Advertisement

Studies on Glomus Cell Sensitivity to Hypoxia in Carotid Body Slices

  • Patricia Ortega-Sáenz
  • María García-Fernández
  • Ricardo Pardal
  • Eleuterio Alvarez
  • José LÓpez-Barneo
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 536)

Abstract

Oxygen sensing is a fundamental biological process present in almost all life forms (for reviews see Bunn and Poyton, 1996; López-Barneo et al., 2001). In mammals, the survival in acute hypoxia requires fast respiratory and cardiocirculatory adjustments to ensure sufficient O2 supply to the most critical organs such as the brain or the heart. The main O2 sensor mediating the acute responses to hypoxia is the carotid body (CB), a minute bilateral organ at the bifurcation of the carotid artery innervated by afferent chemosensory fibers. In conditions of hypoxemia, the CBs stimulate the brainstem respiratory centers to evoke hyperventilation. Glomus, or type I, cells are electrically excitable (Duchen et al., 1988, López-Barneo et al., 1988) and constitute the major O2sensitive elements of the CB (López-Barneo et al., 1988, Delpiano and Hescheler, 1989; Peers 1990; Stea and Nurse, 1991, Buckler, 1997). It is broadly accepted that hypoxia signaling in these cells requires the inhibition of O2- sensitive potassium channels of the plasma membrane, which leads to depolarization, external Ca2+influx, and release of the transmitters that activate the afferent sensory fibers (López- Barneo et al., 1993; Urena et al., 1994; Buckler and Vaughan-Jones, 1994; Carpenter et al., 2000; Pardal et al., 2000). This basic scheme of chemotransduction has also been proposed to operate in other 02-sensitive neurosecretory systems, such as cells in the lung neuroepithelial bodies (Youngson et al., 1993), chromaffin cells of the adrenal medulla (Thompson and Nurse, 1998), or PC-12 cells (Zhu et al., 1996).

Keywords

Nitric Oxide Chromaffin Cell Carotid Body Secretory Response Glomus Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown G.D. and Cooper, C.E. (1994). Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen and cytochrome oxidaseFEBS Lett.356, 295–298.PubMedCrossRefGoogle Scholar
  2. Buckler, K.J. (1997). A novel oxygen-sensitive potassium current in rat carotid body type I cells.1 Physiol498, 649–662.Google Scholar
  3. Buckler, K.J. and Vaughan-Jones, R.D. (1994). Effects of hypoxia on membrane potential and intracellular calcium in rat neonatal carotid body type I cells.J. Physiol476, 423–428.PubMedGoogle Scholar
  4. Bunn, H.F. and Poyton, R.O. (1996). Oxygen sensing and molecular adaptations to hypoxia.Physiol Rev.76, 839–885.PubMedGoogle Scholar
  5. Carpenter, E., Hatton, C.J. and Peers, C. (2000). Effects of hypoxia and dithionite on catecholamine release from isolated type I cells of the rat carotid body.J. Physiol523, 719–729.PubMedCrossRefGoogle Scholar
  6. Chugh, D.K., Katayama, M., Mokashi, A., Bebout, D.E., Ray, D.K. and Lahiri, S. (1994). Nitric oxide-related inhibition of carotid chemosensory nerve activity in the cat.Respir. Physiol97, 147–156.PubMedCrossRefGoogle Scholar
  7. Cleeter, M.W., Cooper, J.M., Darley-Usmar, V.M., Moncada, S. and Schapira, A.H. (1994). Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases.FEBS Lett.345, 50–54.PubMedCrossRefGoogle Scholar
  8. Clementi, E., Brown, G.C., Foxwell, N. and Moncada, S. (1999). On the mechanism by which vascular endothelial cells regulate their oxygen consumption.Proc. Natl Acad. Sci. USA96, 1559–1562.PubMedCrossRefGoogle Scholar
  9. Delpiano, M.A. and Hescheler, J. (1989). Evidence for a PO2-sensitive K+channel in the type-I cell of the rabbit carotid body.FEBS Lett.249, 195–198.PubMedCrossRefGoogle Scholar
  10. Duchen, M.R., Caddy, K.W.T., Kirby, G.C., Patterson, D.L., Ponte, J. and Biscoe, T.J. (1988). Biophysical studies of the cellular elements of the rabbit carotid body.Neurosci.26, 291–311.CrossRefGoogle Scholar
  11. Fung, M.L., Ye, J.S. and Fung. P.C.W. (2001). Acute hypoxia elevates nitric oxide generation in rat carotid body in vitro.Pfliigers Arch. Eur. J. Physiol.442, 903–909.CrossRefGoogle Scholar
  12. Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Asara, J.M., Lane, W.S. and Kaelin, W.G. (2001). HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2sensing.Science292, 464–468PubMedCrossRefGoogle Scholar
  13. Jaakola, P., Mole, D.R., Tian, Y-M., Wilson, M.I., Gielbert, J., Gaskell, S.J., Von Kriegsheim, A., Hebestreit, H.F., Mukherji, M., Schofield, C.J., Maxwell, P.H., Pugh, C.W. and Ratcliffe, P. (2001) Targeting of HIF- to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylationScience292, 468–472.CrossRefGoogle Scholar
  14. Kline, D.D., Peng, Y.J., Manalo, D.J., Semenza, G.L., Prabhakar, N.R.. (2002). Defective carotid body function and impaired ventilatory responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1 alpha.Proc. Natl. Acad. Sci. USA.99, 821–826.PubMedCrossRefGoogle Scholar
  15. Lahiri, S., Roy, A., Rozanov, C., Mokashi, A. (1998). K+-current modulated by PO2in type I cells in rat carotid body is not a chemosensor.Brain Res.794, 162–165.PubMedCrossRefGoogle Scholar
  16. Lando, D., Peet, D.J., Whelan, D.A., Gorman, J.J. and Whitelaw, M.L. (2002) Asparragine hydroxilation of the HIF transactivation domain: a hypoxic swithScience295, 858–861PubMedCrossRefGoogle Scholar
  17. López-Barneo, J., Lopez-López, J. R., Ureña, J., González, C. (1988). Chemotransduction in the carotid body: K+current modulated by PO2in type I chemoreceptor cells.Science 242, 580–582. CrossRefGoogle Scholar
  18. López-Barneo, J., Benot, A.R., Ureña, J. (1993). Oxygen sensing and the electrophysiology of arterial chemoreceptor cells.News Physiol Sci.8, 191–195.Google Scholar
  19. López-Barneo, J., Pardal, R., Ortega-Sáenz, P. (2001). Cellular mechanisms of oxygen sensing.Annu. Rev. Physiol63, 259–287.PubMedCrossRefGoogle Scholar
  20. López-López, J.R., González, C., Pérez-García, M.T. (1997). Properties of ionic currents from isolated adult rat carotid body chemoreceptor cells: effect of hypoxia.J. Physiol..499, 429–441.PubMedGoogle Scholar
  21. Pardal, R., Ludewig, U., García-Hirschfeld, J., López-Barneo, J. (2000). Secretory responses of intact glomus cells in thin slices of rat carotid body to hypoxia and tetraethylammonium.Proc. Natl. Acad. Sci. USA97, 2361–2366.PubMedCrossRefGoogle Scholar
  22. Peers, C. (1990). Hypoxic suppression of K+currents in type I carotid body cells: selective effect on the Ca2+-activated K+current.Neurosci. Lett.119, 253–256.PubMedCrossRefGoogle Scholar
  23. Prabhakar, N.R. (1999). NO and CO as second messengers in oxygen sensing in the carotid body.Respir. Physiol.115, 161–168.PubMedCrossRefGoogle Scholar
  24. Semenza, G.L. (2001) HIF-1 and mechanisms of hypoxia sensing. Curr. Opin. Cell Biol.13, 167–171PubMedCrossRefGoogle Scholar
  25. Schweitzer, M. and Richter, C. (1994). Nitric oxide potently and reversibly deenergizes mitochondria at low oxygen tension.Biochem. Biophys. Res. Commun.204, 169–175.CrossRefGoogle Scholar
  26. Stea, A., Nurse, C.A. (1991). Whole-cell and perforated-patch recordings from 02-sensitive rat carotid body cells grown in short-and long-term culture.Pflügers Arch. Eur. J. Physiol. 418, 93–101.CrossRefGoogle Scholar
  27. Thompson, R.J., Nurse, C.A. (1998). Anoxia differentially modulates multiple K currents and depolarizes neonatal rat adrenal chromaffin cells.J. Physiol.512, 421–434.PubMedCrossRefGoogle Scholar
  28. Trzebski, A., Sato, Y., Suzuki, A. and Sato, A. (1995). Inhibition of nitric oxide synthesis potentiates the responsiveness of carotid chemoreceptors to systemic hypoxia in the rat.Neurosci. Lett.190, 29–32.PubMedCrossRefGoogle Scholar
  29. Ureña, J., Fernández-Chacón, R., Benot, A.R., álvarez de Toledo, G., López-Barneo, J. (1994). Hypoxia induces voltage-dependent Ca2+entry and quantal dopamine secretion in carotid body glomus cells.Proc. Natl. Acad. Sci. USA91, 10208–10211.PubMedCrossRefGoogle Scholar
  30. Wang, Z.Z., Stensaas, L.J., Bredt, D.S., Dinger, B. and Fidone, S.J. (1994). Localization and actions of nitric oxide in the cat carotid body.Neurosci.60, 275–286.CrossRefGoogle Scholar
  31. Wyatt, C.N., Peers, C. (1995). Ca+2-activated K+channels in isolated type I cells of the neonatal rat carotid body.J. Physiol.483, 559–565.PubMedGoogle Scholar
  32. Youngson, C, Nurse, C, Yeger, H., Cutz, E. (1993). Oxygen sensing in airway chemoreceptors.Nature365, 153–155.PubMedCrossRefGoogle Scholar
  33. Zhu, W.H., Conforti, L., Czyzyk-Krzeska, M.F., Millhom, D.E. (1996). Membrane depolarization in PC-12 cells during hypoxia is regulated by an 02-sensitive K+current.Am. J. Physiol.271, C658–C665.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Patricia Ortega-Sáenz
    • 1
  • María García-Fernández
    • 1
  • Ricardo Pardal
    • 1
  • Eleuterio Alvarez
    • 1
  • José LÓpez-Barneo
    • 1
  1. 1.Laboratorio de Investigaciones Biomédicas Hospital Universitario Virgen del RocíoUniversidad de SevillaSevilleSpain

Personalised recommendations