Chemoreception pp 231-238 | Cite as

Molecular Mechanisms of Oxygen-Induced Regulation of Na+/K+Pump

  • Anna Bogdanova
  • Omolara O. Ogunshola
  • Christian Bauer
  • Mikko Nikinmaa
  • Max Gassmann
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 536)


Na+/K+ pump is deactivated under hypoxic conditions in many cell types, including neurons, cardiac myocytes, hepatocytes, alveolar epithelial cells and chromaffin cells of adrenal medulla (Erecinska and Silver, 2001; Inoue et al 1999; Suzuki et al. 1999; Ziegelhoffer et al. 2000). The ability of the pump to respond to hypoxic conditions with reversible deactivation coupled to a decrease in passive permeability of cell membrane to sodium and potassium preserves cell integrity and ATP levels during prolonged hypoxic periods in hypoxia-tolerant species such as western painted turtle and ground squirrel (Buck & Hochachka, 1993; MacDonald & Storey, 1999). On the other hand, in cells with high passive permeability to inorganic cations deactivation of the pump results in a rapid dissipation of transmembrane gradients, passive accumulation of Na+, cell swelling and finally lysis. Rapid decrease in ATP levels, particularly in cells with activemetabolism and ATP production, is believed to be a major course of Na+/K+ ATPase deactivation under hypoxic conditions (Fig 1). This is clearly true for neurons where ATP depletion under hypoxic conditions occurs within minutes, followed by a decrease in Na+/K+ pump activity and consequent membrane depolarization, swelling and necrosis. However, deactivation of the pump in response to ischemic hypoxia also occurs in cardiac myocytes where the ATP fuelling the pump is mostly, if not entirely, of glycolytic origin (Ziegelhoffer., 2000). Therefore, along with ATP depletion other mechanisms must be involved in hypoxia-induced deactivation of Na+/K+ pump. As one such mechanism, it has been suggested that deactivation of Na+/K+ pump would result from increased production of reactive oxygen species (ROS), because of mitochondrial uncoupling under hypoxic conditions (Chandel et al. 1997; Chandel and Schumacker, 2000; Duranteau et al. 1998), and consecutive oxidation of the pump. However, whereas deactivation of the pump by brief hypoxic treatment is reversible, oxidative treatments cause irreversible inhibition of the pump (Boldyrev and Bulygina, 1997; Dobrota et al. 1999; Ferrari et al. 1991; Huang, Wang and Askari, 1992; Kurella et al. 1997). One more parameter, affected by hypoxia-reoxygenation is cellular redox status, characterised by GSH and GSSG levels.


Reactive Oxygen Species Production Hypoxic Condition Ground Squirrel Reactive Oxygen Species Formation Pump Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benesch, R.E., Benesch, R., Yung, S., 1913,1234, Anal Biochem 55:245–8.CrossRefGoogle Scholar
  2. Bogdanova, A.Y., Nikinmaa, M. 2001,1234, J Gen Physiol 117:181–90.PubMedCrossRefGoogle Scholar
  3. Boldyrev, A.A., Bulygina, E.R. 1997,1234, Ann N YAcad Sci 834:666–8.CrossRefGoogle Scholar
  4. Buck, L.T., Hochachka, P.W. 1993,1234, Am J Physiol 265:R1020–5.PubMedGoogle Scholar
  5. Chandel, N.S., Budinger, G.R., Choe, S.H., Schumacker, P.T. 1997, 1234,J Biol Chem 272:18808–16.PubMedCrossRefGoogle Scholar
  6. Chandel, N.S., Schumacker, P.T. 2000, 1234,J Appl Physiol 88:1880–9.PubMedCrossRefGoogle Scholar
  7. Cutaia, M., Parks, N. 1994,1234, Am J Physiol 267:L649–59.PubMedGoogle Scholar
  8. Dobrota, D., Matejovicova, M., Kurella, E.G., Boldyrev, A.A. 1999, 1234,Cell Mol Neurobiol 19:141–9.PubMedCrossRefGoogle Scholar
  9. Duranteau, J., Chandel, N.S., Kulisz, A., Shao, Z., Schumacker, P.T. 1998, 1234,J Biol Chem 273:11619–24.PubMedCrossRefGoogle Scholar
  10. Erecinska, M., Silver, LA. 2001, 1234,Respir Physiol 128:263–76.PubMedCrossRefGoogle Scholar
  11. Ferrari, R., Ceconi, C, Curello, S., Cargnoni, A., Alfieri, O., Pardini, A., Marzollo, P., Visioli,0. 1991,1234, Am J Med 91:95S–105S.PubMedCrossRefGoogle Scholar
  12. Gibson, J.S., Cossins, A.R., Ellory, J.C. 2000,1234, J Exp Biol 203:1395–407.PubMedGoogle Scholar
  13. Graham, E., Mishra, O.P., Delivoria-Papadopoulos, M. 1993, 1234,Neurosci Lett 153:93–7.PubMedCrossRefGoogle Scholar
  14. Haddock, P.S., Woodward, B., Hearse, D.J. 1995, 1234,J Mol Cell Cardiol 27:1185–94.CrossRefGoogle Scholar
  15. Hochachka, P.W., Lutz, P.L. 2001, 1234,Comp Biochem Physiol B Biochem Mol Biol 130:435–59.PubMedCrossRefGoogle Scholar
  16. Huang, W.H., Wang, Y., Askari, A. 1992,1234, Int J Biochem 24:621–6.PubMedCrossRefGoogle Scholar
  17. Inoue, M., Fujishiro, N., Imanaga, I. 1999, 1234,J Physiol 519:385–96.PubMedCrossRefGoogle Scholar
  18. Kiroytcheva, M., Cheval, L., Carranza, M.L., Martin, P.Y., Favre, H., Doucet, A., Feraille, E. 1999,1234,Kidney Int 55:1819–31.PubMedCrossRefGoogle Scholar
  19. Krumschnabel, G., Manzl, C, Schwarzbaum, P.J. 2001,1234, J Exp Biol 204:3943–51.PubMedGoogle Scholar
  20. Kurella, E., Kukley, M., Tyulina, O., Dobrota, D., Matejovicova, M., Mezesova, V., Boldyrev, A. 1997, 1234,Ann N Y Acad Sci 834:661–5.PubMedCrossRefGoogle Scholar
  21. Lauf, P.K., Adragna, N.C., Agar, N.S. 1995, 1234,Am J Physiol 269:C234–41.PubMedGoogle Scholar
  22. MacDonald, J.A., Storey, K.B. 1999, 1234,Biochem Biophys Res Commun 254:424–9.PubMedCrossRefGoogle Scholar
  23. Nikinmaa, M. 2002, 1234,Comp Biochem Physiol A Mol Integr Physiol 133:1.PubMedCrossRefGoogle Scholar
  24. Nikinmaa, M., Bogdanova, A.Y., Lecklin, T. 2002, Acta Physiol Scand in pressGoogle Scholar
  25. Niknahad, H., Khan, S., O’Brien, P.J. 1995,1234, Chem Biol Interact 98:27–44.PubMedCrossRefGoogle Scholar
  26. Rabergh, C.M., Ziegler, K., Isomaa, B., Lipsky, M.M., Eriksson, J.E. 1994, 1234,Am J Physiol 267:G380–6.PubMedGoogle Scholar
  27. Reeve, H.L., Michelakis, E., Nelson, D.P., Weir, E.K., Archer, S.L. 2001, 1234,J Appl Physiol 90:2249–56.PubMedGoogle Scholar
  28. Suzuki, S., Noda, M., Sugita, M., Ono, S., Koike, K., Fujimura, S. 1999, 1234,J Appl Physiol 87:962–8.PubMedGoogle Scholar
  29. Van Emous, J.G., Vleggeert-Lankamp, C.L., Nederhoff, M.G., Ruigrok, T.J., Van Echteld, C.J. 2001, 1234,Am J Physiol Heart Circ Physiol 280: H2189–95.PubMedGoogle Scholar
  30. Ziegelhoffer, A., Kjeldsen, K., Bundgaard, H., Breier, A., Vrbjar, N., Dzurba, A. 2000, 1234,Gen Physiol Biophys 19:9–47.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Anna Bogdanova
    • 1
  • Omolara O. Ogunshola
    • 1
  • Christian Bauer
    • 2
  • Mikko Nikinmaa
    • 3
  • Max Gassmann
    • 1
  1. 1.Institute of Veterinary PhysiologyZürich
  2. 2.Institute of PhysiologyLaboratory of Animal PhysiologyZürich
  3. 3.University of ZÜrich, ZÜrich SwitzerlandLaboratory of animal physiology department of biology University of TurkuTurku

Personalised recommendations