Chemoreception pp 201-208 | Cite as

Oxygen Sensing by Human Recombinant Tandem-P Domain Potassium Channels

  • Paul J Kemp
  • Chris Peers
  • Paula Miller
  • Anthony Lewis
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 536)


Oxygen sensing in many tissues is crucially dependent upon hypoxia-evoked suppression of K+ channel activity (Kemp et al. 2003; Lopez-Barneo et al. 2001; Peers, 1997; Patel and Honore, 2001; Peers & Kemp, 2001). This is particularly true of the prospective airway O2 sensor, the neuroepithelial body of the lung (Youngson et al. 1993; Cutz and Jackson, 1999), their immortalised cellular counterpart (HI46 cells - O’Kelly et al. 1998; O’Kelly et al. 2000b; O’Kelly et al. 2000a; Hartness et al. 2001; O’Kelly et al. 1999; Kemp et al. 2003) and the arterial O2 sensor, the carotid body (Lopez-Barneo et al. 1988; Peers, 1990; Buckler, 1997). In addition, the K+ channels almost certainly contribute to hypoxic vasoconstriction of the pulmonary vasculature (Post et al. 1992; Weir & Archer, 1995; Osipenko et al. 2000 Coppock et al. 2001;) although the full extent and nature of their involvement is still somewhat controversial (Ward & Aaronson, 1999). Although each tissue and model system expresses a cell-specific gamut of K+ channels, central to O2 sensory transduction in several is hypoxic inhibition of members of the gene family encoding tandem P- domain (K2p) K+ channels. Such background K+ channels contribute to the maintenance of resting membrane potential in cells where they are expressed and ascription of specific K2p channels to cellular hypoxic responses have been shown directly in the airway chemosensing model H146 cells (Hartness et al. 2001) - TASK3) and inferred in carotid body glomus cells (Buckler et al. 2000) - TASK1) and arteriolar smooth muscle of the pulmonary circulation(Gurney et al. 2002) - TASK1 or TASK3). The current exception to this potentially unifying theme in acute O2 sensing is the native neuroepithelial body, where involvement of K2p channels has not been robustly investigated other than by demonstration immunohistochemically of the TASK2 protein (Kemp et al. 2003).


Carotid Body Hypoxic Pulmonary Vasoconstriction Pulmonary Artery Smooth Muscle Cell Neuroepithelial Body Arterial Chemoreceptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Buckler, K. J., 1997, A novel oxygen-sensitive potassium channel in rat carotid body type I cells. J.Physiol 498, 649–662.PubMedGoogle Scholar
  2. Buckler, K. J., Williams, B. A., & Honore, E., 2000, An oxygen-, acid-and anaesthetic-sensitive TASK-like background potassium channel in rat arterial chemoreceptor cells. J.Physiol 525, 135–142.PubMedCrossRefGoogle Scholar
  3. Coppock, E. A., Martens, J. R., & Tamkun, M. M., 2001, Molecular basis of hypoxia-induced pulmonary vasoconstrictiomrole of voltage-gated K+ channels. Am. J.Physiol 281, L1–L8.Google Scholar
  4. Cutz, E. & Jackson, A., 1999, Neuroepithelial bodies as airway oxygen sensors. Respir.Physiol. 115,201–214.PubMedCrossRefGoogle Scholar
  5. Duprat, F., Lesage, F., Fink, M., Reyes, R., Heurteaux, C, & Lazdunski, M., 1997, TASK, a human background K+ channel to sense external pH variations near physiological pH. EMBO J. 16,5464–5471.PubMedCrossRefGoogle Scholar
  6. Gurney, A. M., Osipenko, O. N., MacMillan, D., & Kempsill, F. E., 2002, Potassium channels underlying the resting potential of pulmonary artery smooth muscle cells. Clin. Exp. Pharmacol Physiol 29, 330–333.PubMedCrossRefGoogle Scholar
  7. Hartness, M. E., Lewis, A., Searle, G. J., O’Kelly, I., Peers, C., & Kemp, P. J., 2001, Combined antisense and pharmacological approaches implicate hTASK as an airway O2 sensing K+ channel. J.Biol.Chem. 276, 26499–26508.PubMedCrossRefGoogle Scholar
  8. Kemp, P. J., Lewis, A., Miller, P., Chapman, C. G., Meadows, H., & Peers, C, 2002a, Oxygen sensing by two members of the human tandem P domain K+ channel family FASEB J. 16, A61.CrossRefGoogle Scholar
  9. Kemp, P. J., Plant, L. D., Peers, C, & Pearson, H. A., 2002b, Acute hypoxia inhibits an acid-sensitive leak K+ conductance in primary cultures of rat neocortical pyramidal neurones which is not TASK1. FASEB. J 16, A61.CrossRefGoogle Scholar
  10. Kemp, P. J., Searle, G. J., Hartness, M. E., Lewis, A., Miller, P., Williams, S. E., Wootten, P., Adriaensen, D., & Peers, C, 2003, Acute oxygen sensing in cellular models:relevance to physiology of pulmonary neuroepithelial and carotid bodies. Anat.Rec. 270, 41–50.CrossRefGoogle Scholar
  11. Kim, Y., Bang, H., & Kim, D., 2000, TASK-3, a new member of the tandem pore K+ channel family. J.Biol.Chem. 275, 9340–9347.PubMedCrossRefGoogle Scholar
  12. Lewis, A., Hartness, M. E., Chapman, C. G., Fearon, I. M., Meadows, H. J., Peers, C, & Kemp, P. J., 2001, Recombinant hTASKl is an O2-sensitive K+ channel. Biochem.Biophys.Res.Comm. 285, 1290–1294.PubMedCrossRefGoogle Scholar
  13. Lopez-Barneo, J., Lopez-Lopez, J. R., Urena, J., & Gonzalez, C, 1988, Chemotransduction in the carotid body: K+ current modulated by PO2 in type I chemoreceptor cells. Science 241,580–582.PubMedCrossRefGoogle Scholar
  14. Lopez-Barneo, J., Pardal, R., & Ortega-Saenz, P., 2001, Cellular mechanism of oxygen sensing. Ann. Rev. Physiol. 63, 259–287.CrossRefGoogle Scholar
  15. Maingret, F., Patel, A. J., Lesage, F., Lazdunski, M., & Honore, E., 1999, Mechano-or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J.Biol.Chem. 274, 26691–26696.PubMedCrossRefGoogle Scholar
  16. Meadows, H. J., Benham, C. D., Cairns, W., Gloger, I., Jennings, C, Medhurst, A. D., Murdock, P., & Chapman, C. G., 2000, Cloning, localisation and functional expression of the human orthologue of the TREK-1 potassium channel. Pflugers Arch 439, 714–722.PubMedCrossRefGoogle Scholar
  17. Medhurst, A. D., Rennie, G., Chapman, C. G., Meadows, H., Duckworth, M. D., Kelsell, R. E., Gloger, I. I., & Pangalos, M. N., 2001, Distribution analysis of human two pore domain potassium channels in tissues of the central nervous system and periphery. Brain Res.Mol.Brain Res. 86, 101–114.PubMedCrossRefGoogle Scholar
  18. Miller,P., kemp,PJ.,Lewis, A.,Chapman, SG.,& Meadows, H. J., 2003, Hypoxia inhibits the recombinant tandem P domain K+ channel, hTREKl, and excludes its activation by arachidonic acid or stretch J. Physiol. 548. 31–37PubMedGoogle Scholar
  19. Mojet, M. H., Mills, E., & Duchen, M. R., 1997, Hypoxia-induced catecholamine secretion in isolated newborn rat adrenal chromaffin cells is mimicked by inhibition of mitochondrial respiration. J. Physiol 504, 175–189.PubMedCrossRefGoogle Scholar
  20. O’Kelly, I., Lewis, A., Peers, C, & Kemp, P. J., 2000a, O2 sensing by airway chemoreceptor-derived cells: protein kinase C activation reveals functional evidence for involvement of NADPH oxidase. J. Biol.Chem. 275, 7684–7692.CrossRefGoogle Scholar
  21. O’Kelly, I., Peers, C, & Kemp, P. J., 1998, Oxygen-sensitive K+ channels in neuroepithelial body-derived small cell carcinoma cells of the human lung. Am.J.Physiol. 275, L709- L716.PubMedGoogle Scholar
  22. O’Kelly, I., Peers, C, & Kemp, P. J., 2000b, Oxygen sensing by model airway chemoreceptors: Hypoxic inhibition of K+ channels in H146 cells. Adv. Exp. Med. BioI. 475,611–622.CrossRefGoogle Scholar
  23. O’Kelly, I., Stephens, R. H., Peers, C, & Kemp, P. J., 1999, Potential identification of the oxygen sensitive K+ current in a human neuroepithelial body-derived cell line. Am J.Physiol 276, L96–L104.PubMedGoogle Scholar
  24. Osipenko, O. N., Tate, R. J., & Gurney, A. M., 2000, Potential role for kv3.1b channels as oxygen sensors. Circ.Res. 86, 534–540.PubMedCrossRefGoogle Scholar
  25. Patel, A. J. & Honore, E., 2001, Molecular physiology of oxygen-sensitive channels. Euro.Respir. J. 18, 221–227.CrossRefGoogle Scholar
  26. Peers, C., 1997, Oxygen-sensitive ion channels. Trends Pharmacol.Sci. 18, 405–408.PubMedGoogle Scholar
  27. Peers, C, 1990, Hypoxic suppression of K+ currents in type-I carotid-body cells - selective effect on the Ca2+-activated K+ current. Nearosci.Lett. 119, 253–256.CrossRefGoogle Scholar
  28. Peers, C. & Kemp, P.J., 2001, Acute oxygen sensing: Diverse but convergent mechanisms in airway and arterial chemoreceptors. Respir. Res. 2, 145–149.PubMedCrossRefGoogle Scholar
  29. Plant, L. D., Kemp, P. J., Peers, C, Henderson, Z., & Pearson, H. A., 2002, Hypoxic depolarization of cerebellar granule neurons by specific inhibition of TASK-1. Stroke 33, 2324–2328.PubMedCrossRefGoogle Scholar
  30. Post, J. M., Hume, J. R., Archer, S. L., & Weir, E. K., 1992, Direct role for potassium channel inhibition in hypoxic pulmonary vasoconstriction. Am.J.Physiol. 262, C882–C890.PubMedGoogle Scholar
  31. Ward, J. P. & Aaronson, P. I., 1999, Mechanisms of hypoxic pulmonary vasoconstriction: can anyone be right? Respir.Physiol. 115, 261–271.PubMedCrossRefGoogle Scholar
  32. Weir, E. K. & Archer, S. L., 1995, The mechanism of acute hypoxic pulmonary vasoconstriction: the tale of two channels. FASEB J. 9, 183–189.PubMedGoogle Scholar
  33. Youngson, C, Nurse, C, Yeger, H., & Cutz, E., 1993, Oxygen sensing in airway chemoreceptors. Nature 365, 153–155.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Paul J Kemp
    • 1
  • Chris Peers
    • 2
  • Paula Miller
    • 1
  • Anthony Lewis
    • 1
  1. 1.University of LeedsSchool of Biomedical SciencesUK
  2. 2.University of LeedsInstitute for Cardiovascular Research, Worsley Medical and Dental BuildingUK

Personalised recommendations