Chemoreception pp 603-610 | Cite as

Carotid Body HIF-1α, VEGF and NOS Expression during Aging and Hypoxia

  • Camillo Di Giulio
  • Giuseppina Bianchi
  • Marisa Cacchio
  • M. A. Macrì
  • G. Ferrero
  • C. Rapino
  • V. Verrattiv
  • M. Piccirilli
  • L. Artese
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 536)

Abstract

Carotid body (CB) undergoes several morphological, physiological and biochemical changes during aging, hypoxia and hyperoxia (Di Giulioet al., 1998; Lahiriet al., 1990; Lahiri et al.,2000). CB releases several substances like dopamine, acetilcholine, nerpinephrine, erythropoietin, substance P, and it detects pO2 and pCO2 levels in the blood, it regulates ventilation according to oxygen needs and body requirements for homeostasis maintenence (Bunnet al., 1996). The ventilatory response to hypoxia is characterised by increase in volume and ventilatory frequency in relation to the degree of hypoxia. This response is attenuated with aging (Fukuda 1992) and it is related to the age-dependent structures and function modifications (Guenard 1998), including the basal reduction of oxygen requirements (Sohalet.al,1986, Gunnarsson et al, 1996).

Keywords

Toxicity Sucrose Dioxide Acetone Dopamine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bredt, D.S., Hwang, P.M., Snyder, S.H., 1990, Localization of nitric oxide synthase indicating a neuronal role for nitric oxide. Nature 347: 768.PubMedCrossRefGoogle Scholar
  2. Bunn, H.F., Poyton, R.O., 1996, Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev. 76:839–885.PubMedGoogle Scholar
  3. Cerretelli, P., and Hoppeler, H., 1996, Morphological and metabolic response to chronic hypoxia: the muscle system. Handbook of Physiology -Environment Physiology 50: 1155–1181.Google Scholar
  4. Di Giulio, C, Di Muzio, M., Sabatino, G., Spoletini, L., Amicarelli, F., Di Ilio, C., and Modesti, A., 1998, Effect of chronic hyperoxia on young and old rat carotid body ultrastructure. Exp Gerontol. 33: 319–329.PubMedCrossRefGoogle Scholar
  5. Di Giulio, C., Grilli, A., Ciocca, L, Macrì, M.A., Daniele, F., Sabatino, G., Cacchio, M., Da Porto, R., Di Natale, F., and Felaco, M., 2000, Carotid body NO-CO interaction and chronic hypoxia. In Oxygen sensing: Molecule to Man (S. Lahiri, N.R. Prabhakar, R.E. Forster, eds.), Kluver Press, New York, pp.685–690.Google Scholar
  6. Finkel, T., and Holbrook, N.J., 2000, Oxidants, oxidative stress and the biology of ageing. Nature 408: 239–247.PubMedCrossRefGoogle Scholar
  7. Fukuda, Y., 1992, Changes in ventilatory response to hypoxia in the rat during growth and aging. Pflügers Arch. 421: 200–203.PubMedCrossRefGoogle Scholar
  8. Guenard, H., 1998, Respiration and aging. Rev Mal Respir. 15: 713–721.PubMedGoogle Scholar
  9. Gunnarsson, L., Tokics, L., Brsmar, B., and Hedenstierna, G., 1996, Influence of age on circulation and arterial blood gases in man. Acta Anaesthesiol Scand. 40: 237–243.PubMedCrossRefGoogle Scholar
  10. Habeck, J.O., Huckstorf, C, and Behm, R., 1988, The paraganglia within the carotid bifurcation regions of young and old spontaneously hypertensive rats (SHR) after exposure to chronic hypobaric hypoxia. I. The carotid bodies. Anat. Anz. 165: 45–54.PubMedGoogle Scholar
  11. Iyer, N.V., Kotch, L.E., Agani, F., Leung, S.W., Laughner, E., Wenger, R.H., Gassmann, M., Gearhart, J.D., Lawer, A.M., Yu, A.Y., Semenza, G.L., 1998, Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1-α . Genes Dev. 12: 149–162.PubMedCrossRefGoogle Scholar
  12. Jamieson, D.,1989, Oxygen toxicity and reactive oxygen metabolites in mammals. Free Radic. Biol. Med. 7: 87–108.PubMedCrossRefGoogle Scholar
  13. Lahiri, S., Mulligan, E., Andronikou, S., Shirahata, M, and Mokashi, A., 1987, Carotid body chemosensory function in prolonged normobaric hyperoxia in the cat. J. Appl. Physiol. 62(5): 1924–1931.PubMedGoogle Scholar
  14. Lahiri, S., Mokashi, A., Di Giulio, C, Sherpa, A.K., Huang, W.X., and Data, P.G.,1990, Carotid body adaptation: Lesson from chronic stimuli. In Hypoxia: The Adaptations (J.R. Sutton, G. Coates, J.E. Remmers and B.C. Dekker, eds.), Philadelphia, pp. 127–130.Google Scholar
  15. Lahiri, S., Rozanov, C, and Cherniack, N.S., 2000, Altered structure and function of the carotid body at high altitude and associated chemoreflexes. High Altitude Medic. & Biol 1:63–74.CrossRefGoogle Scholar
  16. Lahiri, S., Di Giulio, C, and Roy, A., 2002, Lesson from chronic intermittent and sustained hypoxia Respir Physiolo. and Neurobiol. 130: 223–233.CrossRefGoogle Scholar
  17. Loeppky, J.A., Scotto, P., Charlton, G.C., Gates, L., Icenogle, M., Roach , R.C., 2001, Ventilation is greater in women than men, but the increase during acute hypoxia is the same. Respir. Physiol. 125: 225–237.PubMedCrossRefGoogle Scholar
  18. Martinelli, M., Winterhalder, R., Cerretelli, P., Howald, H., and Hoppeler, H., 1990, Muscle lipofuscin content and satellite cell volume is increased after high altitude exposure in humans. Experientia 46: 672–676.PubMedCrossRefGoogle Scholar
  19. Prabhakar, N.R., Fields, R.D., Baker, T., Fletcher, E.C., 2001, Intermittent hypoxia: cell to system. Am. J. Physiol. Lung Cell Mol. Physiol. 281: 524–528.Google Scholar
  20. Richmonds, C.R., Boonyapisit, K., Kusner L.L., and Kaminski, H.J., 1999, Nitric oxide synthase in aging rat skeletal muscle. Mech. Ageing Dev. 109: 177–189.PubMedCrossRefGoogle Scholar
  21. Rivner, M.H., Swift, T.R., Malik, K., 2001, Influence of age and height on nerve conduction. Muscle & Nerve 24: 1134–1141.CrossRefGoogle Scholar
  22. Schmidt, W., 2002, Effect of Intermittent Exposure to High altitude on blood volume and erythropoietic activity. High Altitude Medic. & Biol. Vol.3: 167–176.CrossRefGoogle Scholar
  23. Sohal, R.S., Toy, P.L., and Allen, R.G., 1986, Relationship between life expectancy, endogenous antioxidants and products of oxygen free radical reactions in the housefly, musca domestica. Mech. Aging Dev. 36: 71–77.PubMedCrossRefGoogle Scholar
  24. Soliz, J.V., Pequignot, J., Sempre, B., Cottet-Emard, J.M., Dalmaz ,Y., Favier, R.,Spielvogel, H., Pequignot, J.M., 2000, Gender differentiation on the chemoreflex during growth at high altitude: functional and neurochemical studies. Am J. Physiol. Regul Integr. Comp. Physiol. 278: 806–816.Google Scholar
  25. Trounce, I., Byrne, E., and Marzuki, S., 1989, Decline in skeletal muscle mitochondrial respiratory chain function: possible factor in aging. Lancet 8639: 637–639.CrossRefGoogle Scholar
  26. Trubiani, O., Di Giulio, C, Tripodi, D., Bianchi, G., Paganelli, R., and Di Primio, R., 2002, Thymic sensitivity to hypoxic condition in young and old rats: Age-dependent expression of NF-KappaB. Exp. Gerontol. 37: 1077–1088.PubMedCrossRefGoogle Scholar
  27. Wickens, A.P., 2001, Ageing and the free radical theory. Respir. Physiol. 128: 379–391.PubMedCrossRefGoogle Scholar
  28. Zakrewicz, A., Secomb, T.W., Pries, A.R., 2001, Angioadaptation: keeping the vascular system in shape. News Physiol. Sci. 17: 197–201.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Camillo Di Giulio
    • 1
    • 2
  • Giuseppina Bianchi
    • 1
    • 2
  • Marisa Cacchio
    • 1
    • 2
  • M. A. Macrì
    • 1
    • 2
    • 3
  • G. Ferrero
    • 2
  • C. Rapino
    • 2
  • V. Verrattiv
    • 2
  • M. Piccirilli
    • 2
  • L. Artese
    • 2
  1. 1.Department of Biomedical SciencesCentre of Excellence for AgingChieti
  2. 2.Dept. of Odontostomatology“G. d’Annunzio” UniversityChieti
  3. 3.Dept. of Experiment Med. and PatholINFMRomeItaly

Personalised recommendations