Advertisement

Chemoreception pp 375-387 | Cite as

Chemosensitivity of Medullary Respiratory Neurones

A role for ionotropic P2X and GABAA receptors
  • Alexander V. Gourine
  • K. Michael Spyer
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 536)

Abstract

Under normal physiological conditions blood and brain pO2and pCO2are maintained at constant levels by the neural activity that controls breathing. Central respiratory drive is highly sensitive to changes in arterial pCO2, so that even a small increases in pCO2in arterial blood evokes a rapid increase in minute ventilation. Levels of CO2are monitored by the peripheral chemoreceptors located within the carotid bodies, and in some species in the aortic bodies, and by the central chemoreceptors within the medulla oblongata (Daly, 1997; Nattie, 1999, 2001). The ventilatory response to hypercapnia is largely preserved in experimental animals after denervation of the carotid and aortic bodies and according to the estimate of Heeringaet al.(1979) up to 80% of the CO2-evoked response is mediated by the action of CO2at the brainstem chemosensitive sites.

Keywords

Receptor Subunit Nucleus Tractus Solitarii Purinergic Signalling Inspiratory Neurone Expiratory Neurone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballantyne, D., and Scheid, P., 2000, Mammalian brainstem chemosensitive neurones: linking them to respiration in vitro.J. Physiol.525: 567–577.PubMedCrossRefGoogle Scholar
  2. Ballantyne, D., and Scheid, P., 2001, Central chemosensitivity of respiration: a brief overview.Respir. Physiol.129: 5–12.PubMedCrossRefGoogle Scholar
  3. Brown, S.G., Townsend-Nicholson, A., Jacobson, K.A., Burnstock, G., and King, B.F., 2002, Heteromultimeric P2X1/2receptors show a novel sensitivity to extracellular pH.J. Pharmacol. Exp. Ther.300:673–680.PubMedCrossRefGoogle Scholar
  4. Buell, G., Collo, G., and Rassendren, F., 1996, P2X receptors: an emerging channel family.Eur. J. Neurosci.8: 2221–2228.PubMedCrossRefGoogle Scholar
  5. Cherniack, N.S., 1993, Physiological roles of central chemoreceptors. InRespiratory control - Central and Peripheral Mechanisms(D.F. Speck, M.S. Dekin, W.R. Revellette and D.T. Frazier, eds.), University of Kentucky, pp.138–146.Google Scholar
  6. Daly, M.DeB., 1997, Peripheral arterial chemoreception and respiratory-cardiovascular integration. InMonograph for the Physiological Society.Oxford University Press, Oxford.Google Scholar
  7. Deuchars, S.A., Atkinson, L., Brooke, R.E., Musa, H., Milligan, C.J., Batten, T.F., Buckley, N.J., Parson, S.H., and Deuchars, J., 2001, Neuronal P2X7receptors are targeted to presynaptic terminals in the central and peripheral nervous systems.J. Neurosci.21: 7143–7152.PubMedGoogle Scholar
  8. Dogas, Z., Krolo, M., Stuth, E.A., Tonkovic-Capin, M., Hopp, F.A., McCrimmon, D.R., and Zuperku, E.J., 1998, Differential effects of GABAAreceptor antagonists in the control of respiratory neuronal discharge patterns.J. Neurophysiol.80: 2368–2377.PubMedGoogle Scholar
  9. Fukuda, Y., and Loeschcke, H.H., 1977, Effect of H+on spontaneous neuronal activity in the surface layer of the rat medulla oblongatain vitro. Pflugers Arch.371:125–134.CrossRefGoogle Scholar
  10. Fukuda, Y., and Loeschcke, H.H., 1979, A cholinergic mechanism involved in the neuronal excitation by H+in the respiratory chemosensitive structures of the ventral medulla oblongata of rats in vitro. Pflugers Arch.379:125–135.PubMedCrossRefGoogle Scholar
  11. Gallagher, J.P., Nakamura, J., and Shinnick-Gallagher, P., 1983, The effects of temperature, pH and Cl-pump inhibitors on GABA responses recorded from cat dorsal root ganglia.Brain Res.267:249–259.PubMedCrossRefGoogle Scholar
  12. Gourine, A.V., and Spyer, K.M., 2001, Chemosensitivity of medullary inspiratory neurones: A role for GABAAreceptors?Neuroreport12: 3395–3400.PubMedCrossRefGoogle Scholar
  13. Haji, A., Takeda, R., and Remmers, J.E., 1992, Evidence that glycine and GABA mediate postsynaptic inhibition of bulbar respiratory neurons in the cat.J. Appl. Physiol.73: 2333–2342.PubMedGoogle Scholar
  14. Heeringa, J., Berkenbosch, A., de Goede, J., and Olievier, C.N., 1979, Relative contribution of central and peripheral chemoreceptors to the ventilatory response to C02during hyperoxiaRespir. Physiol.37: 365–379.PubMedCrossRefGoogle Scholar
  15. Huang, R.Q., and Dillon, G.H., 1999, Effect of extracellular pH on GABA-activated current in rat recombinant receptors and thin hypothalamic slices.J. Neurophysiol.82: 1233–1243.PubMedGoogle Scholar
  16. Kanazawa, M., Sugama, S., Okada, J., and Miura, M., 1998, Pharmacological properties of the C02/H+-sensitive area in the ventral medullary surface assessed by the effects of chemical stimulation on respiration.J. Auton. Nerv. Syst.72: 24–33.PubMedCrossRefGoogle Scholar
  17. Kanjhan, R., Housley, G.D., Burton, L.D., Christie, D.L., Kippenberger, A., Thorne, P.R., Luo, L., and Ryan, A.F., 1999, Distribution of the P2X2receptor subunit of the ATP-gated ion channels in the rat central nervous system.J. Comp. Neurol.407: 11–32.PubMedCrossRefGoogle Scholar
  18. Kawai, A., Ballantyne, D., Muckenhoff, K., and Scheid, P., 1996, Chemosensitive medullary neurones in the brainstem-spinal cord preparation of the neonatal rat. J. Physiol.492: 277–292.PubMedGoogle Scholar
  19. King, B.F., Townsend-Nicholson, A., Wildman, S.S., Thomas, T., Spyer, K.M., and Burnstock, G., 2000, Coexpression of rat P2X2and P2X6subunits inXenopusoocytes.J. Neurosci.20: 4871–4877.PubMedGoogle Scholar
  20. King. B.F., Wildman, S.S., Ziganshina, L.E., Pintor, J., and Burnstock, G., 1997, Effects of extracellular pH on agonism and antagonism at a recombinant P2X2receptor.Br. J. Pharmacol.121: 1445–1453.PubMedCrossRefGoogle Scholar
  21. King, B.F., Ziganshina, L.E., Pintor, J., and Burnstock, G., 1996, Full sensitivity of P2X2purinoceptor to ATP revealed by changing extracellular pH.Br. J. Pharmacol.117: 1371–1373.PubMedCrossRefGoogle Scholar
  22. Krishek, B.J., Amato, A., Connolly, C.N., Moss, S.J., and Smart, T.G., 1996, Proton sensitivity of the GABAAreceptor is associated with the receptor subunit composition.J. Physiol.492: 431–443.PubMedGoogle Scholar
  23. Loeschcke, H.H., 1982, Central chemosenshivity and the reaction theory. J. Physiol. 332: 1–24.PubMedGoogle Scholar
  24. McCrimmon, D.R., Ramirez, J.M., Alford, S., and Zuperku, E.J., 2000, Unraveling the mechanism for respiratory rhythm generation.Bioessays22: 6–9.PubMedCrossRefGoogle Scholar
  25. Miura, M, Okada, J., and Kanazawa, M., 1998, Topology and immunohistochemistry of proton-sensitive neurons in the ventral medullary surface of rats.Brain Res.780: 34–45.PubMedCrossRefGoogle Scholar
  26. Nattie, E., 1999, C02, brainstem chemoreceptors and breathing.Prog. Neurobiol.59: 299–331.PubMedCrossRefGoogle Scholar
  27. Nattie, E., 2001, Central chemosensitivity, sleep, and wakefulness.Respir. Physiol.129: 257–268.PubMedCrossRefGoogle Scholar
  28. Pasternack, M., Smirnov, S., and Kaila, K., 1996, Proton modulation of functionally distinct GABAAreceptors in acutely isolated pyramidal neurons of rat hippocampus.Neuropharmacology35: 1279–1288.PubMedCrossRefGoogle Scholar
  29. Pinault, D., 1996, A novel single-cell staining procedure performed in vivo under electrophysiological control: morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or Neurobiotin.J. NeuroscL Methods65: 113–136.CrossRefGoogle Scholar
  30. Ralevic, V., and Burnstock, G., 1998, Receptors for purines and pyrimidines.Pharmacol. Rev.50:413–492.PubMedGoogle Scholar
  31. Richter, D.W., 1982, Generation and maintenance of the respiratory rhythm.J. Exp. Biol100: 93–107.PubMedGoogle Scholar
  32. Richter, D.W., Ballanyi, K., and Schwarzacher, S., 1992, Mechanisms of respiratory rhythm generation.Curr. Opin. Neurobiol 2:788–793.PubMedCrossRefGoogle Scholar
  33. Richter, D.W., and Spyer, K.M., 2001, Studying rhythmogenesis of breathing: comparison ofin vivoandin vitromodels.Trends NeuroscL24: 464–472.CrossRefGoogle Scholar
  34. Ritucci, N.A., Chambers-Kersh, L., Dean, J.B., and Putnam, R.W., 1998, Intracellular pH regulation in neurons from chemosensitive and nonchemosensitive areas of the medulla.Am. J. Physiol.275: RI 152-R1163.Google Scholar
  35. Robello, M., Baldelli, P., and Cupello, A., 1994, Modulation by extracellular pH of the activity of GABAAreceptors on rat cerebellum granule cells.Neuroscience61: 833–837.PubMedCrossRefGoogle Scholar
  36. Sapru, H.N., 1996, Carotid chemoreflex. Neural pathways and transmitters.Adv. Exp. Med. Biol.410: 357–364.PubMedCrossRefGoogle Scholar
  37. Schmid, K., Foutz, A.S., and Denavit-Saubie, M., 1996, Inhibitions mediated by glycine and GABAAreceptors shape the discharge pattern of bulbar respiratory neurons.Brain Res.710: 150–160.PubMedCrossRefGoogle Scholar
  38. Smart, T.G., 1992, A novel modulatory binding site for zinc on the GABAAreceptor complex in cultured rat neurones.J. Physiol447: 587–625.PubMedGoogle Scholar
  39. Spyer, K.M., and Thomas, T., 2000., Sensing arterial C02levels: a role for medullary P2X receptors.J. Auton. Nerv. Syst.81: 228–235.PubMedCrossRefGoogle Scholar
  40. Stoop, R., Surprenant, A., and North, R.A., 1997, Different sensitivities to pH of ATP- induced currents at four cloned P2X receptors.J. Neurophysiol.78: 1837–1840.PubMedGoogle Scholar
  41. Thomas, T., Ralevic, V., Bardini, M, Burnstock, G., and Spyer, K.M., 2001, Evidence for the involvement of purinergic signalling in the control of respiration.Neuroscience107: 481–490.PubMedCrossRefGoogle Scholar
  42. Thomas, T., Ralevic, V., Gadd, C.A., and Spyer, K.M., 1999, Central C02chemoreception: a mechanism involving P2 purinoceptors localized in the ventrolateral medulla of the anaesthetized rat.J. Physiol.517: 899–905.PubMedCrossRefGoogle Scholar
  43. Thomas, T., and Spyer, K.M., 2000, ATP as a mediator of mammalian central CO2chemoreception.J. Physiol.523:441–447.PubMedCrossRefGoogle Scholar
  44. Wildman, S.S., King, B.F., and Burnstock, G., 1997, Potentiation of ATP-responses at a recombinant P2X2receptor by neurotransmitters and related substances.Br. J. Pharmacol.120:221–224.PubMedCrossRefGoogle Scholar
  45. Yajima, Y., and Hayashi, Y., 1999, Ambiguous respiratory neurons are modulated by GABAAreceptor-mediated inhibition.Neuroscience90: 249–257.PubMedCrossRefGoogle Scholar
  46. Yao, S.T., Barden, J.A., Finkelstein, D.I., Bennett, M.R., and Lawrence, A.J., 2000, Comparative study on the distribution patterns of P2X1-P2X6receptor immunoreactivity in the brainstem of the rat and the common marmoset(Callithrix jacchus):association with catecholamine cell groups.J. Comp. Neurol. 421:485–507.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Alexander V. Gourine
    • 1
  • K. Michael Spyer
    • 1
  1. 1.Department of PhysiologyRoyal Free and University College London Medical SchoolLondon

Personalised recommendations