Skip to main content

Venous Wall - Morphological and Functional Aspects

  • Chapter
Clinical Physiology of the Venous System

Abstract

The dimensions of arteries and veins, unlike those of the microvascular components, are largely species-related and depend primarily on the total blood volume. Unlike arteries, a correspondence between the size and structure in veins cannot be systematically established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allaire E, Clowes AW. Endothelial cell injury in cardiovascular surgery: the intimal hyperplastic response. Ann Thorac Surg 1997: 63: 582–591

    PubMed  CAS  Google Scholar 

  2. Allen BG, Walsh MP. The biochemical basis of the regulation of smooth-muscle contraction. TIBS 1994; 19: 362–367

    PubMed  CAS  Google Scholar 

  3. Amini-Nekoo A, Futers TS, Moia M, Mannucci PM, Grant PJ, Ariens RA. Analysis of the tissue factor pathway inhibitor gene and antigen levels in relation to venous thrombosis, Br J Haematol 2001; 113: 537–543.

    PubMed  CAS  Google Scholar 

  4. Arnal JF, Tack I, Besombes JP, Pipy B, Negre-Salvayre A. Nitric oxide and superoxide anion production during endothelial cell proliferation. Am J Physiol 1996; 271: C1521–1526.

    PubMed  CAS  Google Scholar 

  5. Asahara T T, Bauters C, Pastore C, Kearney M, Rossow S, Bunting S, Ferrara N, Symes JF, Isner JM. Local delivery of vascular endothelial growth factor acceleratesre-endothelialization and attenuates intimal hyperplasia in baloon-injured rat carotid artery. Circulation 1995; 91: 2793–2801.

    PubMed  CAS  Google Scholar 

  6. Astedt B, Hagerstrandt I, Lecander I. Cellular localization in placenta of placental type plasminogen activator inhibitor. Thromb Haemost 1986; 56: 63–65.

    PubMed  CAS  Google Scholar 

  7. Bajzar L, Morser J, Nesheim M. TAFI, or plasma procarboxy-peptidase B, couples the coagulation and fybrinolytic cascades through the thrombin-thrombomodulin complex. J Biol Chem 1996; 271: 16603–16608.

    PubMed  CAS  Google Scholar 

  8. Ballermann BJ, Dardik A, Eng E, Liu A. Shear stress and the endothelium. Kidney International 1998; 54: 100–108.

    Google Scholar 

  9. Barany M, Barany K. Protein phosphrylation during contraction and relaxation. In Biochemistry of Smooth Muscle Contraction. Ed. M Barany, Academic Press, 1996; 321–339.

    Google Scholar 

  10. Barnathan ES, Kuo A, Rosenfeld L, Kariko K, Leski M, Robbiati F, Nolli ML, Henkin J, Cines DB. Interaction of single chain urokinase type plasminogen activator with human endothelial cells. J Biol Chem 1990; 265: 2865–2872.

    PubMed  CAS  Google Scholar 

  11. Belz GG, Berrmann J, Schloos J, KleinBloesem CH. The effect of oral clazapril and prazosin on the constrictor effects of locally infused angiotensin I and noradrenaline in human hand veins. Br J Clin Pharmacol 1989; 28: 608–611.

    PubMed  CAS  Google Scholar 

  12. Bhagyalakshmi A, Berthiaume F, Reich KM, Frangos JA. Fluid shear stress stimulates membrane phospholipid metabolism in cultured human endothelial cells. J Vasc Res 1992; 29: 443–449.

    PubMed  CAS  Google Scholar 

  13. Bishop-Bailey D, Pepper JR, Larkin SW, Mitchell JA, Differential induction of cyclooxigenase-2 in human arterial and venous smooth muscle. Role of endogenous prostanoids, Arterioscler Thromb Vasc Biol 1998; 18: 1655–1661.

    PubMed  CAS  Google Scholar 

  14. Blackman DJ, Morris-Thurgood JA, Atherton JJ, Ellis GR, Anderson RA, Cockcroft JR, Frenneaux MP, Endothelium-derived nitric oxide contributes to the regulation of venous tone in humans, Circulation 2000; 101: 165–170.

    PubMed  CAS  Google Scholar 

  15. Boegehold MA. Flow-dependent arteriolar dilation in normotensive rats fed low-or high-salt diets. Am J Physiol 1995; 269: H1407–1414.

    PubMed  CAS  Google Scholar 

  16. Boegehold MA. Shear-dependent release of venular nitric oxide: effect on arteriolar tone in rat striated muscle. Am J Physiol 1996; 271: H387–395.

    PubMed  CAS  Google Scholar 

  17. Bombeli T, Meller M, Haeberli A. Anticoagulant properties of the vascular endothelium. Thromb Haemost 1997; 77: 408–423.

    PubMed  CAS  Google Scholar 

  18. Bonner G, Preis S, Schunk U, Wagmann M, Chrosch R, Toussaint C.7. J Cardiovasc Pharmacol 1992; 20(suppl.9): S21–S27.

    Google Scholar 

  19. Borland JA, Chester AH, Crabbe S, Parkerson JB, Catravas JD, Yacoub MH. Differential action of angiotensin II and activity of angiotensin-converting enzyme in human bypass grafts. J Thorac Cardiovasc Surg 1998; 116: 206–212.

    PubMed  CAS  Google Scholar 

  20. Bouissou H, Julian M, Pieraggi, MTh, Louge L. Vein morphology. Phlebology 1988; 3 (supLl.): 1–11.

    Google Scholar 

  21. Brandes RP, Barton M, Philippens KM, Schweitzer G, Mugge A. Endothelial-derived superoxide anions in pig coconary arteries: evidence from lucigenin chemiluminiscence and histochemical techniques. J Physiol 1997; 500: 331–342.

    PubMed  CAS  Google Scholar 

  22. Caprini JA, Arcelus JI, Reyna JJ. Effective risk stratification of surgical and nonsurgical patients for venous thromboembolic disease. Semin Hematol 2001; 38(Suppl 5): 12–19.

    PubMed  CAS  Google Scholar 

  23. Carmeliet P, Schoonjans L, Kiekens L, Ream B, Degan J, Bronson R, De Vos R, van den Oord JJ, Collen D, Mulligan RC. Physiological consequence of loss of plasminogen activator gene function in mice. Nature 1994; 369: 419–424.

    Google Scholar 

  24. Carmeliet P, Collen D. Vascular development and disorders: Molecular analysis and pathogenic insights. Kidney International 1998; 53: 1519–1549.

    CAS  Google Scholar 

  25. Carpenter CL. Actin cytoskeleton and cell signaling, Crit Care Med 2000; 28(4 Suppl): N94–9.

    PubMed  CAS  Google Scholar 

  26. Carter AJ, Bevan JA, Hanley SP, Morgan WE, Turner DR. A comparison of human pulmonary arterial and venous prostacyclin and thromboxane synthesis. Effect of a thromboxane synthase inhibitor. Thromb Haemostasis 1984; 51:257–260.

    CAS  Google Scholar 

  27. Carter AJ, Eisert WG, Muller TH. Thrombin stimulates inositol phosphate accumulation and prostacyclin synthesis in human ednothelial cells from umbilical vein but not from omentum. Thromb Haemostasis 1989; 61: 122–126.

    CAS  Google Scholar 

  28. Chaikouni A, Crawford FA, Kochel PJ, Olanoff LS, Haluschka PV. Human internal mammary artery produces more prostacyclin than saphenous vein. J Thorac Cardiovasc Surg 1986; 92: 88–91.

    Google Scholar 

  29. Chappel MC, Pirro NT, Sykes A, Ferrario CM. Metabolism of angiotensin-(1–7) by angiotensin converting enzyme. Hypertension 1998; 31: 1–7.

    Google Scholar 

  30. Cines DB, Pollak ES, Buck CA, Loscalzo j, Zimmerman GA, McEver RP, Pober JS, Wick TM, Konkle BA, Schwartz BS, Barnathan ES, McCrae KR, Hug BA, Schmidt A-M, Stern DM. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 1998; 91: 3527–3561.

    PubMed  CAS  Google Scholar 

  31. Coleridge Smith PD, Thomas P, Scurr JH, Dormandy JA. Causes of venous ulceration: a new hypothesis. Br Med J 1988; 296: 1726–1728.

    CAS  Google Scholar 

  32. Collen D, Lijnen HR. Basic and clinical aspects of fibrinolysis and thrombolysis. Blood 1991:78:3114–3124.

    PubMed  CAS  Google Scholar 

  33. Collier J, Vallance P. L-NMMA increase arteriolar but not venous tone in humans: The mechansim appears to be independent of sympathetic tone. J Cardiovasc Pharmacol 1991;17(Suppl.3):S182–S185.

    CAS  Google Scholar 

  34. Cook JM, Cook CD, Marlar R, Solis MM, Fink L, Eidt JF. Thrombomodulin activity in human sapgenous grafts prepared for coronary artery bypass. J Vasc Surg 1991; 14: 147–151.

    PubMed  CAS  Google Scholar 

  35. Cooke JP, Rossitch E jr., Andon NA, Loscalzo J, Dzau VJ. Flow activates an endothelial potassium channel to release an endogenous nitrovasodilator. J Clin Invest 1991; 88: 1663–1671.

    PubMed  CAS  Google Scholar 

  36. Corriu C, Feletou M, Canet E, Vanhoutte PM. Endothelium-derived factors and hypepolarizations of isolated carotid artery of the guinea pig. Br J Pharmacol 1996; 119:959–964.

    PubMed  CAS  Google Scholar 

  37. Cosentino F, Lüscher TF. Maintenance of vascular integrity: role of nitric oxide and other bradikinin mediators, Eur Heart J 1995; 16: K4–12.

    Google Scholar 

  38. Costello KB, Stewart DJ, Baffour R. Endothelin is a potent constrictor of human vessels used in coronary revascularization surgery. Eur J Pharmacol 1990; 186: 311–314.

    PubMed  CAS  Google Scholar 

  39. Cotran RS, Mayadas-Norton T. Endothelial adhesion molecules in health and disease. Path Biol 1998; 46: 164–170.

    CAS  Google Scholar 

  40. Cox JL, Chiasson DA, Gotlieb AI. Stranger in a strange land: the pathogenesis of saphenous graft stenosis with emphasis on structural and functional difference between veins and arteries. Prog Cardiovasc Dis 1991; 34: 45–68.

    PubMed  CAS  Google Scholar 

  41. Davies MG, Hagen PO. The vascular endothelium. A new horizon. Ann Surg 1993; 218: 593–609.

    PubMed  CAS  Google Scholar 

  42. Dawes M, Chowienczyk PJ, Ritter JM. Effects of inhibition of the L-arginine/nitric oxide pathway on vasodilation caused by β-adrenergic agonists in human forearm. Circulation 1997; 95: 2293–2297.

    PubMed  CAS  Google Scholar 

  43. Dejana E, Corada M, Lampugnani MG. Endothelial cell-to-cell junctions. FASEB J 1995;9:910–918.

    PubMed  CAS  Google Scholar 

  44. Dejana E, Lostaglio S. Endothelial cell-to-cell junctions and their role in angiogenesis. Forum 1996; 6: 380–389.

    Google Scholar 

  45. Dejana E, Vahron O, Navarro P, Lampugnani MG. Intercellular junctions in the endothelium and the control of vascular permeability. Ann N Y Acad Sci 1997; 811: 36–43.

    PubMed  CAS  Google Scholar 

  46. Dollery CM, McEwan JR, Henney AM. Matrix metalloproteinases and cardiovascular disease. Circ Res 1995; 77: 863–868.

    PubMed  CAS  Google Scholar 

  47. Drexler H, Hornig B. Endothelial dysfunction in human disease. J Moll Cell Cardiol 1999;31:51–60.

    CAS  Google Scholar 

  48. Drubaix I, Giakoumakis A, Robert L, Robert AM. Preliminary data on the age-dependent decrease in basic fibroblast growth factor and platelet-derived growth factor in the human vein wall and in their influence on cell proliferation. Gerontology 1998; 44:9–14.

    PubMed  CAS  Google Scholar 

  49. Dusting GJ, Fennessy P, Yin ZL, Gurevich V. Nitric oxide in atherosclerotis: vascular protector or villain? Clin Exp Pharmacol Physiol 1998; 25: S34–S41.

    CAS  Google Scholar 

  50. Dzau VJ, Gibbons GH. “The role of the endothelium in vascular remodelling.” In Cardiovascular significance of endothelium-derived vasoactive factors, Rubanyi GM, ed. Futura Publishing Co.Inc, Mount Kisco, NY, 1991; 281–290.

    Google Scholar 

  51. Dzau VJ. Cell biology and genetics of angiotensin in cardiovascular disease. J Hypertens 1994; Suppl 12: S3–10.

    Google Scholar 

  52. Edwards G, Dora KA, Gardener MJ, Garland CJ, Weston AH. K+ is an endothelium-derived hyperpolarizing factor in rat arteries. Nature 1998; 396: 269–272.

    PubMed  CAS  Google Scholar 

  53. Emoto N, Yanagisawa M. Endothelin-converting enzyme-2 is a membrane bound, phosphoramidon-sensitive metalloprotease with acidic pH optimum. J Biol Chem 1995; 270: 15262–15268.

    PubMed  CAS  Google Scholar 

  54. Essler M, Retzer M, Bauer M, Heemskerk JW, Aepfelbacher M, Siess W. Mildly oxidized low density lipoprotein induces contraction of human ednothelial cells through activation of rho/Rhokinase and inhibition of myosin light chain phosphatase. J Biol Chem 1999; 274: 30361–30363.

    PubMed  CAS  Google Scholar 

  55. Falkenhahn M, Gohlke P, Paul MSA. The renin-angiotensin system in the heart and vascular wall: new therapeutic aspects. J Cardiovasc Pharm 1994; 24(suppl.2): S6–13.

    CAS  Google Scholar 

  56. Feng J, Ito M, Kureishi Y, Ichikawa K, Amano M, Isaka N, Okawa K, Iwamatsu A, Kaibuchi K, Hartshorne D J, Nakano. Rho-associated kinase of chicken gizzard smooth muscle. J Biol Chem 1999; 274: 3744–3752.

    PubMed  CAS  Google Scholar 

  57. Ferro A, Queen LR, Priest RM, Xu B, Ritter JM, Poston L, Ward JPT. Activation of the nitric oxide synthase by β2-adrenoceptors in human umbilical vein endothelium in vitro. Br J Pharmacol 1999; 126: 1872–1880.

    PubMed  CAS  Google Scholar 

  58. Fisher AB, Chien S, Barakat AI, Nerem RM. Endothelial cellular response to altered shear stress. Am J Physiol Lung Cell Mol Physiol 2001; 281: L529–533.

    PubMed  CAS  Google Scholar 

  59. Fishman AP. Endothelium: A distributed organ of diverse capabilities. Ann NY Acad Sci 1982; 401: 1–8.

    PubMed  CAS  Google Scholar 

  60. Florey L. The endothelial cell. Br Med J 1966; 2: 487–490.

    PubMed  CAS  Google Scholar 

  61. Franco RF, Fagundes MG, Meijers JC, Reitsma PH, Lourenco D, Morelli V, Maffei FH, Ferrari IC, Piccinato CE, Silva WA Jr, Zago MA. Identification of polymorphisms in the 5’-untranslated region of the TAFI gene: relationship with plasma TAFI levels and risk of venous thrombosis. Haematologica 2001; 86:510–517.

    PubMed  CAS  Google Scholar 

  62. Frangos JA, Eskin SG, Mclntire LV, Ives CL. Flow effects on prostacyclin production by cultured human endothelial cells. Science 1985; 227: 1477–1479.

    PubMed  CAS  Google Scholar 

  63. Fukaya Y, Ohhashi T. Acetylcholine-and flow-induced production and release of nitric oxide in arterial and venous endothelial cells. Am J Physiol 1996; 270: H99–H106.

    PubMed  CAS  Google Scholar 

  64. Fukudome K, Kurosawa S, Stearns-Kurosawa D-J, He X, Rezaie AR, Esmon CT. The endothelial cell protein C receptor. Cell surface expression and direct ligand binding by the soluble receptor. J Biol Chem 1996; 271: 17491–17498.

    PubMed  CAS  Google Scholar 

  65. Gallagher PJ, Herring BP, Stull JT. Myosin light chain kinases. J Muscle Res Cell Motil 1997; 18: 1–16.

    PubMed  CAS  Google Scholar 

  66. Geiger M, Prilinger U, Griffin JH, Binder BR. Urinary protein C inhibitor. Glycosaminoglycans synthetized by the epithelial cell line TC1–598 enhance its interaction with urokinase. J Biol Chem 1991; 266: 1–598.

    PubMed  CAS  Google Scholar 

  67. Gertler JP, Abbott WM. Prothrombotic and fibrinolytic function of normal and perturbed endothelium. J Surg Res 1992; 52: 89–92.

    PubMed  CAS  Google Scholar 

  68. Gibbons GH, Dzau VJ. The emerging concept of vascular remodeling. N Engl J Med 1994:330: 1431–1438.

    PubMed  CAS  Google Scholar 

  69. Gibbons GH. Endothelial function as a determinant of vascular function and structure: a new therapeutic target. Am J Cardiol 1997; 79: 3–8.

    PubMed  CAS  Google Scholar 

  70. Gohla A, Schultz G, Offermanns S. Role for G12/G13 in agonist-induced vascular smooth muscle cells contraction. Circ Res 2000; 87: 221–227.

    PubMed  CAS  Google Scholar 

  71. Gong MC, Fujihara H, Somlyo AV, Somlyo AP. Translocation of rhoA associated with Ca2+-sensitization of smooth muscle. J Biol Chem 1997; 272: 10704–10709.

    PubMed  CAS  Google Scholar 

  72. Gosling M, Golledge J, Turner RJ, Powell JT. Arterial flow conditions downregulate thrombomodulin on saphenous vein endothelium. Circulation 1999; 99: 1047–1053.

    PubMed  CAS  Google Scholar 

  73. Griendling KK, Sorescu D, Lassegue B, Ushio-Fukai M. Modulation of Protein-kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology, Arteriscler Thromb Vasc Biol 2000; 20: 2175–2183.

    CAS  Google Scholar 

  74. Guimaraes S, de Moura D. Vascular Adrenoceptors: An Update, Phamacol Rev 2001; 53:319–356.

    CAS  Google Scholar 

  75. Haastrup A, Gadegbeku CA, Zhang D, Mukhin YV, Greene EL, Jaffa AA, Egan BM. Lipids stimulate the production of 6-keto-prostaglandin Fl¨¢ in human dorsal hand veins. Hypertension 2001; 38: 858–863.

    PubMed  CAS  Google Scholar 

  76. Hafizi S, Nobin R, Allen SP, Chester AH, Yacoub MH. Contrasting effects of platelet-derived growth factor (PDGF) isomers on mitogenesis, contraction and intracellular calcium concentration in human vascular smooth muscle. Acta Physiol Scand 1998; 164: 191–199.

    PubMed  CAS  Google Scholar 

  77. Hajjar KA, Jacovina AT, Checko J. An endothelial cell receptor for plasminogen/tissue plasminogen activator. J Biol Chem 1994; 269: 21191–21194.

    PubMed  CAS  Google Scholar 

  78. Hanley SP, Bevan J. Inhibition by aspirin of human arterial and venous prostacyclin synthesis. Prostaglandin Leukotriene Med 1985; 20: 141–149.

    CAS  Google Scholar 

  79. Harrison DG, Sayegh H, Ohara Y, Inoue N, Venema RC. Regulation of expression of the endothelial cell nitric oxide synthase. Clin Exp Pharmacol Physiol 1996; 23: 251–255.

    PubMed  CAS  Google Scholar 

  80. Harrison DG. Endothelial function and oxidant stress. Clin Cardiol 1997; : II11–17.

    Google Scholar 

  81. Higazi AA-R, Mazar A, Wang J, Reilly R, Henkin J, Kniss D, Cines D. Single chain urokinase-type plasminogen activator bound to its receptor is relatively resistant to plasminogen activator inhibitor type I. Blood 1996; 269: 3545–3549.

    Google Scholar 

  82. Hodgkinson JL, El-Mezgueldi M, Craig R, Vibert P, Marston SB, Lehman W. 3-D image reconstruction of reconstituted smooth muscle thin filaments containing calponin: visualization of interactions between F-actin and calponin. J Mol Biol 1997; 273: 159–169.

    Google Scholar 

  83. Hoebel BG, Steyrer E, Graier WF. Origin and function of epoxyeicosatrienoic acids in vascular endothelial cells: more than just endothelium-derived hyperpolarizing factor? Clin Exp Pharmacol Physiol 1998; 25: 826–830.

    PubMed  CAS  Google Scholar 

  84. Holt CM, Francis SE, Newby AC, Rogers S, Gadson PA, Taylot T, Angelini GD. Comparison of response to injury in organ culture of human saphenous vein and internal mammary artery. Ann Thorac Sure 1993; 55: 1522–1528.

    CAS  Google Scholar 

  85. Ignarro LJ. Biological actions and properties of endothelium-derived nitric oxide formed and released from artery and vein. Circ Res 1982; 65: 1–21.

    Google Scholar 

  86. Ignarro LJ, Buga GM, Chaudhuri G. EDRF generation and release from perfused bovine pulmonary artery and vein. Eur J Pharmacol 1988; 149: 79–88.

    PubMed  CAS  Google Scholar 

  87. Ignarro LJ, Heme-dependent activation of guanilate-cyclase by nitric oxide: a novel signal transduction mechanism, Blood Vessels 1991; 28: 67–73.

    PubMed  CAS  Google Scholar 

  88. Izzat MB, Mehta D, Bryan AJ, reeves B, Newby AC, Angelini GD. Influence of external stent size on early medial and neointimal thickening in a pig model of saphenous vein bypass grafting. Circulation 1996; 94: 1741–1745.

    PubMed  CAS  Google Scholar 

  89. Jaffe EA. Culture of human endothelial cells from umbilical cord vein: identification by morphologic and immunologic criteria. J Clin Invest 1973; 52: 2745–2756.

    PubMed  CAS  Google Scholar 

  90. Jin JP; Walsh MP; Sutherland C; Chen W. A role for serine-175 in modulating the molecular conformation of calponin, Biochem J 2000; 350: 579–88.

    PubMed  CAS  Google Scholar 

  91. Johnson JL, van Eys GJJM, Angelini GD, George SJ. Injury induces dedifferentiation of smooth muscle cells and increased matrix-Odegrading metalloproteinase activity in human saphenous vein. Arterioscl Thromb Vasc Biol 2001; 21: 1146–1152.

    PubMed  CAS  Google Scholar 

  92. Kanthou C, Benzakour O. Cellular effects of thrombin and their signaling pathways. 1995;2:293–298.

    CAS  Google Scholar 

  93. Katusic ZS, Vanhoutte PM. Superoxide anion is an endothelium-derived contracting factor. Am J Physiol 1989; 257: H33–37.

    PubMed  CAS  Google Scholar 

  94. Kirkpatrick CJ, Bittinger F, Unger RE, Kriegsmann J, Kilbinger H, Wessler I. The non-neuronal cholinergic system in the endothelium: evidence and possible pathobiological significance. Jpn J Pharmacol 2001; 85: 24–28 (abstract).

    PubMed  CAS  Google Scholar 

  95. Kockx MM, Knaapen MW, Bortier HE, Cromheeke KM, Boutherin-Falson O, Finet M. Vascular remodeling in varicose veins. Angiology 1998; 49:871–877.

    PubMed  CAS  Google Scholar 

  96. Komori K, Vanhoutte PM. Endothelium-derived hyperpolarizing factor. Blood Vessels 1990;27:238–245.

    PubMed  CAS  Google Scholar 

  97. Kroll MH, Heliums JD, Mclntire LV, Schafer AI, Moake JL. Platelets and shear stress. Blood 1996; 88: 1525–1541.

    PubMed  CAS  Google Scholar 

  98. Kumar S, West DC, Ager A. Heterogeneity in endothelial cells from large vessels and microvessels. Differentiation 1987; 36: 57–70.

    PubMed  CAS  Google Scholar 

  99. Kureishi Y, Ito M, Feng J, Okinaka T, Isaka N, Nakano T. Regulation of Ca2+-independent smooth muscle contraction by alternative staurosporine-sensitive kinase, Eur J Pharmacol 1999; 376: 315–320.

    PubMed  CAS  Google Scholar 

  100. Lampugnani MG, Dejana E. Interendothelial junctions: structure, signaling and functional roles. Curr Opin Cell Biol 1997; 9: 674–682.

    PubMed  CAS  Google Scholar 

  101. Lehman W, Vibert P, Craig R. Vizualization of caldesmon on smooth muscle thin filaments. J Mol Biol 1997; 274: 310–317.

    PubMed  CAS  Google Scholar 

  102. Levin EG, Santell L. Thrombin-and histamine-induced signal transduction in human endothelial cells. Stimulation and agonist-dependent desensitization of protein phosphorylation. J Biol Chem 1991; 266: 174–181

    PubMed  CAS  Google Scholar 

  103. Levin EG, Osborn KG. The expression of endothelial cell tissue plasminogen activator in vivo: A function defined by vessel size and anatomic location. J Cell Sci 1997; 11: 139–148

    Google Scholar 

  104. Lin MC, Almusjacobs F, Chen HH, Parry GCN, Mackman N, Shyy JYJ. Atherosclerosis, thrombosis, gene expression, hemodynamics, signal transduction: Shear stress induction of the tissue factor gene. J Clin Invest 1997; 99: 737–744

    PubMed  CAS  Google Scholar 

  105. Liu ZG; Ge ZD; He GW. Difference in endothelium-derived hyperpolarizing factor-mediated hyperpolarization and nitric oxide release between human internal mammary artery and saphenous vein. Circulation 2000; 102: III296–301

    Google Scholar 

  106. Loskutoff DJ, Sawdy M, Mimuro J. “Type 1 plasminogen activator inhibitor.” In Progress in Hemostasis and Thrombosis. Coller BS, ed. Saunders 1989: 87–99

    Google Scholar 

  107. Lowell RC, Gloviczki P, Miller VM, In vitro evaluation of endothelial and smooth muscle function of primary varicose veins, J Vasc Surg 1992; 16: 679–86

    PubMed  CAS  Google Scholar 

  108. Lu D, Kalafatis M, Mann KG, Long GL. Comparison of activated protein C/protein S-mediated inactivation of human factor VIII and factor V. Blood 1996; 87: 4708–4717

    PubMed  CAS  Google Scholar 

  109. Lüscher TF, Yang Z, Tschudi M, von Segesser L, Stulz P, Boulanger C, Siebenmann R, Turina M, Bühler FR. Interaction between endothelin-1 and endothelium-derived relaxing factor in human arteries and veins, Circ Res 1990; 66:1088–1094

    PubMed  Google Scholar 

  110. Lüscher TF. Vascular biology of coronary bypass grafts. Coronary Artery Disease 1992; 3:157–165

    Google Scholar 

  111. Maigaard S, Forman A, Andersson KE. Differential effects of angiotensin, vasopressin, and oxytocin on various smooth muscle tissues within the human uteroplacental unit. Acta Physiol Scand 1986; 128: 23–31

    PubMed  CAS  Google Scholar 

  112. Malik AB, Lo SK. Vascular endothelial adhesion molecules and tissue inflammation. Pharm Rev 1996; 48: 213–233

    PubMed  CAS  Google Scholar 

  113. Malek AM, Greene AL, Izumo S. Regulation of endothelin 1 gene by fluid shear stress is transcriptionally mediated and independent of protein kinase C and cAMP. Proc Natl Acad Sci USA. 1993; 90: 5999–6003

    PubMed  CAS  Google Scholar 

  114. Manchanda N, Schwartz BS. Single chain urokinase. Augmentation of enzymatic activity upon binding to monocytes. J Biol Chem 1991; 266:14580–14584.

    PubMed  CAS  Google Scholar 

  115. Mann KG. Thrombosis: theoretical considerations. Am J Clin Nutr 1997; 65(suppl. 5): 1675S–1664S

    Google Scholar 

  116. Mann MJ, Gibbons GH, Kernoff RS, Diet FP, Tsao PS, Cooke JP, Kaneda Y, Dzau VJ. Genetic engineering of vein grafts resistant to atherosclerosis. Proc Natl Acad Sci USA. 1995; 92: 4502–4506

    PubMed  CAS  Google Scholar 

  117. Maruyama I. Thrombomodulin, an endothelial anticoagulant: its structure, function and expression. Jpn Circ J 1992; 56: 187–191

    PubMed  CAS  Google Scholar 

  118. Masaki T. Possible role of endothelin in endothelial regulation of vascular tone. Annu Rev Pharmacol Toxicol 1995: 35: 235–255

    PubMed  CAS  Google Scholar 

  119. Masood I, Porter KE, London NJ. Endothelin-1 is a mediator of intimal hyperplasia in organ culture of human saphenous vein. Br J Surg 1997; 84: 499–503

    PubMed  CAS  Google Scholar 

  120. Mehta J, Roberts A. Human vascular tissue produce thromboxane as well as prostacyclin. Am J Physiol 1983; 244: R839–844

    PubMed  CAS  Google Scholar 

  121. Michiels C, Araould T, Remade J. Role de l’hypoxie et des cellules endotheliales dans le developpement des veines variqueuses. Med Sci 1994; 10:845–853

    Google Scholar 

  122. Michiels C, Arnould T, Janssens D, Bajou K, Geron I, Remacle J. Interactions entre les cellules musculaires lisses apres activation par l’hypoxie. Une etiologie possible de la maladie veineuse. Phlebologie 1995; 48: 141–149

    Google Scholar 

  123. Michiels C, Arnould T, Janssens D, Bajou K, Geron I, Remade J. Interactions between endothelial cells and smooth muscle cells after their activation by hypoxia. A possible etiology for venous disease. Int Angiol 1996; 15:124–30

    PubMed  CAS  Google Scholar 

  124. Michiels C, Arnould T, Thibaut-Vercruyssen R, Bouaziz N, Janssens D, Remade J. Perfused human saphenous veins for the study of the origin of varicose veins: role of the endothelium and of hypoxia. Int Angiol 1997; 16:134–141

    PubMed  CAS  Google Scholar 

  125. Mizuno K, Niimura S, Tani SM, Haga H, Inagami T, Fukuchii S. Direct proof for local generation and release of angiotensin II in peripheral human vascular tissue. Am J Hypertens 1991; 4 (suppl): 67S–72S

    PubMed  Google Scholar 

  126. Molderings GJ, Likungu J, Hentrich F, Gothert M. Facilitatory presynaptic angiotensin receptors on the sympathetic nerves of the human saphenous vein and pulmonary artery. Potential involvement in beta-adrenoceptor-mediated facilitation of noradrenaline release. Naunyn Schmiedebergs Arch Pharmacol 1988; 338: 228–233

    PubMed  CAS  Google Scholar 

  127. Molenaar P, Malta E, Jones CR, Buxton BF, Summers RJ. Autoradiographic localization and function of beta-adrenoceptors on the human internal mammary artery and saphenous vein. Br J Pharmacol 1988; 95:225–233

    PubMed  CAS  Google Scholar 

  128. Mombouli J-V, Vanhoutte PM. Endothelium-dependent hyperpolarizing factor(s): updating the unknown. Trends Pharmacol Sci 1997; 18: 252–256

    PubMed  CAS  Google Scholar 

  129. Mombouli J-V, Vanhoutte PM. Endothelial dysfunction: from physiology to therapy. J Moll Cell Cardiol 1999; 31: 61–74

    CAS  Google Scholar 

  130. Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med 1993; 329: 2002–2012.

    PubMed  CAS  Google Scholar 

  131. Morin O, Patry P, Lafleur L. Heterogeneuty of endothelial cells of adult liver rat as resolved by sedimentation velocity and flowcitometry. J Cell Physiol 1984; 119: 327–331

    PubMed  CAS  Google Scholar 

  132. Morita T, Kurihara H, Maemura K, Yoshizumi M, Yazaki Y. Disruption of cytoskeletal structures mediates shear stress-induced endothelin-1 gene expression in cultured porcine aortic endothelial cells. J Clin Invest 1993; 92: 1706–1712

    PubMed  CAS  Google Scholar 

  133. Morita T, Kurihara H, Maemura K, Yoshizumi M, Nagai R, Yazaki Y. Role of Ca2+ and protein kinase C in shear stress-induced actin depolymerization and endothelin 1 gene expression, Circ Res 1994; 75: 630–636

    PubMed  CAS  Google Scholar 

  134. Motwani JG, Topol EJ. Aortocoronary saphenous vein graft disease. Pathogenesis, predisposition, and prevention. Circulation 1998; 97: 916–931

    CAS  Google Scholar 

  135. Moyses C, Cederholm-William SA, Michel CC. Haemoconcentration and accumulation of white cells in the feet during venous stasis. Int J Microcirc Clin Exp 1987;5:311–320

    PubMed  CAS  Google Scholar 

  136. Murad E, Waldman S, Molina C, Bennett B, Leitman D. Regulation and role of guanylate cyclase-cyclic GMP in vascular relaxation. Prog Clin Biol Res 1987; 249: 65–76

    PubMed  CAS  Google Scholar 

  137. Nadasy GL, Szekacs B, Juhasz I, Feher J, Kowach AGB, Monos E., Role of endothelium, oxygen and ionic milieu in the prostacyclin and thromboxane production of rat aortic tissue slices, Acta Physiol Hung 1991; 78: 77–87

    PubMed  CAS  Google Scholar 

  138. Nguyen HC, Grossi EA, LeBoutellier M, Steinberg BM, Rifkin DB, Baumann FG, Colvin SB, Galloway AC. Mammary artery versus saphenous vein grafts: assessment of basic fibroblast growth factor receptors. Ann Thorac Surg 1994; 58: 308–311

    PubMed  CAS  Google Scholar 

  139. Nichols K, Staines W, Rubin S, Krantis A. Distribution of nitric oxide synthase activity in arterioles and venules of rat and human intestine. Am J Physiol 1994; 267: G270–275.

    PubMed  CAS  Google Scholar 

  140. Nilsen EM, Johansen FE, Jahnsen FL, Landin KE, Scholtz T, Brandtzaeg P, Haraldsen G. Cytokine profiles of cultured microvascular endothelial cells from the human intestine. Gut 1998; 42: 635–642

    PubMed  CAS  Google Scholar 

  141. Nishida K, Harrison DG, Navas JP, Fisher A A, Dockery SP, Uematsu M, Nerem RM, Alexander RW, Murphy TJ. Molecular cloning and characterization of the constitutive bovine aortic endothelial cell nitric oxide synthase. J Clin Invest 1992; 90: 1092–2096

    Google Scholar 

  142. Noll G, Luscher TF. The endothelium in acute coronary syndromes. Eur Heart J 1998; 19(suppl. C): C30–C38

    PubMed  CAS  Google Scholar 

  143. Odnljn TM, Francis CW, Sporn LA, Bunce LA, Marder VJ, Simpson-Haidaris PJ. Heparin-binding domain of fibrin mediates its binding to endothelial cells. Arterisocl Thromb Vasc Biol 1996; 16: 1544–1551

    Google Scholar 

  144. Okahara K, Kambayshi J, Ohnishi T, Fujiwara Y, Monden M. Shear stress induces expression of CNP gene in human endothelial cells. FEBS Lett 1995; 373: 108–110

    PubMed  CAS  Google Scholar 

  145. Onho M, Cooke JP, Dzau VJ, Gibbons GH. Fluid shear stress induced endothelial transforming growth factor beta-1 transcription and production: Modulation by potassium channel blockade. J Clin Invest 1995; 95: 1363–1369

    Google Scholar 

  146. Ono T, Bergan JJ, Schmid-Schonbein GW, Takase S. Monocyte infiltration into venous valves. J Vasc Surg 1998; 27: 158–166

    PubMed  CAS  Google Scholar 

  147. Ploplis VA, Carmeliet P, Vazirzadeh S, van Vlaenderen I, Moons L, Plow EF, Collen D. Effects of disruption of the plasminogen gene on thrombosis, growth, and health in mice. Circulation 1995; 92: 2585–2593

    PubMed  CAS  Google Scholar 

  148. Prasad AR, Logan SA, Nerem RM, Schwartz CJ, Sprague EA. Flow-related responses of intracellular inositol phosphate levels in cultured aortic endothelial cells. Circ Res 1993: 72: 822–836

    Google Scholar 

  149. Ranjan V, Waterbury R, Xiao ZH, Diamond SL. Fluid shear stress induction of the transcriptional activator c-fos in human and bovine endothelial cells, HeLa, and Chinese hamster ovary cells. Biotech Bioeng 1996; 49: 383–390

    CAS  Google Scholar 

  150. Rao GN, Berk BC. Active oxygen species stimulate vascular smooth muscle cell growth and proto-oncogene expression. Circ Res 1992; 70: 593–599

    PubMed  CAS  Google Scholar 

  151. Resnick N, Collins T, Atkinson W, Bonthron DT, Dewey CF jr., Gimbrone MAjr. Platelet-derived growth factor B chain promoter contains a cis-acting fluid shear stress-responsive element. Proc Natl Acd Sci USA 1993; 90:4591–4595

    CAS  Google Scholar 

  152. Rizzi A, Quaglio D, Vasquez G, Mascoli F, Amadesi S, Calo G, Regoli D, Zamboni P. Effects of vasoactive agents in healthy and diseased human saphenous veins. J Vasc Surg 1998; 28:855–861

    PubMed  CAS  Google Scholar 

  153. Robert A. Extracellular matrix and vascular pathologies. Role of proteases and oxygenated free radicals. Ann Cardiol Angeiol 1992; 24:A18–23

    Google Scholar 

  154. Robetorye RS, Rodgers GM. Update on selected inherited venous thrombotic disorders. Am J Hematol 2001; 68: 256–268

    PubMed  CAS  Google Scholar 

  155. Rogerson FM, Chai SY, Schlawe I, Murray WK, Marley PD, Mendelsohn FA. Presence of angiotensin converting enzyme in the adventitia of large blood vessels. J Hypertens 1992; 10: 615–620

    PubMed  CAS  Google Scholar 

  156. Roth GJ. Platelets and blood vessels: The adhesion event. Immunol Today 1992; 13: 100–105

    Google Scholar 

  157. Rothermund L, Paul M. The role of endothelin in hypertension. Curr Opin Nephrol Hypertens 1998; 7: 451–456

    PubMed  CAS  Google Scholar 

  158. Roubos N, Rosenfeldt FL, Richards SM, Conyers RAJ, Davis BB. Improved preservation of saphneous grafts by the use of glyceril trinitrate - verapamil solution during harvesting. Circulation 1995; 92(suppl. II): II31–II36

    PubMed  Google Scholar 

  159. Rubanyi GM, Polokoff MA. Endothelins: Molecular Biology, Biochemistry, Pharmacology, Physiology, and Pathophysiology. Pharm Rev 1994; 46: 328–394

    Google Scholar 

  160. Ruggeri Z, Ware J. von Willebrandt factor. FASEB J 1993: 7: 308–312

    PubMed  CAS  Google Scholar 

  161. Saharay M, Shields DA, Georgiannos SN, Porter JB, Scurr JH, Coleridge Smith PD. Endothelial activation in patients with chronic venous disease. Eur J Vasc Endovasc Surg 1998; 15: 342–349

    PubMed  CAS  Google Scholar 

  162. Savineau JP, Marthan R. Modulation of the calcium sensitivity of the smooth muscle contractile apparatus: molecular mechanisms, pharmacological and pathophysiological implications, Fundam Clin Pharmacol 1997; 11: 289–299

    PubMed  CAS  Google Scholar 

  163. Sawdy MS, Loskutoff DJ. Regulation of murine type 1 plasminogen activator inhibitor gene in vivo. Tissue specificity and induction by lypopolysaccharide, tumor necrosis factor-α, and transforming growth factor-β. J Clin Invest 1991; 88: 1346–1342

    Google Scholar 

  164. Schafer AI. Vascular endothelium: In defense of blood fluidity. J Clin Invest 1997; 99: 1143–1152

    PubMed  CAS  Google Scholar 

  165. Schimada K, Matsushita Y, Wakabayashi K, Takahashi M, Matsubara A, Iijima A, Tanzawa K. Cloning and functional expression of endothelin-converting enzyme cDNA. Biochem Biophys Res Commun 1995; 207: 807–812

    Google Scholar 

  166. Schmidt M, Kroger B, Jacob E., Seulberger H, Subkowski T, Otter R, Meyer T, Schmalzing G, Hillen H. Molecular characterization of human and bovine endothelin-converting enzyme (ECE-1). FEBS Lett, 1994; 356: 238–243

    PubMed  CAS  Google Scholar 

  167. Schwartz LB, Radic ZS, O’Donohoe MK, Mikat EM, McCann RL, Hagen PO. Saphenous vein endothelium-dependent relaxation in patients with peripheral vascular disease. Ann Vasc Surg 1996; 6:425–432

    Google Scholar 

  168. Scott HJ, McMullin GM, Coleridge Smith PD, Scurr JH. A histological study into white blood cells and their association with lipodermatosclerosis and ulceration. Br J Surg 1990; 78: 210–211

    Google Scholar 

  169. Seasholtz TM, Majumdar M, Kaplan DD, Brown JH. Rho and Rho kinase mediate thrombin-stimulated vascular smooth muscle cell DNA synthesis and migration. Circ Res 1999; 84: 1186–1193

    PubMed  CAS  Google Scholar 

  170. Shen J, Luscinskas FW, Conolly A, Dewey CF jr., Gimbrone MA jr. Fluid shear stress modulates cytosolic free calcium in vascular endothelial cells. Am J Physiol 1992; 262: C384–390

    PubMed  CAS  Google Scholar 

  171. Shi Y, O’Brien JE Jr, Mannion JD, Morrison RC, Chung W, Fard A, Zalewski A. Remodeling of autologous saphenous vein grafts: the role of perivascular myofibroblasts. Circulation 1997; 95: 2684–2693

    PubMed  CAS  Google Scholar 

  172. Shields DA, Andaz S, Abeysinghe RD, Porter JB, Scurr JH, Coleridge Smith PD. Plasma lactoferrin as a marker of white cell degranulation in venous disease. Phlebology 1994; 9:55–58

    Google Scholar 

  173. Shields DA, Andaz SK, Sarin S, Scurr JH, Coleridge Smith PD. Plasma elastase in venous disease. Br J Surg 1994; 81:1496–1499.

    PubMed  CAS  Google Scholar 

  174. Shimizu S, Ishii M, Yamamoto T, Kawanishi T, Momose K, Kuroiwa Y. Bradykinin induces generation of reactive oxygen species in bovine aortic endothelial cells. Res Commun Chem Pathol Pharmacol 1994; 84: 301–314

    PubMed  CAS  Google Scholar 

  175. Shimokawa H. Primary Endothelial Dysfunction: Atherosclerosis. J Mol Cell Cardiol 1999;31:23–37

    PubMed  CAS  Google Scholar 

  176. Shireman PK, McCarthy WJ, Pearce WH, Shively VP, Cipollone M, Kwaan HC, Yao JST. Plasminogen activator levels are influenced by location and varicosity in greater saphenous vein. J Vasc Surg 1996; 24: 719–724

    PubMed  CAS  Google Scholar 

  177. Simionescu N, Simionescu M. “The cardiovascular system.” In Cell and Tissue. A Textbook of Histology,6th edition. Weiss L.,ed. Urban and Schwartzenberg, Baltimore and Munich, 1988; 353–401

    Google Scholar 

  178. Somlyo AP, Somlyo AV. “Smooth Muscle Structure and Function.” In The Heart and Cardiovascular System. Scientific Foundations,2nd edition. Fozzard HA, Haber E, Jennings RB, Katz AM, Morgan HE, ed. Raven Press New York, 1991; 845–864

    Google Scholar 

  179. Somlyo AP, Somlyo AV. Signal transduction and regulation in smooth muscle, Nature 1994,372: 231–236

    PubMed  CAS  Google Scholar 

  180. Somlyo AP. Kinases, myosin phosphatases and Rho proteins: curioser and curioser. J Physiol 1999; 516: 630

    PubMed  CAS  Google Scholar 

  181. Somlyo AP, Somlyo AV. Signal transduction by G-proteins, Rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. J Physiol 2000; 522: 177–185

    PubMed  CAS  Google Scholar 

  182. Subramanian VA, Hernandez Ym Tack-Goldman K, Grabowski EF, Weksler BB. Prostacyclin production by internal mammary artery as a factor in coronary artery bypass grafts. Surgery 1986; 100: 376–380

    PubMed  CAS  Google Scholar 

  183. Swerlick RA, Garcia-Gonzalez E, Kubota Y, Xu Y, Lawley TJ. Studies of the modulation of MHC antigen and cell adhesion molecule expression on human dermal microvascular endothelial cells. J Invest Dermatol 1991; 97: 190–196

    PubMed  CAS  Google Scholar 

  184. Swerlick RA, Lee KH, Wick TM, Lawley TJ. Human dermal microvascular endothelial but not human umbilical vein endothelial cells express CD36 in vivo and in vitro. J Immunol 1992; 148: 78–83

    PubMed  CAS  Google Scholar 

  185. Taborek M, Kaiser S. Endothelial cells functions. Relationship to atherogenesis. Basic Res Cardiol 1999; 94: 295–314

    Google Scholar 

  186. Thomas PR, Nash GB, Dormandy JA. White cell accumulation in dependent legs of patients with venous hypertension: a possible mechanism for trophic changes in the skin. Br Med J 1988; 27: 1693–1695

    Google Scholar 

  187. Timmermanns PB, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, Lee RJ, Wexler RR, Saye JA, Smith RD. Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev 1993; 45: 205–251

    Google Scholar 

  188. Topper JN, Cai J, Falb D, Gimbrone MA jr. Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: cyclooxygenase-2, manganese superoxide dismutase, endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress. Proc Natl Acad Sci USA 1996; 93: 10417–10422

    PubMed  CAS  Google Scholar 

  189. Touyz RM, Schiffrin EL. Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol Rev 2000; 52: 639–672

    PubMed  CAS  Google Scholar 

  190. Vallance P, Collier J, Moncada S. Nitric oxide synthesized from L-arginine mediates endothelium dependent dilation in human veins in vivo. Cardiovasc Res 1989, 23: 1053–1057

    PubMed  CAS  Google Scholar 

  191. Vanhoutte PM. Endothelial dysfunction and atherosclerosis. Eur Heart J. 1997; 18: E19–29

    PubMed  Google Scholar 

  192. Veraart JC, Verhaegh ME, Neumann HA, Hulsmans RF, Arends JW. Adhesion molecule expression in venous leg ulcers. Vasa 1993; 22: 213–218.

    PubMed  CAS  Google Scholar 

  193. Verrier ED, Boyle E. Endothelial cell injury in cardiovascular surgery. Ann Thorac Surg 1996; 62: 915–922

    PubMed  CAS  Google Scholar 

  194. Vlot AJ, Koppelman SJ, Bouma BN, Sixma JJ. Factor VIII and von Willebrandt factor. Thromb Haemost 1998; 79: 456–465

    CAS  Google Scholar 

  195. Walker LA, Gailly P, Jensen PE, Somlyo AV, Somlyo AP. The unimportance of being (protein kinase C) epsilon. FASEB J 1998; 12: 813–821

    PubMed  CAS  Google Scholar 

  196. Walsh MP. Regulation of vascular smooth muscle tone. Can J Physiol Pharmacol 1994; 72: 919–936

    PubMed  CAS  Google Scholar 

  197. Webb DJ, Benjamin N, Cockcroft JR, Collier JG. Augmentation of sympathetic venoconstriction by angiotensin II in human dorsal hand veins. Am J Hypertens 1989; 2: 721–723

    PubMed  CAS  Google Scholar 

  198. Wechezak AR, Wight TN, Viggers RF, Sauvage LR. Endothelial adherence under shear stress is dependent upon microfilament reorganization. J Cell Physiol 1989; 139: 136–146

    PubMed  CAS  Google Scholar 

  199. Wilkinson LS, Bunker C, Edwards JC, Scurr JH; Coleridge Smith PD. Leukocytes: their role in the etiopathogenesis of skin damage in venous disease. J Vasc Surg. 1993; 17: 669–675.

    PubMed  CAS  Google Scholar 

  200. Wojta J, Hoover RL, Daniel TO. Vascular origin determinates plasminogen activator expression in human endothelial cells. Renal endothelial cells produce large amounts of single chain urokinase type plasminogen activator. J Biol Chem 1989; 264: 2846–2852

    PubMed  CAS  Google Scholar 

  201. Woolkanis MJ, De Melfi TN jr., Blanchard N, Hoxie JA, Brass LF. Regulation of thrombin receptors on HUVECs. J Biol Chem 1995; 270: 9686–9692

    Google Scholar 

  202. Wu X, Haystead TAJ, Nakamoto HK, Somlyo AV, Somlyo AP. Acceleration of myosin light chain dephosphorylation and relaxation of smooth muscle by telokin. J Biol Chem 1998; 273: 11362–11369

    PubMed  CAS  Google Scholar 

  203. Yang JA, He GW. Surgical preparation abolishes endothelium-derived hyperpolarizing factor-mediated hyperpolarization in the human saphenous vein. Ann Thorac Surg 1997: 63: 429–433

    PubMed  CAS  Google Scholar 

  204. Yang Z, Lóscher TF. Basic cellular mechanisms of coronary bypass graft disease. Eur Heart J 1993; 14(suppl I): 193–197

    PubMed  Google Scholar 

  205. Yang Z, Ruschitzka F, Rabelink TJ, Noll G, Julmy F, Joch H, Gafner V, Aleksic I, Althaus U, Luscher TF. Different effects of thrombin receptor activation on endothelium and smooth muscle cells of human coronary bypass vessels: implications for venous bypass graft failure. Circulation 1997; 95: 1870–1876

    PubMed  CAS  Google Scholar 

  206. Yang ZH, Diederich D, Schneider K, Siebenmann R, Stulz P, von Segesser L, Turina M, Bühler FR, Lüscher TF. Endothelium-derived relaxing factor and protection against contractions induced by histamine and serotonin in the human internal mammary artery and in the saphenous vein. Circulation 1989; 80:1041–1048

    PubMed  CAS  Google Scholar 

  207. Yang ZH, Stulz P, von Segesser L., Bauer E, Turina M, Lüscher TF. Different interactions of platelets with arterial and venous coronary bypass vessels. Lancet 1991; 337: 939–943

    PubMed  CAS  Google Scholar 

  208. Yang ZH, von Segesser L., Bauer E, Stulz P, Turina M, L¨¹scher TF. Different activation of the endothelial L-arginine and cyclooxygenase pathway in the human internal mammary artery and saphenous vein, Circ Res 1991; 68:52–60 (abstract)

    PubMed  CAS  Google Scholar 

  209. Ziegelstein RC, Cheng L., Capogrossi MC. Flow-dependent cytosolic acidification of vascular endothelial cells. Science 1992; 258: 656–659

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schneider, F.A., Siska, I.R., Avram, J.A. (2003). Venous Wall - Morphological and Functional Aspects. In: Clinical Physiology of the Venous System. Basic Science for the Cardiologist, vol 15. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9282-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9282-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4874-0

  • Online ISBN: 978-1-4419-9282-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics