Skip to main content

Photonic Simulation and Design Space

  • Chapter
  • First Online:
Photonic Network-on-Chip Design

Part of the book series: Integrated Circuits and Systems ((ICIR,volume 68))

  • 2894 Accesses

Abstract

As discussed in the previous chapter, the progress in silicon photonics research has enabled the physical demonstration of all the devices that are necessary to build extremely high-bandwidth density and energy-efficient links for on-chip and off-chip communications. Photonic network design, however, requires a major paradigm shift from traditional network design due to the fundamental differences in how electronics and photonics operate. Consequently, new modeling and analysis methods must be employed to realize a chip-scale photonic interconnection network. This chapter describes a methodology and a supporting computer-aided design (CAD) environment to model the basic photonic devices, to combine them to realize photonic network architectures, and to analyze the physical-layer and system-level performance properties of these networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Chan, G. Hendry, K. Bergman, and L. Carloni, “Physical-layer modeling and system-level design of chip-scale photonic interconnection networks,” Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 30, no. 10, pp. 1507–1520, Oct. 2011.

    Google Scholar 

  2. A. Varga, “OMNeT\({++}\) discrete event simulation system.” [Online]. Available: http://www.omnetpp.org.

  3. H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik, “Orion: a power-performance simulator for interconnection networks,” in Proceedings of the 35th Annual ACM/IEEE International Symposium on Microarchitecture (MICRO), Nov. 2002, pp. 294–305.

    Google Scholar 

  4. D. Vantrease, R. Schreiber, M. Monchiero, M. McLaren, N. P. Jouppi, M. Fiorentino, A. Davis, N. Binkert, R. G. Beausoleil, and J. H. Ahn, “Corona: System implications of emerging nanophotonic technology,” Proceedings of the 35th Annual International Symposium on Computer Architecture (ISCA), pp. 153–164, Jun. 2008.

    Google Scholar 

  5. A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Transactions on Computers, vol. 57, no. 9, pp. 1246–1260, 2008.

    Google Scholar 

  6. G. Hendry, S. Kamil, A. Biberman, J. Chan, B. Lee, M. Mohiyuddin, A. Jain, K. Bergman, L. Carloni, J. Kubiatowicz, L. Oliker, and J. Shalf, “Analysis of photonic networks for a chip multiprocessor using scientific applications,” in Proceedings of the 2009 3rd ACM/IEEE International Symposium on Networks-on-Chip (NOCS), May 2009, pp. 104–113.

    Google Scholar 

  7. P. Dong, S. F. Preble, and M. Lipson, “All-optical compact silicon comb switch,” Opt. Express, vol. 15, no. 15, pp. 9600–9605, Jul. 2007.

    Google Scholar 

  8. J. Chan, G. Hendry, A. Biberman, and K. Bergman, “Architectural exploration of chip-scale photonic interconnection network designs using physical-layer analysis,” J. Lightwave Technol., vol. 28, no. 9, pp. 1305–1315, May 2010.

    Google Scholar 

  9. W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, “Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides,” OSA Optics Letters, vol. 32, no. 19, pp. 2801–2803, 2007.

    Google Scholar 

  10. A. Sakai, G. Hara, and T. Baba, “Large effective index and low bend loss in SOI optical waveguides,” in Lasers and Electro-Optics, 2001. CLEO/Pacific Rim 2001. The 4th Pacific Rim Conference on, vol. 1, 2001, pp. I-4–I-5.

    Google Scholar 

  11. Corning Incorporated, “Corning SMF-28e\(+\) optical fiber product information,” Jul. 2011. [Online]. Available: http://www.corning.com/WorkArea/showcontent.aspx?id=41261.

  12. B. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, and W. Greene, “Ultra-compact Si-SiO\(_{2}\) microring resonator optical channel dropping filters,” IEEE Photonics Technology Letters, vol. 10, no. 4, pp. 549–551, Apr. 1998.

    Google Scholar 

  13. B. G. Lee et al., “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photonics Technology Letters, vol. 20, no. 10, pp. 767–769, May 2008.

    Google Scholar 

  14. Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nature Photonics, vol. 2, pp. 242–246, Apr. 2008.

    Google Scholar 

  15. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” OSA Optics Express, vol. 15, no. 2, pp. 430–436, 2007.

    Google Scholar 

  16. S. Assefa, F. Xia, S. W. Bedell, Y. Zhang, T. Topuria, P. M. Rice, and Y. A. Vlasov, “CMOS-integrated 40 GHz germanium waveguide photodetector for on-chip optical interconnects,” in Proceedings of Optical Fiber Communication Conference (OFC), 2009, p. OMR4.

    Google Scholar 

  17. L. Vivien, J. Osmond, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J.-F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz P.I.N germanium photodetector integrated in a silicon-on-insulator waveguide,” OSA Optics Express, vol. 17, no. 8, pp. 6252–6257, 2009.

    Google Scholar 

  18. H.-W. Chen, Y.-H. Kuo, and J. E. Bowers, “High speed hybrid silicon evanescent Mach-Zehnder modulator and switch,” OSA Optics Express, vol. 16, no. 25, pp. 20 571–20 576, 2008.

    Google Scholar 

  19. T. Gensty, W. Elsäßer, and C. Mann, “Intensity noise properties of quantum cascade lasers,” OSA Optics Express, vol. 13, no. 6, pp. 2032–2039, 2005.

    Google Scholar 

  20. C. Miller, Fiber Optic Test and Measurement. Prentice Hall, 1998.

    Google Scholar 

  21. D. Wang, B. Ganesh, N. Tuaycharoen, K. Baynes, A. Jaleel, and B. Jacob, “DRAMsim: a memory system simulator,” SIGARCH Comput. Archit. News, vol. 33, no. 4, pp. 100–107, Nov. 2005.

    Google Scholar 

  22. W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron, and M. Stan, “Hotspot: a compact thermal modeling methodology for early-stage VLSI design,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 14, no. 5, pp. 501–513, May 2006.

    Google Scholar 

  23. K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy, and D. Tarjan, “Temperature-aware microarchitecture: Modeling and implementation,” ACM Trans. Archit. Code Optim., vol. 1, no. 1, pp. 94–125, Mar. 2004.

    Google Scholar 

  24. D. Ding and D. Z. Pan, “OIL: a nano-photonics optical interconnect library for a new photonic networks-on-chip architecture,” in Proceedings of the 11th International Workshop on System Level Interconnect Prediction (SLIP), Jul. 2009, pp. 11–18.

    Google Scholar 

  25. J. Minz, S. Thyagaraja, and S. K. Lim, “Optical routing for 3D system-on-package,” in Design, Automation Test in Europe Conference Exhibition (DATE), vol. 1, Mar. 2006, pp. 1–2.

    Google Scholar 

  26. G. Hendry, J. Chan, L. P. Carloni, and K. Bergman, “VANDAL: A tool for the design specification of nanophotonic networks,” in Design, Automation Test in Europe Conference Exhibition (DATE), Mar. 2011.

    Google Scholar 

  27. I. O’Connor, F. Tissafi-Drissi, F. Gaffiot, J. Dambre, M. De Wilde, J. Van Campenhout, D. Van Thourhout, J. Van Campenhout, and D. Stroobandt, “Systematic simulation-based predictive synthesis of integrated optical interconnect,” IEEE Trans. Very Large Scale Integr. Syst., vol. 15, pp. 927–940, Aug. 2007.

    Google Scholar 

  28. M. De Wilde, O. Rits, W. Meeus, H. Lambrecht, and J. Van Campenhout, “Integration of modeling tools for parallel optical interconnects in a standard EDA design environment,” in Design, Automation Test in Europe Conference Exhibition (DATE), Feb. 2004.

    Google Scholar 

  29. P. K. Pepeljugoski and D. M. Kuchta, “Design of optical communications data links,” IBM Journal of Research and Development, vol. 47, no. 2.3, pp. 223–237, Mar. 2003.

    Google Scholar 

  30. M. Briere, E. Drouard, F. Mieyeville, D. Navarro, I. O’Connor, and F. Gaffiot, “Heterogeneous modelling of an optical network-on-chip with SystemC,” in Proceedings of the 16th IEEE International Workshop on Rapid System Prototyping (RSP), Jun. 2005, pp. 10–16.

    Google Scholar 

  31. A. Kodi and A. Louri, “Optisim: A system simulation methodology for optically interconnected HPC systems,” IEEE Micro, vol. 28, no. 5, pp. 22–36, Sep.-Oct. 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keren Bergman .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bergman, K., Carloni, L.P., Biberman, A., Chan, J., Hendry, G. (2014). Photonic Simulation and Design Space. In: Photonic Network-on-Chip Design. Integrated Circuits and Systems, vol 68. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9335-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9335-9_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9334-2

  • Online ISBN: 978-1-4419-9335-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics