: Deutschland in Zahlen 2006: Wirtschaftszahlen, Internationale Vergleiche, Bevölkerung, 12.1, online service.

    Google Scholar 

  25. Heinloth, K.: Klimaverträglichkeit von Arten der Energiebereitstellung für Nahrung, Wärme, Strom, Treibstoffe. In: Nordmeier, V., Grötzebauch, H. (eds.) Beiträge zur MNU-Tagung, Regensburg 2009, MNU/M\({}_{-}0{9}_{-}02\)/M\({}_{-}0{9}_{-}02\).pdf. Lehmanns Media, Berlin (2009)

    Google Scholar 

  26. Kroy, W., Ludwig Bölkow Stiftung: Können Erneuerbare Energieformen unseren Energiebedarf in der Zukunft sichern? Talk presented on October 10, 2008, at the founding Symposium of the “Denkwerk Zukunft” in the Margarethenhof/Tegernsee.

    Google Scholar 

  27. Bundesministerium für Wirtschaft und Technologie, Energiedaten 2005: Tables 40, 41, 42, online service.

    Google Scholar 

  28. Bundesanstalt für Geowissenschaften und Rohstoffe, 2006, quoted by: “Welt der Physik, Uranreserven”, edited by Deutsche Physikalische Gesellschaft and Bundesministerium für Bildung und Forschung, http://www.weltderphysik.de

  29. Blok, K.: Introduction to Energy Analysis. Techne Press, Amsterdam (2006).

    Google Scholar 

  30. Groscurth, H.-M., Kümmel, R., van Gool, W.: Thermodynamic Limits to Energy Optimization. Energy—Intntl. J. 14, 241-258 (1989).

    Google Scholar 

  31. Groscurth, H.-M., Kümmel, R.: The Cost of Energy Conservation: A Thermoeconomic Analysis of National Energy Systems. Energy—Intntl. J. 14, 685–696 (1989). Groscurth, H.-M.: Rationelle Energieverwendung durch Wärmerückgewinnung. Physica-Verlag, Heidelberg (1991)

    Google Scholar 

  32. King Hubbert, M.: Nuclear Energy and the Fossil Fuels. American Petroleum Institute, 1956. One can read the entire paper at http://www.hubbertpeak.com/hubbert/1956/1956.pdf

  33. Strahan, D.: The Last Oil Shock, John Murray, London (2007)

    Google Scholar 

  34. Erbrich, P.: Ernährung und Energiegewinnung—Ergebnisse aus dem zweiten Bericht des Club of Rome. Orientierung 39, 79 (1975)

    Google Scholar 

  35. Energy Information Administration: International Energy Annual 2006, posted on December 8, 2008.

    Google Scholar 

  36. Heinloth, K.: Die Energiefrage. Vieweg, Braunschweig (1997)

    Google Scholar 

  37. Bundesverband Windenergie, quoted by “Welt der Physik”, edited by Deutsche Physikalische Gesellschaft and Bundesministerium für Bildung und Forschung, http://www.weltderphysik.de

  38. “Welt der Physik”, see [37]

    Google Scholar 

  39. http://www.gwec.net/fileadmin/documents/PressReleases/PR_2010/Annex%20stats%20PR %202009.pdf

  40. Wiese, A., Kaltschmitt, M.: Stand und Perspektiven der Windkraftnutzung in Deutschland. In: Brauch, H.G. (ed.) Energiepolitik, pp. 87–100. Springer, Berlin (1997)

    Chapter  Google Scholar 

  41. Lindenberger, D., Bruckner, T., Groscurth, H.-M, Kümmel, R.: Optimization of solar district heating systems: seasonal storage, heat pumps, and cogeneration. Energy—Intntl. J. 25, 591–608 (2000).

    Google Scholar 

  42. ZAE Bayern (Bavarian Center for Applied Energy Research): Annual Report 2009, p. 34. ZAE, Würzburg, (2010)

    Google Scholar 

  43. Luther, J.: Solar Energy Conversion—Solar Electricity Generation, Photovoltaic Energy Conversion. Fraunhofer Institut für Solare Energiesysteme, Freiburg; http://www.ise-solar.info.

  44. Forschungsverbund Erneuerbare Energien (FVEE) (Renewable Energy Research Association): Beitrag des FVEE zum 6. Energieforschungsprogramm der Bundesregierung. October 2010 (http://www.fvee.de/fileadmin/politik/fvee-input_6.efp_2010.pdf)

  45. German Solar Industry Association, as quoted by L. Wissing in the “National Survey Report of PV Power Applications in Germany 2006”, Forschungszentrum Jülich

    Google Scholar 

  46. Institut für Elektrische Energietechnik, Fachgebiet Erneuerbare Energien, Technische Universität Berlin: Energetische Amortisation und Erntefaktoren regenerativer Energien, and references therein; http://www.herzo-agenda21.de/_PDF/emsolar.ee.pdf

  47. Hall, C., Powers, R., Schoenberg, W.: Peak oil, EROI, investments and the economy in an uncertain future. In: Pimentel, D. (ed.) Biofuels, Solar and Wind as Renewable Energy Systems, pp. 113-136. Elsevier, London (2008)

    Google Scholar 

  48. Gagnon, N., Hall, C., Brinker, L: A Preliminary Investigation of Energy Return on Energy Investment for Global Oil and Gas Production. Energies 2, 490–503 (2009); doi:10.3390/en20300490

    Google Scholar 

  49. Murphy, D., Hall, C.: Year in review—EROI or energy return on (energy) invested. Ann. N.Y. Acad. Sci. 1185 102–118 (2010)

    Google Scholar 

  50. The LTI-Research Group (Ed.): Long-Term Integration of Renewable Energy Sources into the European Energy System. Research Department Environmental and Resource Economics, Logistics, ZEW.—Physica-Verlag, Heidelberg (1998)

    Google Scholar 

  51. Kenney, W.F.: Energy Conservation in the Process Industries. Academic Press, Orlando, (1984)

    Google Scholar 

  52. Bruckner, T., Groscurth, H.-M., Kümmel, R.: Competition and synergy between energy technologies in municipal energy systems. Energy—Intntl. J. 22, 1005–10014 (1997).

    Google Scholar 

  53. International Energy Agency (IEA): World Energy Outlook. Paris (1993)

    Google Scholar 

  54. Kümmel, R., Schüssler, U.: Heat equivalents of noxious substances: a pollution indicator for environmental accounting, Ecol. Econ. 3, 139–156 (1991)

    Article  Google Scholar 

  55. World Nuclear Association, July 2008; http://www.world-nuclear.org/

  56. Dietrich, G., Neumann, W., Roehl, N.: Decommissioning of the thorium high temperature reactor (THTR 300). In: Technical committee meeting on technologies for gas cooled reactor decommissioning, fuel storage, and waste disposal. Juelich (Germany) 8-10 Sep 1997, pp. 9–15. International Atomic Energy Agency, Vienna. IAE-TECDOC-1043

    Google Scholar 

  57. Häfele, W., Holdren, J.P., Kessler, G., Kulcinski, G.L.: Fusion and Fast Breeder Reactors. International Institute of Applied System Analysis (IIASA), Laxenburg (1977)

    Google Scholar 

  58. Deutsche Physikalische Gesellschaft (German Physical Society): Climate Protection and Energy Supply in Germany 1990–2020. Bad Honnef (2005) (http://www.dpg-physik.de/gliederung/ak/ake/studien/energiestudie_engl.pdf)

  59. Glaser, P.E.: The Future of Power from the Sun. In: IECEC 1968 Record, IEEE Publication 68C21-Energy, pp. 98–103, (1968); Power from the Sun; its future. Science 162, 857–861 (1968)

    Google Scholar 

  60. Glaser, P.E.: Method and Apparatus for Converting Solar Radiation to Electrical Power, US Patent 3,781,647 December 23, 1973.

    Google Scholar 

  61. Glaser, P.E.: Perspectives of Satellite Solar Power. Journal of Energy, March/April 1977.

    Google Scholar 

  62. Glaser, P.E.: Solar Power from Satellites. Phys. Today, February 1977, pp. 30–38

    Google Scholar 

  63. Boeing Aerospace Co.: System’s Definition—Space Based Power Conversion Systems. NASA, MSFC, Contract NAS8-31628, Fourth Performance Briefing, August 11, 1976

    Google Scholar 

  64. US Department of Energy and the National Aeronautics and Space Administration: Satellite Power System. Reference System Report, October 1978, DOE/ER-0023. National Technical Information Service, US Department of Commerce, Springfield (1979)

    Google Scholar 

  65. Koomanoff, F.A.: Satellite power system concept development and evaluation program. Space Solar Power Review 2, 163–168 (1980)

    Google Scholar 

  66. Lior, N.: Power from Space. Energy Convers. Manage. 42, 1769–1805 (2001)

    Article  Google Scholar 

  67. O’Neill, G.K.: The Low (Profile) Road to Space Manufacturing. Astronautics and Aeronautics 16, Special Section, pp. 18–32 (1978)

    Google Scholar 

  68. O’Neill, G.K.: The Colonization of Space. Phys. Today, September 1974, pp. 32-40

    Google Scholar 

  69. O’Neill, G.K.: The High Frontier—Human Colonies in Space. William Morrow & Co., New York (1977)

    Google Scholar 

  70. Summerer, L., Ongaro, F.: Solar Power from Space—Validations of Options for Europe. http://www.esa.int/gsp/ACT/doc/POW/ACT-RPR-NRG-2004-ESA-SPS_Validation_of_options_for_Europe.pdf

  71. National Space Security Office: Space-Based Solar Power As an Opportunity for Strategic Security. Phase 0 Architecture Feasibility Study, 10 October 2007

    Google Scholar 

  72. Fricke, J., Borst, W.L.: Energie, 2nd Edn. Oldenbourg, Munich (1984)

    Google Scholar 

  73. Karlsson, S.: The Exergy of Incoherent Electromagnetic Radiation. Phys. Scr. 26, 329 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  74. van Gool, W.: The Value of Energy Carriers. Energy—Intntl. J. 12, 509 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reiner Kümmel .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kümmel, R. (2011). Energy. In: The Second Law of Economics. The Frontiers Collection. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9365-6_2

Download citation

Publish with us

Policies and ethics