Skip to main content

Carotid Body Chemoreceptor Activity in Mice Deficient in Selected Subunits of NADPH Oxidase

  • Conference paper
Book cover Chemoreception

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 536))

Abstract

Exposure of the carotid body to hypoxia elicits increased neural activity in the carotid sinus nerve (CSN), and reflex cardio-pulmonary adjustments which mitigate the adverse effects of hypoxemia. Increased carotid body activity occurs at relatively moderate arterial P02, in contrast to the severe hypoxia required to elicit metabolic and functional adjustments in non-02 sensing tissues (S.J.Fidone et al. 1997). Chemosensory type I cells derived from neuroectoderm are responsible for this exquisite sensitivity, and numerous laboratories have reported that low P02 inhibits the conductance of a variety of voltage sensitive and voltage-insensitive K+-channels in these cells. Yet the molecular mechanism underlying the P02 modulation of cell currents remains uncertain and controversial (H.Acker et al 1994, A.M.Riesco-Fagundo et al2001). Various heme proteins have been proposed as primary O2 sensors, and one set of data in particular suggests the involvement of a multi-component cytochrome b-containing NADPH oxidase which may be similar if not identical to the superoxide generating enzyme commonly found in phagocytic cells (H.Acker et al. 1994) (H.Acker et al. 1994), but the relationship between PO2 and ROS levels in type I cells has not been firmly established. In other cells and tissues hypoxia can increase or decrease ROS production in either mitochondria or via NADPH oxidase (I.O’Kelly et al. 2000, G.B Waypa et al. 2001). In addition, the target of ROS in type I cells is an unknown and critical factor in determining the effect of NADPH oxidase on cell activity. Recent studies have indicated that voltage-sensitive K+-channels in type I cells are modulated by hypoxia via a mechanism independent of soluble factors such as ROS (A.M. Riesco-Fagundo et al. 2001). Thus ROS do not appear to be necessary for cell activation. On the other hand, if hypoxia enhances NADPH oxidase activity, elevated ROS levels may increase the open probability of K+-channels thus facilitating cell repolarization. Such a scheme is consistent with elevated CSN activity in p47phox-gene deleted animals. Clarification of these issues must await future measurements of the effect of hypoxia on NADPH oxidase activity, and evaluation of the interaction of ROS with the chemotransduction machinery in type I cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • H. Acker, 1994 Mechanisms and meaning of cellular oxygensensing in the organism, Respir.Physiol. 95(1):1.

    Article  PubMed  CAS  Google Scholar 

  • S. L. Archer, H. L. Reeve, E. Michelakis, L. Puttagunta, R. Waite, D. P. Nelson, M. C. Dinauer, and E. K. Weir, 1999 O2 sensing is preserved in mice lacking the gp91 phox subunit of NADPH oxidase, Proc.Natl.Acad.ScLUSA 96:7944.

    Article  CAS  Google Scholar 

  • B. M. Babior, 1999 NADPH oxidase: An update, Blood 93(5): 1464

    PubMed  CAS  Google Scholar 

  • G. Cheng, Z. Cao, X. Xu, E. G. Van Meir, and J. D. Lambeth, 2001 Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4 and Nox5, Gene 269:131.

    Article  PubMed  CAS  Google Scholar 

  • S. J. Fidone, C. Gonzalez, L. Almaraz, and B. Dinger, 1997 Cellular mechanisms of peripheral chemoreceptor function, in: “The Lung: Scientific Foundations”, R. G. Crystal and J. B. West, et.al. eds., Lippincott-Raven Publishers, Philadelphia

    Google Scholar 

  • X. W. Fu, D. Wang, C. A. Nurse, M.C. Dinauer, and E. Cutz, 2000, NADPH oxidase is an O2 sensor in airway chemoreceptors: Evidence from K+ current modulation in wild-type and oxidase-deficient mice, PNAS 97(8):4374

    Article  PubMed  CAS  Google Scholar 

  • L. He, J. Chen, B. Dinger, K. Sanders, K. Sundar, J. Hoidal, and S. Fidone, 2002, Characteristics of carotid body chemosensitivity in NADPH oxidase-deficient mice, Am.J.Physiol.Cell.Physiol. 282:C27

    PubMed  CAS  Google Scholar 

  • T. Hoshi and S. H. Heinemann, 2001, Topical review: Regulation of cell function by methionine oxidation and reduction, J.Physiol. 531.1:1

    Article  PubMed  CAS  Google Scholar 

  • S. H. Jackson, J. I.. Gallin, and S. M. Holland, 1995, The p47phox mouse knock-out model of chronic granulomatous disease, J.Exp.Med. 182(3):751.

    Article  PubMed  CAS  Google Scholar 

  • J. M. Li and A. J. Shah, 2002, Intracellular localization and preassembly of the NADPH oxidase complex in cultured endothelial cells, J.Biol.Chem. 277(22): 19952.

    Article  PubMed  CAS  Google Scholar 

  • I. O’Kelly, A. Lewis, C. Peers, and P. J. Kemp, 2000, 02 sensing by airway chemoreceptor-derived cells: Protein kinase C activation reveals functional evidence for involvement of NADPH oxidase, J.Biol.Chem. 275(11):7684

    Article  PubMed  Google Scholar 

  • G. Pani, B. Bedogni, R. Colavitti, R. Anezvino, S. Borrello, and T. Galeotti, 2001, Cell compartmentalization in redox signaling, IUBMB Life 52:7

    Article  PubMed  CAS  Google Scholar 

  • J. D. Pollock, D. A. Williams, M. A. C. Gifford, L. L. Li, X. Du, J. Fisherman, S. H. Orkin, C. M. Doerschuk, and M. C. Dinauer, 1995, Mouse model of x-linked chronic granulmatous disease, an inherited defect in phagocyte superoxide production, Nature Genetics 9:202.

    Article  PubMed  CAS  Google Scholar 

  • A. M. Riesco-Fagundo, M. T. Pérez-Garcoa, and J. R. Lpez-Lpez, 2001,O2 modulates large-conductance Ca2+-dependent K+ channels of rat chemoreceptor cells by a large-conductance and CO-sensitive mechanism, Circ.Res. 89:430

    Article  PubMed  CAS  Google Scholar 

  • K. A. Sanders, K. M. Sundar, L. He, B. Dinger, S. Fidone, and J. R. Hoidal, 2002, Role of components of the phagocytic NADPH oxidase in oxygen sensing, J.Appl. Physiol. 93(4):1357.

    Google Scholar 

  • H. Sauer, M. Wartenberg, and J. Hescheler, 2001, Reactive oxygen species as intracellular messengers during cell growth and differentiation, Cell.Physiol.Biochem. 11:173

    Article  PubMed  CAS  Google Scholar 

  • X. D. Tang, H. Daggett, M. Hanner, M. L. Garcia, O. B. McManus, N. Brot, H. Weissbach, S. H. Heinemann, and T. Hoshi, 2001, Oxidative regulation of large conductance calcium-activated potassium channels, J.Gen.Physiol. 117:253.

    Article  PubMed  CAS  Google Scholar 

  • V. J. Thannickal and B. L. Fanburg, 2000, Reactive oxygen species in cell signaling, AmJ.Physiol.Lung CellMol.Physiol. 279:L1005.

    CAS  Google Scholar 

  • D. Wang, C. Youngson, V. Wong, H. Yeger, M. C. Dinauer, E. Vega-Saenz De Miera, B. Rudy, and E. Cutz, 1996, NADPH-oxidase and a hydrogen peroxide-sensitive K+ channel may function as an oxygen sensor complex in airway chemoreceptors and small cell lung carcinoma cell lines, Proc.Natl.Acad.Sci.USA 93:13182.

    Article  PubMed  CAS  Google Scholar 

  • G. B. Waypa, N. S. Chandel, and P. T. Schumacker, 2001, Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing, Circ.Res. 88:1259

    Article  PubMed  CAS  Google Scholar 

  • D. Xu, I. I. Rovira, and T. Finkel, 2002, Oxidants painting the Cysteine Chapel: Redox regulation of PTPs, Developmental Cell 2:251

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

He, L. et al. (2003). Carotid Body Chemoreceptor Activity in Mice Deficient in Selected Subunits of NADPH Oxidase. In: Pequignot, JM., Gonzalez, C., Nurse, C.A., Prabhakar, N.R., Dalmaz, Y. (eds) Chemoreception. Advances in Experimental Medicine and Biology, vol 536. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9280-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9280-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4873-3

  • Online ISBN: 978-1-4419-9280-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics