Advertisement

Introduction

  • Bo Fu
  • Paul Ampadu
Chapter

Abstract

On-chip interconnects play an important role for the performance of current VLSI system. As technology scales into nanoscale regime, interconnect is facing several design challenges in terms of delay, power and reliability [1–3].

Keywords

Noise Source Soft Error Technology Scale Error Control Code Technology Scaling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Davis AJ et al (2001) Interconnect limits on gigascale integration (GSI) in the 21st Century. Proc IEEE 89:305–324CrossRefGoogle Scholar
  2. 2.
    Caignet F, Bendhia DS, Sicard E (2001) The challenge of signal integrity in deep-submicrometer CMOS technology. Proc IEEE 89:556–573CrossRefGoogle Scholar
  3. 3.
    Constantinescu C (2003) Trends and challenges in VLSI circuit reliability. IEEE Micro 23:14–19CrossRefGoogle Scholar
  4. 4.
    Im S, Srivastava N, Banerjee K, Goodson EK (2005) Scaling analysis of multilevel interconnect temperatures for high performance ICs. IEEE Trans Electron Devices 52:2710–2719CrossRefGoogle Scholar
  5. 5.
    Kleveland B, Qi X, Madden L et al (2002) High-frequency characterization of on-chip digital interconnects. IEEE J Solid-State Circuits 37:716–725CrossRefGoogle Scholar
  6. 6.
    Ho R, Mai WK, Horowitz AM (2001) The future of wires. Proc IEEE 89:490–504CrossRefGoogle Scholar
  7. 7.
    Bakoglu BH, Meindl DJ (1985) Optimal interconnect circuits for VLSI. IEEE Trans Electron Devices 32:903–909CrossRefGoogle Scholar
  8. 8.
    Ismail IY, Friedman GE, Neves LJ (1999) Figures of merit to characterize the importance of on-chip inductance. IEEE Trans Very Large Scale Integr (VLSI) Syst 7:442–449CrossRefGoogle Scholar
  9. 9.
    Agarwal K, Sylvester D, Blaauw D (2006) Modeling and analysis of crosstalk noise in coupled RLC interconnects. IEEE Trans Comput Aided Des Integr Circuits Syst 25:892–901CrossRefGoogle Scholar
  10. 10.
    Ismail IY (2002) On-chip inductance cons and pros. IEEE Trans Very Large Scale Integr (VLSI) Syst 10:685–694CrossRefGoogle Scholar
  11. 11.
    International Technology Roadmap for Semiconductors (2005) http://public.itrs.netGoogle Scholar
  12. 12.
    Horowitz M, Dally B (2004) How scaling will change processor architecture. In: Proceedings of the international solid state circuits conference (ISSCC), pp 132–133Google Scholar
  13. 13.
    Magen N, Kolodny A, Weiser U, Shamir N (2004) Interconnect-power dissipation in a microprocessor. In: Proceedings of the international workshop on system-level interconnect prediction (SLIP), pp 7–13Google Scholar
  14. 14.
    Soteriou V, Peh SL (2004) Design-space exploration of power-aware on/off interconnection networks. In: Proceedings of the International conference on computer design (ICCD), pp 510–517Google Scholar
  15. 15.
    Shin LJ et al (2011) A 40 nm 16-core 128-thread SPARC SoC processor. IEEE J Solid-State Circuits 46:131–144CrossRefGoogle Scholar
  16. 16.
    Zorian Y, Gizopoulos D, Vandenberg C, Magarshack P (2004) Guest editors’ introduction:design for yield and reliability. IEEE Des Test Comput 21:177–182CrossRefGoogle Scholar
  17. 17.
    Grecu C, Ivanov A, Saleh R, Pande PP (2006) NoC interconnect yield improvement using crosspoint redundancy. In: Proceedings of the IEEE international symposium on defect and fault tolerance in VLSI system (DFT), pp 457–465Google Scholar
  18. 18.
    Karnick T, Hazucha P, Patel J (2004) Characterization of soft errors caused by single event upsets in CMOS processes. IEEE Trans Depend Secure Comput 1:128–143CrossRefGoogle Scholar
  19. 19.
    Munteanu D, Autran LJ (2008) Modeling and simulation of single-event effects in digital devices and ICs. IEEE Trans Nucl Sci 55:1854–1878CrossRefGoogle Scholar
  20. 20.
    Tang TK, Friedman GE (2000) Delay and noise estimation of CMOS logic gates driving coupled resistive-capacitive interconnections. Integr VLSI J 29:131–165MATHCrossRefGoogle Scholar
  21. 21.
    Vittal A, Chen HL, Marek MS et al (1999) Crosstalk in VLSI interconnections. IEEE Trans Comput Aided Des Integr Circuits Syst 18:1817–1824CrossRefGoogle Scholar
  22. 22.
    Sylvester D, Hu C (2001) Analytical modeling and characterization of deep submicron interconnect. Proc IEEE 89:634–664CrossRefGoogle Scholar
  23. 23.
    Larsson P (1999) Power supply noise in future IC’s: a crystal ball reading. In: Proceedings of the IEEE custom integrated circuits conference, pp 467–474Google Scholar
  24. 24.
    Mezhiba VA, Friedman GE (2004) Scaling trends of on-chip power distribution noise. IEEE Trans Very Large Scale Integr (VLSI) Syst 12:386–394CrossRefGoogle Scholar
  25. 25.
    Scheffer L (2006) An overview of on-chip interconnect variation. In: Proceedings of the 2006 international workshop on system-level interconnect prediction, pp 27–28Google Scholar
  26. 26.
    Lin Z et al (1998) Circuit sensitivity to interconnect variations. IEEE Trans Semiconductor Manuf 11:557–568CrossRefGoogle Scholar
  27. 27.
    Lopez G et al (2007) The impact of size effects and copper interconnect process variations on the maximum critical path delay of single and multi-core microprocessors. In: Proceedings of the international interconnect technology conference, pp 40–42
  28. 28.
    Demircan E (2006) Effects of interconnect process variations on signal integrity. In: Proceedings of the IEEE international SOC conference, pp 281–284Google Scholar
  29. 29.
    Mehrotra V, Nassif S, Boning D, Chung J (1998) Modeling the effects of manufacturing variation on high-speed microprocessor interconnect performance. In: Proceedings of the IEEE electron devices meetings (IEDM), pp 767–770Google Scholar
  30. 30.
    Mehrotra V, Sam LS, Boning D et al (2000) A methodology for modeling the effects of systematic within-die interconnect and device variation on circuit performance. In: Proceedings of the ACM/IEEE design automation conference (DAC), pp 172–175Google Scholar
  31. 31.
    Qi X, Lo S, Luo Y et al (2005) Simulation and analysis of inductive impact on VLSI interconnects in the presence of process variations. In: IEEE custom integrated circuit conference, pp 309–312Google Scholar
  32. 32.
    Ajami HA, Banerjee K, Pedram M (2005) Modeling and analysis of nonuniform substrate temperature effects on global ULSI interconnects. IEEE Trans Comput Aided Des Integr Circuits Syst 24:849–861CrossRefGoogle Scholar
  33. 33.
    Khazaka R, Nakhla M (1998) Analysis of high-speed interconnects in the presence of electromagnetic interference. IEEE Trans Microw Theory Tech 46:940–947CrossRefGoogle Scholar
  34. 34.
    Nassif S (2000) Delay variability: sources, impacts and trends. In: Proceedings of the IEEE international solid-state circuits conference digest of technical papers, pp 7–9Google Scholar
  35. 35.
    Sotiriadis P (2002) Interconnect modeling and optimization in deep submicron technologies. Dissertation, Massachusetts Institute of TechnologyGoogle Scholar
  36. 36.
    Tamhankar R, Murali S, Stergiou S et al (2007) Timing-error-tolerant network-on-chip design methodology. IEEE Trans Comput Aided Des Integr Circuits Syst 26:1297–1310CrossRefGoogle Scholar
  37. 37.
    Balasubramanian A, Sternberg LA, Bhuva LB, Massengill WL (2006) Crosstalk effects caused by single event hits in deep sub-micron CMOS technologies. IEEE Trans Nucl Sci 53:3306–3311CrossRefGoogle Scholar
  38. 38.
    Balasubramanian A et al (2008) Measurement and analysis of interconnect crosstalk due to single events in a 90 nm CMOS technology. IEEE Trans Nucl Sci 55:2079–2084CrossRefGoogle Scholar
  39. 39.
    Srinivasan J, Adve V S, Bose P, Rivers AJ (2004) The case for lifetime reliability-aware microprocessors. In: Proceedings of the 31st international symposium on computer architecture (ISCA), pp 276–287Google Scholar
  40. 40.
    Xuan X, Singh A, Chatterjee A (2003) Reliability evaluation for integrated circuit with defective interconnect under electromigration. In: Proceedings of the international symposium on quality electronic design, pp 29–34Google Scholar
  41. 41.
    Heydari P, Pedram M (2003) Ground bounce in digital VLSI circuits. IEEE Trans Very Large Scale Integr (VLSI) Syst 11:180–193CrossRefGoogle Scholar
  42. 42.
    Zhao C, Bai X, Dey S (2007) Evaluating transient error effects in digital nanometer circuits. IEEE Trans Reliab 56:381–391CrossRefGoogle Scholar
  43. 43.
    Maheshwari A, Burleson W, Tessier R (2004) Trading off transient fault tolerance and power consumption in deep submicron (DSM) VLSI circuits. IEEE Trans Very Large Scale Integr (VLSI) Syst 12:299–311CrossRefGoogle Scholar
  44. 44.
    Heidel FD et al (2008) Alpha-particle-induced upsets in advanced CMOS circuits and technology. IBM J Res Dev 52:225–232CrossRefGoogle Scholar
  45. 45.
    Tipton DA et al (2006) Multiple-bit upset in 130 nm CMOS technology. IEEE Trans Nucl Sci 53:3259–3264CrossRefGoogle Scholar
  46. 46.
    Lehtonen T, Wolpert D, Liljeberg P, Plosila J, Ampadu P (2010) Self-adaptive system for addressing permanent errors in on-chip interconnects. IEEE Trans Very Large Scale Integr (VLSI) Syst 18:527–540CrossRefGoogle Scholar
  47. 47.
    Hegde R, Shanbhag RN (2000) Toward achieving energy-efficiency in presence of deep submicron noise. IEEE Trans Very Large Scale Integr (VLSI) Syst 8:379–391CrossRefGoogle Scholar
  48. 48.
    Bertozzi D, Benini L, De Micheli G (2005) Error control schemes for on-chip communication links: the energy-reliability tradeoff. IEEE Trans Comput Aided Des Integr Circuits Syst 24:818–831CrossRefGoogle Scholar
  49. 49.
    Zimmer H, Jantsch A (2003) A fault model notation and error-control scheme for switch-to-switch buses in a network-on-chip. In: Proceedings of the international conference on hardware/software codesign and system synthesis (CODES-ISSS), pp 188–193Google Scholar
  50. 50.
    De Micheli G, Benini L (2006) Networks on chips: technology and tools. Elsevier, AmsterdamGoogle Scholar
  51. 51.
    Lehtonen T, Liljeberg P, Plosila J (2007) Online reconfigurable self-timed links for fault tolerant NoC. VLSI Des. Article ID 94676:13Google Scholar
  52. 52.
    Fu B, Ampadu P (2008) A multi-wire error correction scheme for reliable and energy efficient SoC links using Hamming product codes. In: Proceedings of the IEEE international SoC conference (SoCC), pp 59–62Google Scholar
  53. 53.
    Fu B, Ampadu P (2008) An energy-efficient multi-wire error control scheme for reliable on-chip interconnects using Hamming product codes. VLSI Des Article ID: 109490, 1–14, doi:101155/2008/109490Google Scholar
  54. 54.
    Fu B, Ampadu P (2009) On hamming product codes with type-II hybrid ARQ for on-chip interconnects. IEEE Trans Circuits Syst I Reg Papers 56:2042–2054MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Marvell Semiconductor, Inc.Santa ClaraUSA
  2. 2.Department of Electrical and Computer EngineeringUniversity of RochesterRochesterUSA

Personalised recommendations