Skip to main content

Discriminative Learning for Anatomical Structure Detection and Segmentation

  • Chapter
  • First Online:
Ensemble Machine Learning

Abstract

There is an emerging trend of using machine learning approaches to solve the tasks in medical image analysis. In this chapter, we summarize several discriminative learning methods for detection and segmentation of anatomical structures. In particular, we propose innovative detector structures, namely Probabilistic Boosting Network (PBN) and Marginal Space Learning (MSL), to address the challenges in anatomical structure detection. We also present a regression approach called Shape Regression Machine (SRM) for anatomical structure detection. For anatomical structure segmentation, we propose discriminative formulations, explicit and implicit, that are based on classification, regression and ranking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adreasenm, N., Rajarethinam, R., Cizadlo, T., Arndt, S., Swayze II, V., Flashman, L., O’Leary, D., Enrhardt, J., Yuh, W.: Automatic atlas-based volume estimation of human brain regions from MR images. Journal of Computer Assisted Tomography 20(1), 98–106 (1996)

    Article  Google Scholar 

  2. Cootes, T., Beeston, C., Edwards, G., Taylor, C.: A unified framework for atlas matching using active appearance models. In: Proc. Information Processing in Medical Imaging (1999)

    Book  Google Scholar 

  3. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Trans. Pattern Anal. Machine Intell. 23(6), 681–685 (2001)

    Article  Google Scholar 

  4. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models—their training and application. Computer Vision and Image Understanding 61(1), 38–59 (1995)

    Article  Google Scholar 

  5. Covell, M.: Eigen-points: Control-point location using principal component analysis. In: International Conference on Automatic Face and Gesture Recognition, pp. 122–127. Killington, USA (1996)

    Google Scholar 

  6. Cristinacce, D., Cootes, T.: Boosted regression active shape models. In: Proc. British Machine Vision Conference, vol. 2, pp. 880–889 (2007)

    Google Scholar 

  7. Dollár, P., Tu, Z., Belongie, S.: Supervised learning of edges and object boundaries. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 1964–1971 (2006)

    Google Scholar 

  8. Freund, Y., Iyer, R., Schapire, R., Singer, Y.: An efficient boosting algorithm for combining preferences. J. Machine Learning Research 4(6), 933–970 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Computer and System Sciences 55(1), 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Friedman, J., Hastie, T., Tibbshirani, R.: Additive logistic regression: A statistical view of boosting. The Annals of Statistics 28(2), 337–407 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Georgescu, B., Zhou, X.S., Comaniciu, D., Gupta, A.: Database-guided segmentation of anatomical structures with complex appearance. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition (2005)

    Book  Google Scholar 

  12. van Ginneken, B., Frangi, A.F., Staal, J.J., ter Haar Romeny, B.M., Viergever, M.A.: Active shape model segmentation with optimal features. IEEE Trans. Medical Imaging 21(8), 924–933 (2002)

    Article  Google Scholar 

  13. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer (2001)

    Google Scholar 

  14. Huang, C., Ai, H., Li, Y., Lao, S.: Vector boosting for rotation invariant multi-view face detection. In: Proc. ICCV (2005)

    Book  Google Scholar 

  15. Jones, M., Viola, P.: Fast multi-view face detection. MERL-TR2003-96 (July 2003)

    Google Scholar 

  16. Kendall, D., Barden, D., Carne, T., Le, H.: Shape and Shape Theory. Wiley (1999)

    Google Scholar 

  17. Li, S., Zhang, Z.: FloatBoost learning and statistical face detection. PAMI 26, 1112–1123 (2004)

    Article  Google Scholar 

  18. Martin, D., Fowlkes, C., Malik, J.: Learning to detect natural image boundaries using local brightness, color and texture cues. IEEE Trans. Pattern Anal. Machine Intell. 26(5), 530–549 (2004)

    Article  Google Scholar 

  19. Mazziotta, J., Toga, A., Evans, A., Lancaster, J., Fox, P.: A probabilistic atlas of the human brain: Theory and rational for its development. Neuroimage 2, 89–101 (1995)

    Article  Google Scholar 

  20. Oren, M., Papageorgiou, C., Sinha, P., Osuna, E., Poggio, T.: Pedestrian detection using wavelet templates. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 193–199 (1997)

    Google Scholar 

  21. Saragih, J., Goecke, R.: A nonlinear discriminative approach to AAM fitting. In: Proc. Int’l Conf. Computer Vision. Rio de Janerio, Brazil (2007)

    Google Scholar 

  22. Thompson, P., Toga, A.: A framework for computational anatomy. Comput Visual Sci 5, 13–34 (2002)

    Article  MATH  Google Scholar 

  23. Tu, Z.: Probabilistic boosting-tree: Learning discriminative methods for classification, recognition, and clustering. In: Proc. Int’l Conf. Computer Vision, pp. 1589–1596 (2005)

    Google Scholar 

  24. Tu, Z., Zhou, X.S., Barbu, A., Bogoni, L., Comaniciu, D.: Probabilistic 3D polyp detection in CT images: The role of sample alignment. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 1544–1551 (2006)

    Google Scholar 

  25. Vemuri, B., Ye, J., Chen, Y., Leonard, C.: Image registration via level-set motion: Applications to atlas-based segmentation. Medical Image Analysis 7, 1–20 (2003)

    Article  Google Scholar 

  26. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 511–518 (2001)

    Google Scholar 

  27. Viola, P., Jones, M.: Robust real-time face detection. Int. J. Computer Vision 57(2), 137–154 (2004)

    Article  Google Scholar 

  28. Wu, B., AI, H., Huang, C., Lao, S.: Fast rotation invariant multi-view face detection based on real AdaBoost. In: Proc. Auto. Face and Gesture Recognition (2004)

    Google Scholar 

  29. Xu, C., Pham, D.L., Prince, J.L.: Medical image segmentation using deformable models. Handbook of Medical Imaging – Volume 2:Medical Image Processing and Analysis pp. 129–174 (2000)

    Google Scholar 

  30. Zhang, J., Zhou, S., Comaniciu, D., McMillan, L.: Conditional density learning via regression with application to deformable shape segmentation. In: Proc. CVPR (2008)

    Google Scholar 

  31. Zhang, J., Zhou, S., Comaniciu, D., McMillan, L.: Discriminative learning for deformable shape segmentation: A comparative study. In: Proc. ECCV (2008)

    Google Scholar 

  32. Zhang, J., Zhou, S., McMillan, L., Comaniciu, D.: Joint real-time object detection and pose estimation using probabilistic boosting network. In: Proc. CVPR (2007)

    Book  Google Scholar 

  33. Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Fast automatic heart chamber segmentation from 3D CT data using marginal space learning and steerable features. In: Proc. Int’l Conf. Computer Vision (2007)

    Book  Google Scholar 

  34. Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Four-chamber heart modeling and automatic segmentation for 3D cardiac CT volumes using marginal space learning and steerable features. IEEE Trans. Medical Imaging 27(11), 1668–1681 (2008)

    Article  Google Scholar 

  35. Zheng, Y., Georgescu, B., Ling, H., Zhou, S.K., Scheuering, M., Comaniciu, D.: Constrained marginal space learning for efficient 3D anatomical structure detection in medical images. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition (2009)

    Book  Google Scholar 

  36. Zheng, Y., Lu, X., Georgescu, B., Littmann, A., Mueller, E., Comaniciu, D.: Robust object detection using marginal space learning and ranking-based multi-detector aggregation: Application to automatic left ventricle detection in 2D MRI images. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition (2009)

    Google Scholar 

  37. Zhou, S.K.: Shape regression machine and efficient segmentation of left ventricle endocardium from 2D B-mode echocardiogram. Medical Image Analysis 14(4), 563–581 (2010)

    Article  Google Scholar 

  38. Zhou, S.K., Park, J.H., Georgescu, B., Simopoulos, C., Otsuki, J., Comaniciu, D.: Image-based multiclass boosting and echocardiographic view classification. In: Proc. CVPR (2006)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kevin Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zhou, S.K., Zhang, J., Zheng, Y. (2012). Discriminative Learning for Anatomical Structure Detection and Segmentation. In: Zhang, C., Ma, Y. (eds) Ensemble Machine Learning. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9326-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9326-7_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9325-0

  • Online ISBN: 978-1-4419-9326-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics