Skip to main content

Boosting Algorithms: A Review of Methods, Theory, and Applications

  • Chapter
  • First Online:
Ensemble Machine Learning

Abstract

Boosting is a class of machine learning methods based on the idea that a combination of simple classifiers (obtained by a weak learner) can perform better than any of the simple classifiers alone. A weak learner (WL) is a learning algorithm capable of producing classifiers with probability of error strictly (but only slightly) less than that of random guessing (0.5, in the binary case). On the other hand, a strong learner (SL) is able (given enough training data) to yield classifiers with arbitrarily small error probability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We refer to a classifier learned by a WL as a weak classifier.

  2. 2.

    A given instance can be classified into one or more classes.

  3. 3.

    http://archive.ics.uci.edu/ml/datasets.html

  4. 4.

    http://www.gems-system.org/

  5. 5.

    http://www.nipsfsc.ecs.soton.ac.uk

  6. 6.

    http://orange.biolab.si/datasets/phoneme.htm

  7. 7.

    http://clopinet.com/isabelle/Projects/NIPS2003/#challenge

  8. 8.

    http://svmlight.joachims.org/

  9. 9.

    http://graphics.cs.msu.ru/ru/science/research/machinelearning/adaboosttoolbox

  10. 10.

    http://www.cs.princeton.edu/~schapire/boostexter.html

  11. 11.

    As of version PRTools 4.0, available at the time of this writing (July, 2011).

  12. 12.

    http://www.site.uottawa.ca/~stan/csi5387/boost-tut-ppr.pdf

  13. 13.

    http://www.stat.purdue.edu/~vishy/

  14. 14.

    http://www.cs.princeton.edu/~schapire/boost.html

  15. 15.

    http://cseweb.ucsd.edu/~yfreund/papers/index.html

References

  1. D. Aha, D. Kibler, and M. Albert. Instance-based learning algorithms. In Machine Learning, pages 37–66, 1991.

    Google Scholar 

  2. E. Allwein, R. Schapire, and Y. Singer. Reducing multiclass to binary: A unifying approach for margin classifiers. Journal of Machine Learning Research, 1:113–141, 2000.

    MathSciNet  MATH  Google Scholar 

  3. R. Avnimelech and N. Intrator. Boosting regression estimators. Neural Computation, 11:491–513, 1999.

    Article  Google Scholar 

  4. B. Babenko, M. Yang, and S. Belongie. A family of online boosting algorithms. In Learning09, pages 1346–1353, 2009.

    Google Scholar 

  5. E. Bauer and R. Kohavi. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36:105–139, 1999.

    Article  Google Scholar 

  6. K. Bennett, A. Demiriz, and R. Maclin. Exploiting unlabeled data in ensemble methods. In Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’02, pages 289–296, New York, NY, USA, 2002. ACM.

    Google Scholar 

  7. J. Bergstra and B. Kégl. Meta-features and adaboost for music classification. In Machine Learning Journal : Special Issue on Machine Learning in Music, 2006.

    Google Scholar 

  8. C. Blake and C. Merz. UCI repository of machine learning databases. Technical report, University of California, Irvine, Department of Informatics and Computer Science, 1999.

    Google Scholar 

  9. A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Learnability and the vapnik-chervonenkis dimension. Journal of the ACM, 36:929–965, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers. In Proc. of the 5th Annual ACM Workshop on Computational Learning Theory, pages 144–152, New York, NY, USA, 1992. ACM Press.

    Google Scholar 

  11. L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

    Article  MATH  Google Scholar 

  12. L. Breiman. Bias, variance, and arcing classifiers. Technical report, UC Berkeley, CA, 1996.

    Google Scholar 

  13. P. Bühlmann and B.Yu. Analyzing bagging. Annals of Statistics, 30:927–961, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  14. W.-C. Chang and C.-W. Cho. Online Boosting for Vehicle Detection. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 40(3):892–902, June 2010.

    Article  Google Scholar 

  15. O. Chapelle, B. Schalkopf, and A. Zien. Semi-Supervised Learning. The MIT Press, Cambridge, MA, 2006.

    Book  Google Scholar 

  16. K. Chen, C. Chou, S. Shih, W. Chen, and D. Chen. Feature selection for iris recognition with adaboost. Third International Conference on Intelligent Information Hiding and Multimedia Signal Processing, 2007. IIHMSP 2007, 2:411–414, 2007.

    Google Scholar 

  17. K. Chen and S. Wang. Regularized boost for semi-supervised learning. In Neural Information Processing Systems, 2007.

    Google Scholar 

  18. K. Chen and S. Wang. Semi-supervised Learning via Regularized Boosting Working on Multiple Semi-supervised Assumptions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 99(1), 2010.

    Google Scholar 

  19. H. Chouaib, O. Terrades, S. Tabbone, F. Cloppet, and N. Vincent. Feature selection combining genetic algorithm and adaboost classifiers. In ICPR08, pages 1–4, 2008.

    Google Scholar 

  20. N. Christiani and J. Shawe-Taylor. An Introduction to Support Vector Machines and other kernel based learning methods. Cambridge University Press, Cambridge, MA, 2000.

    Book  Google Scholar 

  21. M. Collins, R. Schapire, and Y. Singer. Logistic regression, adaboost and bregman distances. In Machine Learning, volume 48, pages 158–169, 2000.

    Google Scholar 

  22. T. Cover and J. Thomas. Elements of Information Theory. John Wiley & Sons, 1991.

    Google Scholar 

  23. K. Crammer and Y. Singer. A new family of online algorithms for category ranking. In Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’02, pages 151–158, New York, NY, USA, 2002. ACM.

    Google Scholar 

  24. K. Crammer, Y. Singer, J. K., T. Hofmann, T. Poggio, and J. Shawe-Taylor. A family of additive online algorithms for category ranking. Journal of Machine Learning Research, 3:2003, 2003.

    Google Scholar 

  25. D. Cristinacce and T. Cootes. Facial feature detection using adaboost with shape constraints. In British Machine Vision Conference (BMVC), pages 231–240, 2003.

    Google Scholar 

  26. F. d’Alché-Buc, Y. Grandvalet, and C. Ambroise. Semi-supervised MarginBoost. In Advances in Neural Information Processing Systems 14, pages 553–560, MIT Press, Cambridge, MA, 2001.

    Google Scholar 

  27. A. Demiriz, K. P. Bennett, and J. S. Taylor. Linear Programming Boosting via Column Generation. Machine Learning, 46(1-3):225–254, 2002.

    Article  MATH  Google Scholar 

  28. A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society, B, 39:1–38, 1977.

    MathSciNet  MATH  Google Scholar 

  29. T. Dietterich. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning, 40(2):139–157, 2000.

    Article  Google Scholar 

  30. C. Domingo and O. Watanabe. MadaBoost: A modification of AdaBoost. In Proceedings of the 13th Annual Conference on Computational Learning Theory (COLT), pages 180–189, Palo Alto, CA, 2000.

    Google Scholar 

  31. H. Drucker. Improving regressors using boosting techniques. In Proceedings of the Fourteenth International Conference on Machine Learning ICML 97, pages 107–115, San Francisco, CA, USA, 1997. Morgan Kaufmann Publishers Inc.

    Google Scholar 

  32. H. Drucker, R. Schapire, and P. Simard. Improving performance in neural networks using a boosting algorithm. In Advances in Neural Information Processing Systems 5, [NIPS Conference], pages 42–49, San Francisco, CA, USA, 1993. Morgan Kaufmann Publishers Inc.

    Google Scholar 

  33. H. Drucker and C. Tortes. Boosting decision trees. In Advances in Neural Information Processing Systems, volume 8, pages 479–485. MIT Press, 1996.

    Google Scholar 

  34. R. Duda, P. Hart, and D. Stork. Pattern Classification. John Wiley & Sons, 2nd edition, 2001.

    Google Scholar 

  35. N. Duffy and D. Helmbold. Potential boosters? In Advances in Neural Information Processing Systems 12, pages 258–264. MIT Press, New York, NY, 2000.

    Google Scholar 

  36. R. Duin, P. Juszczak, P. Paclik, E. Pekalska, D. Ridder, D. Tax, and S. Verzakov. PRTools4.1, a Matlab Toolbox for Pattern Recognition. Technical report, Delft University of Technology, 2007.

    Google Scholar 

  37. B. Efron. The jackknife, the bootstrap and other resampling plans. Society for Industrial and Applied Mathematics (SIAM), 1982.

    Google Scholar 

  38. B. Efron and R. Tibshirani. An Introduction to the Bootstrap. Chapman & Hall, New York, 1993.

    Book  MATH  Google Scholar 

  39. G. Eibl and K. Pfeiffer. How to make adaboost.M1 work for weak classifiers by changing only one line of the code. In Machine Learning: Thirteenth European Conference, volume 1, pages 109–120, 2002.

    Google Scholar 

  40. G. Eibl and K. Pfeiffer. Multiclass boosting for weak classifiers. Journal of Machine Learning Research, 6:189–210, 2005.

    MathSciNet  MATH  Google Scholar 

  41. A. Esuli, T. Fagni, and F. Sebastiani. MP-Boost: A multiple-pivot boosting algorithm and its application to text categorization. In Proceedings of the 13th International Symposium on String Processing and Information Retrieval (SPIRE’06), 2006.

    Google Scholar 

  42. A. Ferreira and M. Figueiredo. Boosting of (very) weak classifiers. In 6th Portuguese Conference on Telecommunications, Conftele’07, Peniche, Portugal, 2007.

    Google Scholar 

  43. F. Fleuret. Multi-layer boosting for pattern recognition. Pattern Recognition Letters, 30:237–241, February 2009.

    Article  Google Scholar 

  44. Y. Freund. Boosting a Weak Learning Algorithm by Majority. Information and Computation, 121(2):256–285, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  45. Y. Freund. An adaptive version of the boost by majority algorithm. In Proceedings of the Twelfth Annual Conference on Computational Learning Theory, pages 102–113, 2000.

    Google Scholar 

  46. Y. Freund. A more robust boosting algorithm. http://arxiv.org/abs/0905.2138, 2009.

  47. Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning and application to boosting. In European Conference on Computational Learning Theory – EuroCOLT. Springer, 1994.

    Google Scholar 

  48. Y. Freund and R. Schapire. Experiments with a new boosting algorithm. In Thirteenth International Conference on Machine Learning, pages 148–156, Bari, Italy, 1996.

    Google Scholar 

  49. Y. Freund and R. Schapire. Game theory, on-line prediction and boosting. In Proceedings of the Ninth Annual Conference on Computational Learning Theory, pages 325–332. ACM Press, 1996.

    Google Scholar 

  50. Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  51. J. Friedman. Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29:1189–1232, 2000.

    MathSciNet  MATH  Google Scholar 

  52. J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of boosting. The Annals of Statistics, 28(2):337–374, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  53. V. Gómez-Verdejo, M. Ortega-Moral, J. Arenas-Gárcia, and A. Figueiras-Vidal. Boosting of weighting critical and erroneous samples. Neurocomputing, 69(7–9):679–685, 2006.

    Article  Google Scholar 

  54. H. Grabner, C. Leistner, and H. Bischof. Semi-supervised On-Line Boosting for Robust Tracking. In D. Forsyth, P. Torr, and A. Zisserman, editors, Computer Vision ECCV 2008, volume 5302, Lecture Notes in Computer Science, chapter 19, pages 234–247. Springer, Berlin, Heidelberg, 2008.

    Chapter  Google Scholar 

  55. Y. Grandvalet, F. Buc, and C. Ambroise. Boosting mixture models for semi-supervised learning. In ICANN International Conference on Artificial Neural Networks, volume 1, pages 41–48, Vienna, Austria, 2001.

    Google Scholar 

  56. V. Guruswami and A. Sahai. Multiclass learning, boosting, and error-correcting codes. In 12th Annual Conference on Computational Learning Theory (COLT-99), Santa Cruz, USA, 1999.

    Google Scholar 

  57. Z. Hao, C. Shen, N. Barnes, and B. Wang. Totally-corrective multi-class boosting. In ACCV10, volume 6495/2011, Lecture Notes in Computer Science, pages 269–280, 2011.

    Google Scholar 

  58. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer, 2nd edition, New York, NY, 2001.

    Google Scholar 

  59. J. He and B. Thiesson. Asymmetric gradient boosting with application to SPAM filtering. In Fourth Conference on Email and Anti-Spam (CEAS) 2007, August 2–3, Mountain View, California, USA.

    Google Scholar 

  60. C. Huang, H. Ai, Y. Li, and S. Lao. Vector boosting for rotation invariant multi-view face detection. In International Conference on Computer Vision (ICCV), volume 1, pages 446–453, 2005.

    Google Scholar 

  61. X. Huang, S. Li, and Y. Wang. Jensen–Shannon boosting learning for object recognition. In International Conference on Computer Vision and Pattern Recognition (CVPR), volume 2, pages 144–149, 2005.

    Google Scholar 

  62. J. Jackson and M. Craven. Learning sparse perceptrons. In Advances in Neural Information Processing Systems, volume 8, pages 654–660. MIT Press, 1996.

    Google Scholar 

  63. R. Jin, Y. Liu, L. Si, J. Carbonell, and A. Hauptmann. A new boosting algorithm using input-dependent regularizer. In Proceedings of Twentieth International Conference on Machine Learning (ICML 03). AAAI Press, 2003.

    Google Scholar 

  64. X. Jin, X. Hou, and C.-L. Liu. Multi-class adaboost with hypothesis margin. In Proceedings of the 2010 20th International Conference on Pattern Recognition, ICPR ’10, pages 65–68, Washington, DC, USA, 2010. IEEE Computer Society.

    Google Scholar 

  65. G. Jun and J. Ghosh. Multi-class boosting with class hierarchies. Multiple Classifier Systems, 5519:32–41, 2009.

    Article  Google Scholar 

  66. H. Kong and E. Teoh. Coupling adaboost and random subspace for diversified fisher linear discriminant. In International Conference on Control, Automation, Robotics and Vision (ICARCV) 06, pages 1–5, 2006.

    Google Scholar 

  67. L. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms. Wiley, Hoboken, NJ, 2004.

    Book  MATH  Google Scholar 

  68. D. Le and S. Satoh. Ent-boost: Boosting using entropy measures for robust object detection. Pattern Recognition Letters, 2007.

    Google Scholar 

  69. H. Li and C. Shen. Boosting the minimum margin: LPBoost vs. AdaBoost. Digital Image Computing: Techniques and Applications, 0:533–539, 2008.

    Google Scholar 

  70. L. Li. Multiclass boosting with repartioning. In 23rd International Conference on Machine Learning (ICML 07), Pennsylvania, USA, 2006.

    Google Scholar 

  71. P. Li. ABC-Boost: adaptive base class boost for multi-class classification. In International Conference on Machine Learning (ICML), pages 79–632, 2009.

    Google Scholar 

  72. S. Li and A. Jain. Handbook of Face Recognition. Springer, New York, NY, 2005.

    MATH  Google Scholar 

  73. S. Li and Z. Zhang. Floatboost learning and statistical face detection. Transactions on Pattern Analysis and Machine Intelligence, 26(9):23–38, 2004.

    Article  Google Scholar 

  74. C. Liu and H. Shum. Kullback–Leibler boosting. In International Conference on Computer Vision and Pattern Recognition (CVPR), volume 1, pages 587–594, Madison, Wisconsin, USA, 2003.

    Google Scholar 

  75. Y. Lu, Q. Tian, and T. Huang. Interactive boosting for image classification. In Proceedings of the 7th International Conference on Multiple Classifier Systems, MCS’07, pages 180–189, Berlin, Heidelberg, 2007. Springer-Verlag.

    Google Scholar 

  76. S. Lyu. Infomax boosting. In International Conference on Computer Vision and Pattern Recognition (CVPR), volume 1, pages 533–538, 2005.

    Google Scholar 

  77. R. Maclin. An empirical evaluation of bagging and boosting. In Proceedings of the Fourteenth National Conference on Artificial Intelligence, pages 546–551. AAAI Press, 1997.

    Google Scholar 

  78. P. Mallapragada, R. Jin, A. Jain, and Y. Liu. SemiBoost: Boosting for Semi-Supervised Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(11):2000–2014, 2009.

    Article  Google Scholar 

  79. H. Masnadi-Shirazi and N. Vasconcelos. Asymmetric boosting. In Proceedings of the 24th International Conference on Machine Learning, (ICML), pages 609–619, New York, NY, USA, 2007. ACM.

    Google Scholar 

  80. L. Mason, J. Baxter, P. Bartlett, and M. Frean. Boosting algorithms as gradient descent. In Advances in Neural Information Processing Systems 12, pages 512–518, MIT Press, Cambridge, MA, 1999.

    Google Scholar 

  81. L. Mason, J. Baxter, P. Bartlett, and M. Frean. Functional gradient techniques for combining hypotheses. Advances in Large Margin Classifiers, 1:109–120, 2000.

    Google Scholar 

  82. R. Meir and G. Rätsch. An introduction to boosting and leveraging. In S. Mendelson and A. Smola, editors, Advanced Lectures on Machine Learning. Springer Verlag, 2006.

    Google Scholar 

  83. A. Mohemmed, M. Zhang, and M. Johnston. A PSO Based Adaboost Approach to Object Detection. Simulated Evolution and Learning, pages 81–90, 2008.

    Google Scholar 

  84. Z. Niu, S. Shan, S. Yan, X. Chen, and W. Gao. 2d cascaded adaboost for eye localization. In 18th International Conference on Pattern Recognition, 2006.

    Google Scholar 

  85. R. Nock and P. Lefaucheur. A Robust Boosting Algorithm. In T. Elomaa, H. Mannila, and H. Toivonen, editors, Machine Learning: ECML 2002, volume 2430 of Lecture Notes in Computer Science, pages 319–331, 2002. Springer Berlin/Heidelberg.

    Google Scholar 

  86. T. Pham and A. Smeulders. Quadratic boosting. Pattern Recoginition, 41:331–341, January 2008.

    Article  MATH  Google Scholar 

  87. A. Quddus, P. Fieguth, and O. Basir. Adaboost and Support Vector Machines for White Matter Lesion Segmentation in MR Images. In 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, pages 463–466. IEEE, 2005.

    Google Scholar 

  88. J. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA, 1993.

    Google Scholar 

  89. J. Quinlan. Bagging, Boosting, and C4.5. In Proceedings of the Thirteenth National Conference on Artificial Intelligence, pages 725–730, 1996.

    Google Scholar 

  90. G. Rätsch. Robust multi-class boosting. In Eurospeech 2003, 8th European Conference on Speech Communication and Technology, page 9971000, Geneva, Switzerland, 2003.

    Google Scholar 

  91. B. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge, MA, 1996.

    Book  MATH  Google Scholar 

  92. J. Rodriguez and J. Maudes. Boosting recombined weak classifiers. Pattern Recognition Letters, 29(8):1049–1059, 2007.

    Article  Google Scholar 

  93. A. Saffari, H. Grabner, and H. Bischof. Serboost: Semi-supervised boosting with expectation regularization. In D. Forsyth, P. Torr, and A. Zisserman, editors, Computer Vision European Conference on Computer Vision (ECCV) 2008, volume 5304 Lecture Notes in Computer Science, pages 588–601. Springer Berlin/Heidelberg, 2008.

    Google Scholar 

  94. A. Saffari, C. Leistner, M. Godec, and H. Bischof. Robust multi-view boosting with priors. In 11th European Conference on Computer Vision (ECCV), pages 776–789, Berlin, Heidelberg, 2010. Springer-Verlag.

    Google Scholar 

  95. R. Schapire. The strength of weak learnability. In Machine Learning, volume 5, pages 197–227, 1990.

    Google Scholar 

  96. R. Schapire. Using output codes to boost multiclass learning problems. In 14th International Conference on Machine Learning (ICML), pages 313–321, Tennessee, USA, 1997.

    Google Scholar 

  97. R. Schapire. Theoretical views of boosting. In Proceedings of the 4th European Conference on Computational Learning Theory, EuroCOLT ’99, pages 1–10, London, UK, 1999. Springer-Verlag.

    Google Scholar 

  98. R. Schapire. The boosting approach to machine learning: An overview. In Nonlinear Estimation and Classification, Berkeley, 2002. Springer.

    Google Scholar 

  99. R. Schapire, Y. Freund, P. Bartlett, and W. Lee. Boosting the margin: A new explanation for the effectiveness of voting methods. In Proceedings of the 14th International Conference on Machine Learning (ICML), pages 322–330, Nashville, TN, 1997.

    Google Scholar 

  100. R. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37(3):297–336, 1999.

    Article  MATH  Google Scholar 

  101. R. Schapire and Y. Singer. BoosTexter: A Boosting-based System for Text Categorization. Machine Learning, 39(2/3):135–168, 2000.

    Article  MATH  Google Scholar 

  102. B. Schölkopf and A. Smola. Learning with Kernels. MIT Press, 2002.

    Google Scholar 

  103. H. Schwenk and Y. Bengio. Adaboosting neural networks: Application to on-line character recognition. In International Conference on Artificial Neural Networks’97, LNCS, 1327, 967–972, pages 967–972. Springer, 1997.

    Google Scholar 

  104. H. Schwenk and Y. Bengio. Boosting Neural Networks. Neural Comp., 12(8):1869–1887, 2000.

    Article  Google Scholar 

  105. C. Shen, J. Kim, L. Wang, and A. van den Hengel. Positive semidefinite metric learning with boosting. In Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems (NIPS’09), pages 1651–1659, Vancouver, BC, Canada, December 2009. MIT Press.

    Google Scholar 

  106. J. Sochman and J. Matas. “Waldboost” learning for time constrained sequential detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) – Volume 2, pages 150–156, Washington, DC, USA, 2005. IEEE Computer Society.

    Google Scholar 

  107. A. Stefan, V. Athitsos, Q. Yuan, and S. Sclaroff. Reducing jointboost-based multiclass classification to proximity search. In Computer Vision and Pattern Recognition (CVPR), pages 589–596. IEEE, 2009.

    Google Scholar 

  108. S. Sternig, M. Godec, P. Roth, and H. Bischof. Transientboost: On-line boosting with transient data. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2010, pages 22–27, San Francisco, CA.

    Google Scholar 

  109. Y. Sun, S. Todorovic, and J. Li. Unifying multi-class adaboost algorithms with binary base learners under the margin framework. Pattern Recognition Letters, 28:631–643, 2007.

    Article  Google Scholar 

  110. Y. Sun, S. Todorovic, J. Li, and D. Wu. Unifying the error-correcting and output-code adaboost within the margin framework. In Proceedings of the 22nd International Conference on Machine Learning (ICML), pages 872–879, New York, NY, USA, 2005. ACM.

    Google Scholar 

  111. J. Thongkam, O. Xu, Y. Zhang, F. Huang, and G. Adaboosts. Breast cancer survivability via adaboost algorithms. In Proceedings of the second Australasian workshop on Health data and knowledge management – Volume 80, HDKM ’08, pages 55–64, Darlinghurst, Australia, 2008. Australian Computer Society, Inc.

    Google Scholar 

  112. K. Tieu and P. Viola. Boosting image retrieval. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – CVPR, volume 1, pages 228–235, 2000.

    Google Scholar 

  113. A. Torralba, K. Murphy, and W. Freeman. Sharing visual features for multiclass and multiview object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(5):854 – 869, March 2007.

    Article  Google Scholar 

  114. L. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.

    Article  MATH  Google Scholar 

  115. H. Valizadegan, R. Jin, and A. K. Jain. Semi-Supervised Boosting for Multi-Class Classification. In ECML PKDD ’08: Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases – Part II, pages 522–537, Berlin, Heidelberg, 2008. Springer-Verlag.

    Google Scholar 

  116. V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New York, NY, 1999.

    MATH  Google Scholar 

  117. V. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications, 16(2):264–280, 1971.

    Article  MATH  Google Scholar 

  118. R. Verschae, J. Ruiz-del-solar, and M. Correa. Gender classification of faces using adaboost. In Lecture Notes in Computer Science (CIARP 2006) 4225, page 78. Springer, 2006.

    Google Scholar 

  119. A. Vezhnevets and V. Vezhnevets. Modest AdaBoost - teaching AdaBoost to generalize better. Graphicon, 12(5):987–997, 2005.

    Google Scholar 

  120. P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. In International Conference on Computer Vision and Pattern Recognition (CVPR), volume 1, pages 511–518, Hawaii, 2001.

    Google Scholar 

  121. P. Viola and M. Jones. Robust real-time face detection. International Journal of Computer Vision, 57:137–154, 2004.

    Article  Google Scholar 

  122. P. Viola, M. Jones, and D. Snow. Detecting pedestrians using patterns of motion and appearance. In International Conference on Computer Vision – ICCV, pages 734–741, 2003.

    Google Scholar 

  123. P. Viola, J. Platt, and C. Zhang. Multiple instance boosting for object detection. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural Information Processing Systems 18, pages 1417–1424, Cambridge, MA, 2006. MIT Press.

    Google Scholar 

  124. L. Wang, S. Yuan, L. Li, and H. Li. Boosting naïve Bayes by active learning. In Third International Conference on Machine Learning and Cybernetics, volume 1, pages 41–48, Shanghai, China, 2004.

    Google Scholar 

  125. P. Wang, C. Shen, N. Barnes, H. Zheng, and Z. Ren. Asymmetric totally-corrective boosting for real-time object detection. In Asian Conference on Computer Vision (ACCV), pages I: 176–188, 2010.

    Google Scholar 

  126. M. Warmuth, K. Glocer, and G. Rätsch. Boosting algorithms for maximizing the soft margin. In Advances in Neural Information Processing Systems NIPS, pages 1–8, MIT Press, 2007.

    Google Scholar 

  127. M. Warmuth, K. Glocer, and S. Vishwanathan. Entropy regularized LPBoost. In Proceedings of the 19th International Conference on Algorithmic Learning Theory, ALT ’08, pages 256–271, Springer-Verlag, Berlin, Heidelberg, 2008.

    Google Scholar 

  128. M. Warmuth, J. Liao, and G. Rätsch. Totally corrective boosting algorithms that maximize the margin. In Proceedings of the 23rd International Conference on Machine Learning (ICML), pages 1001–1008, New York, NY, USA, 2006. ACM.

    Google Scholar 

  129. J. Warrell, P. Torr, and S. Prince. Styp-boost: A bilinear boosting algorithm for learning style-parameterized classifiers. In British Machine Vision Conference (BMVC), 2010.

    Google Scholar 

  130. J. Webb, J. Boughton, and Z. Wang. Not so naïve Bayes: Aggregating one-dependence estimators. Machine Learning, 58(1):5–24, 2005.

    Article  MATH  Google Scholar 

  131. P. Yang, S. Shan, W. Gao, S. Z. Li, and D. Zhang. Face recognition using ada-boosted gabor features. In Proceedings of the 16th International Conference on Face and Gesture Recognition, pages 356–361, 2004.

    Google Scholar 

  132. C. Zhang, P. Yin, Y. Rui, R. Cutler, P. Viola, X. Sun, N. Pinto, and Z. Zhang. Boosting-based multimodal speaker detection for distributed meeting videos. IEEE Transactions on Multimedia, 10(8):1541–1552, December 2008.

    Article  Google Scholar 

  133. C. Zhang and Z. Zhang. Boosting-Based Face Detection and Adaptation. Morgan and Claypool Publishers, 2010.

    Google Scholar 

  134. C. Zhang and J. Zhang. Rotboost: A technique for combining rotation forest and adaboost. Pattern Recognition Letters, 29(10):1524–1536, July 2008.

    Article  Google Scholar 

  135. C. Zhang and Z. Zhang. Winner-take-all multiple category boosting for multi-view face detection. Technical report, One Microsoft Way, Redmond, WA 98052, USA, 2010.

    Google Scholar 

  136. L. Zheng, S. Wang, Y. Liu, and C.-H. Lee. Information theoretic regularization for semi-supervised boosting. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’09, pages 1017–1026, New York, NY, USA, 2009. ACM.

    Google Scholar 

  137. M. Zhou, H. Wei, and S. Maybank. Gabor wavelets and AdaBoost in feature selection for face verification. In Proceedings of the Workshop on Applications of Computer Visions, pages 101–109, Graz, Austria, 2006.

    Google Scholar 

  138. J. Zhu, H. Zou, S. Rosset, and T. Hastie. Multi-class adaboost. Statistics and Its Interface, 2:349–360, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  139. X. Zhu, C. Bao, and W. Qiu. Bagging very weak learners with lazy local learning. In International Conference on Pattern Recognition (ICPR), pages 1–4, 2008.

    Google Scholar 

  140. X. Zhu and Y. Yang. A lazy bagging approach to classification. Pattern Recognition, 41:2980–2992, 2008.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur J. Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ferreira, A.J., Figueiredo, M.A.T. (2012). Boosting Algorithms: A Review of Methods, Theory, and Applications. In: Zhang, C., Ma, Y. (eds) Ensemble Machine Learning. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9326-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9326-7_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9325-0

  • Online ISBN: 978-1-4419-9326-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics