Advertisement

Assessment of Nonlinear System Identification Methods using the SmallSat Spacecraft Structure

  • G. Kerschen
  • L. Soula
  • J. B. Vergniaud
  • A. Newerla
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

In this paper, several techniques for nonlinear system identification are applied to a real-world structure, the SmallSat spacecraft structure developed by EADS-Astrium. This composite structure comprises two vibration isolation systems, one of which possesses mechanical stops. The loading case considered in the present study is a random (local) excitation. A careful progression through the different steps of the system identification process, namely detection, characterization and parameter estimation, is carried out. Different methods are applied to data resulting from numerical experiments, without having access to the finite element model which generated these data.

Keywords

Wavelet Transform Coherence Function Excitation Level Nonlinear Spring Random Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Worden, G.R. Tomlinson, Nonlinearity in Structural Dynamics: Detection, Identication and Modelling. Institute of Physics Publishing, Bristol and Philadelphia, 2001.Google Scholar
  2. 2.
    G. Kerschen, K. Worden, A.F. Vakakis, J.C. Golinval, Past, present and future of nonlinear system identification in structural dynamics, Mechanical Systems and Signal Processing 20 (2006), 505-592.CrossRefGoogle Scholar
  3. 3.
    S.F. Masri, T.K. Caughey, A nonparametric identification technique for nonlinear dynamic problems, Journal of Applied Me- chanics 46 (1979), 433-447.MATHCrossRefGoogle Scholar
  4. 4.
    I.J. Leontaritis, S.A. Billings, Input-output parametric models for nonlinear systems, part I: deterministic nonlinear systems, International Journal of Control 41 (1985), 303-328.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    I.J. Leontaritis, S.A. Billings, Input-output parametric models for nonlinear systems, part II: stochastic nonlinear systems, International Journal of Control 41 (1985), 329-344.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    C.M. Richards, R. Singh, Identification of multi-degree-of-freedom non-linear systems under random excitations by the reverse-path spectral method, Journal of Sound and Vibration 213 (1998), 673-708.CrossRefGoogle Scholar
  7. 7.
    D.E. Adams, R.J. Allemang, A frequency domain method for estimating the parameters of a non-linear structural dynamic model through feedback, Mechanical Systems and Signal Processing 14 (2000), 637-656.CrossRefGoogle Scholar
  8. 8.
    M. Ruzzene, A. Fasana, L. Garibaldi, B. Piombo, Natural frequencies and dampings identification using wavelet transform: application to real data, Mechanical Systems and Signal Processing 11 (1997), 207-218.CrossRefGoogle Scholar
  9. 9.
    A.G. Russell, Thick skin, faceted, CFRP, monocoque tube structure for smallsats, Proceedings of the European Conference on Spacecraft Structures, Materials and Mechanical Testing, Noordwijk, The Netherlands, 2000.Google Scholar
  10. 10.
    P. Camarasa, S. Kiryenko, Shock attenuation system for spacecraft and adaptor (SASSA), Proceedings of the European Conference on Spacecraft Structures, Materials and Mechanical Testing, Toulouse, France, 2009.Google Scholar
  11. 11.
    G. Kerschen, P. De Boe, J.C. Golinval, K. Worden, Sensor validation using principal component analysis, Smart Materials and Structures 14 (2005), 36-42.CrossRefGoogle Scholar
  12. 12.
    A. Hot, G. Kerschen, E. Foltte, S. Cogan, Detection and quantification of non-linear structural behavior using principal component analysis, Mechanical Systems and Signal Processing, in review.Google Scholar
  13. 13.
    C. Jordan, Essai sur la gomtrie n dimensions, Bulletin de la Socit mathmatique 3 (1875), 103-174.MATHGoogle Scholar
  14. 14.
    A. Bjorck, G.H. Golub, Numerical methods for computing angles between linear subspaces, Mathematics of Computations 27 (1973), 579-594.MathSciNetCrossRefGoogle Scholar
  15. 15.
    G.H. Golub, C.F. Van Loan, Matrix Computations, The Johns Hopkins University Press, Baltimore, 1996.Google Scholar
  16. 16.
    K. Worden, Data processing and experimental design for the restoring force surface method, part 1: integration and differentiation of measured time data, Mechanical Systems and Signal Processing 4 (1990), 295-319.CrossRefGoogle Scholar
  17. 17.
    G. Kerschen, J.C. Golinval, K. Worden, Theoretical and experimental identification of a non-linear beam, Journal of Sound and Vibration 244 (2001), 597-613.CrossRefGoogle Scholar
  18. 18.
    C.M. Richards, R. Singh, Feasibility of identifying non-linear vibratory systems consisting of unknown polynomial forms, Journal of Sound and Vibration 220 (1999), 413-450.CrossRefGoogle Scholar
  19. 19.
    S. Marchesiello, Application of the conditioned reverse path method, Mechanical Systems and Signal Processing 17 (2003), 183-188.CrossRefGoogle Scholar
  20. 20.
    G. Kerschen, V. Lenaerts, J.C. Golinval, Identification of a continuous structure with a geometrical non-linearity, part I: conditioned reverse path method, Journal of Sound and Vibration 262 (2003), 889-906.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • G. Kerschen
    • 1
  • L. Soula
    • 2
  • J. B. Vergniaud
    • 2
  • A. Newerla
    • 3
  1. 1.Space Structures and Systems Laboratory (S3L), Structural Dynamics Research Group Department of Aerospace and Mechanical EngineeringUniversity of LigeLiègeBelgium
  2. 2.Astrium SatellitesToulouseFrance
  3. 3.European Space Agency (ESTEC)NoordwijkThe Netherlands

Personalised recommendations