Chemoreception pp 297-303 | Cite as

Expression and Function of Presynaptic Neurotransmitter Receptors in the Chemoafferent Pathway of the Rat Carotid Body

  • Ian M. Fearon
  • Min Zhang
  • Cathy Vollmer
  • Colin A. Nurse
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 536)

Abstract

Hypoxic chemotransmission in the carotid body (CB) is mediated by the release of neurotransmitters (NTs) from type I cells onto adjacent sensory (petrosal) nerve endings (Gonzalez et al. 1994; Urena et al. 1994). In the rat, there is strong evidence of a role for the co-release of fast-acting neurotransmitters, including acetylcholine (ACh) and ATP (Zhang et al. 2000), in chemosensory signalling. In contrast, little is known about the roles of NTs in mediating autoreceptor feedback mechanisms which are thought to play a role in modulating chemoreceptor output from the CB. Here, we present evidence for the involvement of two distinct NTs, ¦Ã-aminobutyric acid (GABA) and serotonin (5-HT), in mediating autoreceptor feedback onto type I cells during hypoxia. Although their actions are directly opposite, activation of receptors for either transmitter appears to regulate the activity of O2-sensitive K+ channels, such as the background K+ channel Kcnk3 (Buckler et al. 2000). 5-HT receptor activation also regulates the activity of the O2-sensitive large-conductance Ca2+-activated K+ channel (Peers, 1990). These results demonstrate the roles of NTs in regulating secretion from type I cells, by converging signals from different sources onto the same K+ channels involved in O2 sensing and control of the receptor potential.

Keywords

Attenuation Serotonin Acetylcholine Fluorescein Washout 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbe C et al. (2002).1234, J. Physiol., 543, 933–945.PubMedCrossRefGoogle Scholar
  2. Bowery N, Enna SJ (2000). 1234, J. Pharmacol. Exp. Ther., 2, 2–7.Google Scholar
  3. Buckler KJ, Williams BA, Honore E (2000). 1234, J. Physiol., 525, 135–142.PubMedCrossRefGoogle Scholar
  4. E Silva M, Lewis DL (1995). 1234, J. Physiol. 489, 689–699.PubMedGoogle Scholar
  5. Fearon IM et al. (1997). 1234,J. Physiol, 500, 551–556.PubMedGoogle Scholar
  6. Fearon IM et al. (2002). 1234, J. Physiol, 545, 807–818.PubMedCrossRefGoogle Scholar
  7. Gonzalez C et al. (1994). 1234, Phys. Rev., 74, 829–898.Google Scholar
  8. Lopes CMB, et al. (2000) 1234,J. Biol. Chem. 275, 16969–16978.PubMedCrossRefGoogle Scholar
  9. Maingret F et al. (2001) 1234, EMBO J. 20, 47–54.PubMedCrossRefGoogle Scholar
  10. Peers C (1990). 1234, Neurosci. Lett. 119, 253–256.PubMedCrossRefGoogle Scholar
  11. Prasad M et al. (2001). 1234, J. Physio.l, 537, 667–677.CrossRefGoogle Scholar
  12. Urena J et al. (1994). 1234, Proc. Natl Acad. Sci. U.S.A. 91, 10208–10211.PubMedCrossRefGoogle Scholar
  13. Zhang M et al.(2000). 1234, J. Physiol. 525, 143–158.PubMedCrossRefGoogle Scholar
  14. Zhong HJ, Zhang M, Nurse CA (1997). 1234, J. Physiol. 503, 599–612.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Ian M. Fearon
    • 1
  • Min Zhang
    • 1
  • Cathy Vollmer
    • 1
  • Colin A. Nurse
    • 1
  1. 1.Department of BiologyMcMaster UniversityHamiltonCanada

Personalised recommendations