Mechanisms and Kinetics of Organic Matrix Thermal Oxidation

Chapter

Abstract

It is now well recognized that during thermal aging at moderate temperatures, for example, typically below the glass transition temperature, organic matrix composites perish mainly by matrix embrittlement resulting from its thermo-oxidation. The present chapter aims to briefly introduce this domain. The chapter consists of a brief history of polymer oxidation and description of mechanisms and kinetics. The radical character of oxidation processes; the main elementary steps: propagation, termination, initiation processes, and initial steps; structure–property relationships; the nature of oxidation products; and experimental methods for the study of oxidation mechanisms are also discussed. The standard kinetic scheme, case of oxygen excess and general shape of oxidation kinetic curves, the induction period, departure from Arrhenius law, and case of oxygen lack are described. Consequences of oxidation on matrix thermomechanical properties including chain scission and cross-linking physical approaches are presented.

Keywords

Anisotropy Epoxy Rubber Brittle Shrinkage 

References

  1. 1.
    Abdeljaoued, K.: Study of matrix thermal oxidation in carbon fibers-PMR-15 composites, PhD Thesis, ENSAM Paris, 1999.Google Scholar
  2. 2.
    Achimsky, L., Audouin, L., Verdu, J., Rychla, L., Rychly, J.: The effect of oxygen pressure on the rate of polypropylene oxidation determined by chemiluminescence, Europ. Polym. J. 35, 557–563 (1999).CrossRefGoogle Scholar
  3. 3.
    Audouin, L., Langlois, V., Verdu, J., De Bruijn, J.C.M.: Role of oxygen diffusion in polymer aging. Kinetic and mechanistic aspects, J. Mater. Sci. 29, 569–583 (1994).CrossRefGoogle Scholar
  4. 4.
    Audouin, L., Gueguen, V., Tcharkhtchi, A., Verdu, J.: Close-loop mechanistic schemes for hydrocarbon polymer oxidation, J. Polym. Sci.: Part A: Polym. Chem. 33, 921–927 (1995).CrossRefGoogle Scholar
  5. 5.
    Audouin, L., Achimsky, L., Verdu, J.: Kinetic modelling of low temperature oxidation of hydrocarbon polymers, In: Halim Hamid S. (ed) Handbook of polymer degradation, 2nd edition, chap. 16, pp. 727–763, Marcel Dekker, New York (2000).Google Scholar
  6. 6.
    Bellenger, V., Morel, E., Verdu, J.: Effect of structure on the glass transition temperature of amine crosslinked epoxies, J. Polym. Sci.: Part B: Polym. Phys. 25, 1219–1234 (1987).CrossRefGoogle Scholar
  7. 7.
    Bicerano, J.: Prediction of polymer properties, 3rd edition, chap. 6, p. 212, Marcel Dekker, New York (2002).CrossRefGoogle Scholar
  8. 8.
    Bolland, J.L., Gee, G.: Kinetic studies in the chemistry of rubber and related materials. Parts II and III, Trans. Faraday Soc. 42, 236–252 (1946).CrossRefGoogle Scholar
  9. 9.
    Bowles, K.J., Meyers, A.: Specimen geometry effects on graphite/PMR-15 composites during their thermo-oxidative aging, In: Proc of the 31st International SAMPE Symposium and Exhibition, vol. 3, pp. 1285–1299. Covina, CA, US (1986).Google Scholar
  10. 10.
    Bowles, K.J., Nowak, G.: Thermo-oxidative stability studies of Celion 6000/PMR-15 unidirectional composites. PMR-15 and Celion 6000 fiber, J. Compos. Mater. 22(6), 966–985 (1988).CrossRefGoogle Scholar
  11. 11.
    Colin, X.: Kinetic modelling of high thermomechanical performances polymer and composite materials, PhD Thesis, ENSAM Paris, 2000.Google Scholar
  12. 12.
    Colin, X., Marais, C., Verdu, J.: Kinetic modelling and simulation of gravimetric curves. Application to the oxidation of bismaleimide and epoxy resins, Polym. Degrad. Stab. 78(3), 545–553 (2002).CrossRefGoogle Scholar
  13. 13.
    Colin, X., Verdu, J.: Thermal ageing and lifetime prediction for organic matrix composites, Plastics Rubber Compos.: Macromol. Eng. 32(8/9), 349–356 (2003).Google Scholar
  14. 14.
    Colin, X., Marais, C., Verdu, J.: Kinetic modelling of the stabilizing effect of carbon fibers on thermal ageing of thermoset matrix composites, Compos. Sci. Technol. 65, 117–127 (2005a).CrossRefGoogle Scholar
  15. 15.
    Colin, X., Mavel, A., Marais, C., Verdu, J.: Interaction between cracking and oxidation in organic matrix composites, J. Compos. Mater. 19(15), 1371–1389 (2005b).CrossRefGoogle Scholar
  16. 16.
    Colin, X., Fayolle, B., Audouin, L., Verdu J.: The classical model for radical chain oxidation of hydrocarbon substrates initiated by bimolecular hydroperoxide decomposition, Intern. J. Chem. Kin. 38(11), 666–676 (2006).CrossRefGoogle Scholar
  17. 17.
    Colin, X., Audouin, L., Verdu, J.: Kinetic modelling of the thermal oxidation of polyisoprene elastomers. Parts I, II and III, Polym. Degrad. Stab. 92(5), 886–914 (2007).CrossRefGoogle Scholar
  18. 18.
    Colin, X., Audouin, L., Verdu, J., Rozental-Evesque, M., Rabaud, B., Martin, F., Bourgine, F.: Aging of polyethylene pipes transporting drinking water disinfected by chlorine dioxide. Parts I and II, Polym. Eng. Sci., 49(7), 1429–1437 (2009) and 49(8), 1642–1652 (2009).Google Scholar
  19. 19.
    Coquillat, M., Verdu, J., Colin, X., Audouin, L., Nevière, R.: Thermal oxidation of polybutadiene. Parts II and III, Polym. Degrad. Stab. 92(7), 1334–1349 (2007).CrossRefGoogle Scholar
  20. 20.
    Crews, L.K., McManus, H.L.: Modelling the high temperature degradation of graphite/epoxy, In: Proc. of the American Society for Composites, 12th Technical Conference on Composite Materials, pp. 1123–1132. Detroit, MI, US (1997).Google Scholar
  21. 21.
    Cunliffe, A.V., Davis, A.: Photo-oxidation of thick polymer samples, Polym. Degrad. Stab. 4(1), 17–37 (1982).CrossRefGoogle Scholar
  22. 22.
    Cunningham, R.A., McManus, H.L.: Coupled diffusion-reaction models for predicting the distribution of degradation in polymer matrix composites, In: Proc. of the ASME Aerospace Division, ASME International Mechanical Engineering Congress and Exposition, Symposium on Composite Materials, vol. 52, p. 353. Atlanta, GA, US (1996).Google Scholar
  23. 23.
    Denisov, E.T., Afanas’ev, I.B.: Oxidation and antioxidants in organic chemistry and biology, CRC Taylor and Francis, Boca Raton (2005).CrossRefGoogle Scholar
  24. 24.
    Di Marzio, E.A.: On the second-(order transition of a rubber, J. Res. NBS: Section A: Phys. Chem. 68, 611–617 (1964).Google Scholar
  25. 25.
    Fayolle, B., Richaud, E., Colin, X., Verdu, J.: Review: Degradation-induced embrittlement in semi-crystalline polymers having their amorphous phase in rubbery state, J. Mater. Sci. 43, 6999–7012 (2008).CrossRefGoogle Scholar
  26. 26.
    Fox, T.G., Flory, P.J.: Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight, J. Appl. Phys. 21, 581–591 (1950).CrossRefGoogle Scholar
  27. 27.
    Furneaux, G.C., Ledbury K.J., Davis, A.: Photo-oxidation of thick polymer samples. Part I: The variation of photo-oxidation with depth in naturally and artificially weathered low density polyethylene, Polym. Degrad. Stab. 3(6), 431–442 (1981).CrossRefGoogle Scholar
  28. 28.
    Gilbert, D.G., Ashby, M.F., Beaumont, P.W.R.: Modulus maps for amorphous polymers, J. Mater. Sci. 21, 3194–3210 (1986).CrossRefGoogle Scholar
  29. 29.
    Gillen, K.T., Wise, J., Clough, R.L.: General solution for the basic autoxidation scheme, Polym. Degrad. Stab. 47, 149–161 (1995).CrossRefGoogle Scholar
  30. 30.
    Golike, R.C., Lasoski, S.W.: Kinetics of hydrolysis of polyethylene terephthalate films, J. Phys. Chem. 64, 895–898 (1960).CrossRefGoogle Scholar
  31. 31.
    Korcek, S., Chenier, J.H.B., Howard, J.A., Ingold, K.U.: Absolute rate constants for hydrocarbon autoxidation. XXI: Activation energies for propagation and the correlation of propagation rate constants with carbon-hydrogen bond strengths, Can. J. Chem. 50, 2285–2297 (1972).CrossRefGoogle Scholar
  32. 32.
    Le Huy, M., Bellenger, V., Paris, M., Verdu, J.: Thermal oxidation of anhydride cured epoxies. Part I, II and III, Polym. Degrad. Stab. 35, 77–86 (1992), 35, 171–179 (1992) and 41(2), 149–156 (1993).CrossRefGoogle Scholar
  33. 33.
    Nam, J.D., Seferis, J.C.: Anisotropic thermo-oxidative stability of carbon fiber reinforced polymeric composites, SAMPE Quart. 24(1), 10–18 (1992).Google Scholar
  34. 34.
    Nelson, J.B.: Thermal aging of graphite/polyimide composites. In: O’Brien, T.K. (ed) Long term behaviour of composites, ASTM STP 813, pp. 206–221. American Society for Testing and Materials, Philadelphia, (1983).CrossRefGoogle Scholar
  35. 35.
    Pascault, J.-P., Sautereau, H., Verdu, J., Williams, R.J.J.: Thermosetting Polymers. Marcel Dekker, New York (2002).CrossRefGoogle Scholar
  36. 36.
    Putthanarat, S., Tandon, G.P., Schoeppner, G.A.: Influence of polishing time on thermooxidation characterization of isothermally aged PMR-15 resin, Polym. Degrad. Stab. 92, 2110–2120 (2007).CrossRefGoogle Scholar
  37. 37.
    Rasoldier, N., Colin, X., Verdu, J., Bocquet, M., Olivier, L., Chocinski-Arnault, L., Lafarie-Frenot, M.-C.: Model systems for thermo-oxidized composites matrices, Composites: Part A: Applied Science and Manufacturing 39, 1522–1529 (2008).CrossRefGoogle Scholar
  38. 38.
    Reich, L., Stivala, S.S.: Autoxidation of hydrocarbons and polyolefins. Kinetics and mechanisms, Marcel Dekker, New York (1969).Google Scholar
  39. 39.
    Richaud, E., Colin, X., Fayolle, B., Verdu, J.: Induction period in the low temperature thermal oxidation of saturated hydrocarbons. Example of polyethylene, Intern. J. Chem. Kin. 40(12), 769–777 (2008).CrossRefGoogle Scholar
  40. 40.
    Rincon-Rubio, L.M., Fayolle, B., Audouin, L., Verdu, J.: A general solution of closed-loop kinetic scheme for the thermal oxidation of polypropylene, Polym. Degrad. Stab. 74(1), 177–188 (2001).CrossRefGoogle Scholar
  41. 41.
    Rincon-Rubio, L.M., Colin, X., Audouin, L., Verdu, J.: A theoretical model for the diffusion-limited thermal oxidation of elastomers at medium temperatures, Rubber Chem. Technol. 76(2), 460–482 (2003).CrossRefGoogle Scholar
  42. 42.
    Rychly, J., Matisova-Rychla, L., Csomorova, K., Achimsky, L., Audouin, L., Tcharkhtchi, A., Verdu, J.: Kinetics of mass changes in oxidation of polypropylene, Polym. Degrad. Stab. 58, 269–274 (1997).CrossRefGoogle Scholar
  43. 43.
    Salin, I.M., Seferis, J.C.: Anisotropic effects in thermogravimetry of polymeric composites, J. Polym. Sci.: Part B: Polym Phys. 31, 1019–1027 (1993).CrossRefGoogle Scholar
  44. 44.
    Seferis, J.C.: Aging analyses of polymer composites through time-temperature equivalence. In: Reifsnider, K.L., Dillard, D.A., Cardon, A. (eds) Progress in durability analysis of composite systems, pp. 193–201, Balkema, Rotterdam (1998).Google Scholar
  45. 45.
    Seguchi, T., Hashimoto, S., Arakawa, K., Hayakawa, N., Kawakami, W., Kuriyama, I.: Radiation induced oxidative degradation of polymers. Part I: Oxidation region in polymeric films irradiated in oxygen under pressure, Radiat. Phys. Chem. 17(4), 195–201 (1981).Google Scholar
  46. 46.
    Semenov, N.M.: Chemical kinetics and chain reactions, Oxford University Press, London (1935).Google Scholar
  47. 47.
    Skontorp, A., Wong, M.S., Wang, S.S.: High temperature anisotropic thermal oxidation of carbon fiber reinforced polyimide composites. Theory and experiments, In: Street, K., Poursartip, A. (eds) Proc. of ICCM-10, 10th International Conference on Composite Materials, vol. 4, pp. 375–382. Whistler, BC, Canada (1995).Google Scholar
  48. 48.
    Smith, Vale: Chimie et Industrie (Paris) 105(18), 1179 (1972).Google Scholar
  49. 49.
    Sommersall, A.C., Guillet, J.E.: Computer modelling studies of polymer photooxidation and stabilization. In: Klemchuk, P.P. (ed) Polymer stabilization and degradation, chap. 16, pp. 211–234, American Chemical Society, Washington, DC (1985).CrossRefGoogle Scholar
  50. 50.
    Swern, D.: Organic peroxides, vols 1 and 2, Wiley-Interscience, New York (1971).Google Scholar
  51. 51.
    Tobolsky, A.V., Metz, D.J., Mesrobian, R.B.: Low temperature oxidation of hydrocarbons. The phenomenon of maximum rates, J. Amer. Chem. Soc. 72, 1942–1952 (1950).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.PIMMARTS ET METIERS ParisTechParisFrance

Personalised recommendations