Advertisement

Glucose Sensing Cells in the Carotid Body

  • María García-Fernández
  • Patricia Ortega-Sáenz
  • Ricardo Pardal
  • JosÉ LÓpez-Barneo
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 536)

Abstract

As neurons utilize almost exclusively glucose as energy source, brain function depends critically on a steady glucose supply (Martin et al., 1994; Auer et al., 1998). Acute hypoglycemia is counterbalanced by sympathetic activation to increase glucose delivery to blood (Cryer et al., 1981; Cane et al., 1986; Gerich and Campbell, 1988). This homeostatic response is essential for life and particularly important for insulin-treated diabetics, however the underlying mechanisms and site(s) of peripheral blood glucose control remain unknown (Cane et al., 1986; Amiel et al., 1987; Hoffman et al., 1999). Although the existence of glucose-sensitive neurons in the hypothalamus and other areas of the brain is well documented (Biggers et al., 1989; Routh, 2002), there is considerable evidence supporting the existence of peripheral glucose sensors, which are necessary for the proper counterregulatory responses to hypoglycemia. Systemic glucoreceptors have been proposed to exist at the liver, pancreas, portal vein, and carotid bodies (Alvarez-Buylla and Alvarez Buylla, 1988; Donovan et al., 1991; Hevener et al., 2000; Koyama et al., 2000, 2001), nevertheless the physiological role of these glucose sensitive regions is controversial and the glucose sensing cells have not been identified.

Keywords

Carotid Body Secretory Response Glomus Cell Acute Hypoglycemia Sympathoadrenal Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez-Buylla, R. and Alvarez-Buylla, E.R. (1988). Carotid sinus receptors participate in glucose homeostasis. Respir. Physiol. 72, 347–360.PubMedCrossRefGoogle Scholar
  2. Alvarez-Buylla, R. and Alvarez-Buylla, E.R. (1994). Changes in blood glucose concentration in the carotid body sinus modify brain glucose retention. Brain Res. 654, 167–170.PubMedCrossRefGoogle Scholar
  3. Amiel, S. A., Tamborlane, W. V., Simonson, D. C. and Sherwin, R.S. (1987). Defective glucose counterrregulation after strict glycemic control of insulin-dependent diabetes mellitus. N. Eng. J.Med. 316, 1376–1383.CrossRefGoogle Scholar
  4. Auer, R. N. (1998). Insulin, blood glucose levels, and ischemic brain damage. Neurology Suppl 3, S39–43.CrossRefGoogle Scholar
  5. Biggers, D. W., Myers, S. R., Neal, D., Stinson, R., Cooper, N. B., Jaspan, J. B., Williams, P. E., Cherrington, A. D. and Frizzell, R. T., (1989). Role of brain in counterregulation of insulin-induced hypoglycemia in dogs. Diabetes 38, 7–16.PubMedCrossRefGoogle Scholar
  6. Cane, P., Artal, R. and Bergman, R. N. (1986). Putative hypothalamic glucoreceptors play no essential role in the response to moderate hypoglycemia. Diabetes 35, 268–277.PubMedCrossRefGoogle Scholar
  7. Cryer, P. E. (1981). Glucose counterregulation in man. Diabetes 30, 261–264.PubMedGoogle Scholar
  8. Donovan, C. M., Halter, J. B., and Bergman, R. N., (1991). Importance of hepatic glucoreceptors in sympathoadrenal response to hypoglycemia. Diabetes 40, 155–158.PubMedCrossRefGoogle Scholar
  9. Donovan, C. M., Hamilton-Wessler, M., Halter, J. B. and Bergman, R. N. (1994). Primacy of liver glucosensors in the sympathetic response to progressive hypoglycemia. Proc. Natl. Acad. Sci.’USA 91,2863–2867CrossRefGoogle Scholar
  10. Dunn-Meynell, A. A., Routh, V. H., Gaspers, L- and Levin, B. E. (2002). Glucokinase is the likely mediator of glucosensing in both glucose-excited and glucose-inhibited central neurons.Diabetes 51, 2056–2065.PubMedCrossRefGoogle Scholar
  11. Gerich, J. E., and Campbell, PJ. (1988). Overview of counterregulation and its abnormalities in diabetes mellitus and other conditions. Diabetes Metab Rev. 4, 93–111.PubMedCrossRefGoogle Scholar
  12. Hevener, A. L., Bergman, R. N., and Donovan, CM. (1997). Novel glucosensor for hypoglycemic detection localized to the portal vein. Diabetes 46, 1521–1525.PubMedCrossRefGoogle Scholar
  13. Hevener, A. L., Bergman, R. N. and Donovan, CM. (2000). Portal vein afferents are critical for the sympathoadrenal response to hypoglycemia. Diabetes 49, 8–12.PubMedCrossRefGoogle Scholar
  14. Hoffman, R. P., Hausberg, M., Sinkey, C. A. and Anderson, E.A. (1999). Hyperglycemia without hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans. J. Diabetes Comp. 13, 17–22.CrossRefGoogle Scholar
  15. Koyama, Y., Coker, R. H., Stone, E. E., Lacy, D. B., Jabbour, K., Williams, E. and Wasserman, D.H. (2000). Evidence that carotid bodies play an important role in glucoregulation in vivo.Diabetes 49, 1434–1442.PubMedCrossRefGoogle Scholar
  16. Koyama, Y., Coker, R. H., Denny, J., Lacy, D. B., Jabbour, K., Williams, E. and Wasserman, D. H. (2001). Role of carotid bodies in the control of the neuroendocrine response to exercise. Am. J.Physiol. Endocrinol. Metab. 281, E742–E748.Google Scholar
  17. López-Barneo, J., Pardal, R.. and Ortega-Sáenz, P. (2001). Cellular mechanisms of oxygen sensing. Annu. Rev. Physiol. 63, 259–287.PubMedCrossRefGoogle Scholar
  18. Martín, R. L., Lloyd, H. G. and Cowan, A. I. (1994). The early events of oxygen and glucose deprivation: setting the scene for neuronal death? Trends Neurosci. 17, 251–257.PubMedCrossRefGoogle Scholar
  19. Pardal, R., Ludewig, U., García-Hirschfeld, J. and López-Barneo, J. (2000). Secretory responses of intact glomus cells in thin slices of rat carotid body to hypoxia and tetraethylammonium. Proc.Natl. Acad. Sci. USA 97, 2361–2366.PubMedCrossRefGoogle Scholar
  20. Pardal, R. and López-Barneo, J. (2002). Low glucose-sensing cells in the carotid body. Nat Neurosci. 5, 197–198.PubMedCrossRefGoogle Scholar
  21. Routh, V. H. (2002). Glucose-sensing neurons: Are they physiologically relevant? Physiol. Behav.76,403–413.PubMedCrossRefGoogle Scholar
  22. Ureña, J., Fernandez-Chacón, R., Benot, A. R., álvarez de Toledo, G. and López-Barneo, J. (1994). Hypoxia induces voltage-dependent Ca2+ entry and quantal dopamine secretion in carotid body glomus cells. Proc. Natl. Acad. Sci. USA 91, 10208–1021.PubMedCrossRefGoogle Scholar
  23. Zinker, B. A., Nandaran, K., Wilson, R., Lacy, D. B. and Wasserman, D. H. (1994). Acute adaptation of carbohydrate metabolism to decreased arterial PO2. Am. J. Physiol. 266, E921–E929PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • María García-Fernández
    • 1
  • Patricia Ortega-Sáenz
    • 1
  • Ricardo Pardal
    • 1
  • JosÉ LÓpez-Barneo
    • 1
  1. 1.Laboratorio de Investigaciones BiomédicasHospital Universitario Virgen del RocíoSevilleSpain

Personalised recommendations