2P Domain K+ Channels: Novel Pharmacological Targets for Volatile General Anesthetics

  • Amanda J. Patel
  • Eric Honore
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 536)


Volatile anesthetics induce neuron hyperpolarization and consequent depression of the central nervous system (Nicoll and Madison, 1982; Berg- Johnsen and Langmoen, 1987; Franks and Lieb, 1988; el-Beheiry and Puil, 1989; Southan and Wann, 1989; Maclver and Kendig, 1991; Franks and Lieb, 1994; Harris et al, 1995; Belelli et al, 1999; Sirois et al, 2000). Besides the well known potentiation of GABAA and glycine chloride channels (Harris et al, 1995; Belelli et al, 1999), evidence demonstrates that in both vertebrates and invertebrates, volatile anesthetics open background K channels and thus increase the resting membrane potential (Franks and Lieb, 1988; Winegar et al, 1996; Lopes et al, 1998; Sirois et al, 2000). For instance, in the mollusc Lymnea, halothane opens a class of baseline K+ channels (IKAn) which hyperpolarize and silence pacemaker neurons (Franks and Lieb, 1988; Franks and Lieb, 1991; Lopes et al, 1998). In Aplysia californica, halothane-mediated neuronal hyperpolarization is due to the opening of the background S type (serotonin-sensitive) K+ channel (Winegar et al, 1996). Similarly, opening of baseline acid-sensitive K+channels by volatile anesthetics produces rat hypoglossal and locus coeruleus neuron hyperpolarization (Sirois et al, 1998; Sirois et al, 2000).


Dorsal Root Ganglion Potassium Channel Rest Membrane Potential Volatile Anesthetic Channel Subunit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bang, H., Kim, Y. and Kim, D., 2000, TREK-2, a new member of the mechanosensitive tandem pore K+ channel family. J. Biol Chem. 275: 17412–17419.PubMedCrossRefGoogle Scholar
  2. Bargmann, C, 1998, Neurobiology of the Caenorhabditis elegans genome. Science 282: 2028–2033.Google Scholar
  3. Belelli, D., Pistis, M., Peters, J.A. and Lambert, J.L., 1999, General anaesthetics action at transmitter-gated inhibitory amino acid receptors. TIPS 20: 496–502.PubMedGoogle Scholar
  4. Berg-Johnsen, J. and Langmoen, LA., 1987, Isoflurane hyperpolarizes neurones in rat and human cerebral cortex. Acta Physiol. Scand. 130: 679–685.PubMedCrossRefGoogle Scholar
  5. Bockenhauer, D., Zilberberg, N. and Goldstein, S.A., 2001, KCNK2: reversible conversion of a hippocampal potassium leak into a voltage-dependent channel. Nat. Neurosci. 4: 486–91.PubMedGoogle Scholar
  6. Buckler, K., Williams, B. and Honoré, E., 2000, An oxygen-, acid-and anaesthetic-sensitive TASK-like background potassium channel in rat arterial chemoreceptor cells. J. Physiol. 525: 135–142.PubMedCrossRefGoogle Scholar
  7. Buckler, K.J., 1997, A novel oxygen-sensitive potassium current in rat carotid body type I cells. J. Physiol. 498: 649–662.PubMedGoogle Scholar
  8. Chapman, C.G., Meadows, H.J., Godden, R.J., Campbell, D.A., Duckworth, M., Kelsell, R.E., Murdock, P.R., Randall, A.D., Rennie, G.I. and Gloger, I.S., 2000, Cloning, localisation and functional expression of a novel human cerebellum specific, two pore domain potassium channel. Brain Res. Mol. Brain Res. 82: 74–83.PubMedCrossRefGoogle Scholar
  9. Chavez, R.A., Gray, A.T., Zhao, B.B., Kindler, C.H., Mazurek, M.J., Mehta, Y., Forsayeth, J.R. and Yost, C.S., 1999, TWIK-2, a new weak inward rectifying member of the tandem pore domain potassium channel family. J. Biol. Chem. 274: 7887–7892.PubMedCrossRefGoogle Scholar
  10. Decher, N., Maier, M., Dittrich, W., Gassenhuber, J., Bruggemann, A., Busch, A.E. and Steinmeyer, K., 2001, Characterization of TASK-4, a novel member of the pH-sensitive, two-pore domain potassium channel family. FEBS Lett. 492: 84–9.PubMedCrossRefGoogle Scholar
  11. Doyle, D.A., Morais Cabrai, J., Pfuetzner, R.A., Kuo, A., Gulbis, J.M., Cohen, S.L., Chait, B.T. and MacKinnon, R., 1998, The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280: 69–77.PubMedCrossRefGoogle Scholar
  12. Duprat, F., Lesage, F., Fink, M., Reyes, R., Heurteaux, C. and Lazdunski, M., 1997, TASK, a human background K+ channel to sense external pH variations near physiological pH. EMBO J. 16: 5464–5471.PubMedCrossRefGoogle Scholar
  13. el-Beheiry, H. and Puil, E., 1989, Postsynaptic depression induced by isoflurane in neocortical neurons. Exp. Brain Res. 75: 361–368.PubMedCrossRefGoogle Scholar
  14. Fink, M., Duprat, F., Lesage, F., Reyes, R., Romey, G., Heurteaux, C. and Lazdunski, M., 1996, Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel. EMBO J. 15: 6854–6862.PubMedGoogle Scholar
  15. Fink, M., Lesage, F., Duprat, F., Heurteaux, C, Reyes, R., Fosset, M. and Lazdunski, M., 1998, A neuronal two P domain K+ channel activated by arachidonic acid and polyunsaturated fatty acid. EMBO J. 17: 3297–3308.PubMedCrossRefGoogle Scholar
  16. Franks, N.P. and Lieb, W.R., 1988, Volatile general anaesthetics activate a novel neuronal K+ current. Nature 333: 662–664.PubMedCrossRefGoogle Scholar
  17. Franks, N.P. and Lieb, W.R., 1991, Stereospecific effects of inhalational general anesthetic optical isomers on nerve ion channels. Science 254: 427–430.PubMedCrossRefGoogle Scholar
  18. Franks, N.P. and Lieb, W.R., 1994, Molecular and cellular mechanisms of general anaesthesia. Nature 367: 607–614.PubMedCrossRefGoogle Scholar
  19. Girard, C, Duprat, F., Terrenoire, C, Tinel, N., Fosset, M., Romey, G., Lazdunski, M. and Lesage, F., 2001, Genomic and functional characteristics of novel human pancreatic 2P domain potassium channels. Biochem. Biophys. Res. Commun. 282: 249–256.PubMedCrossRefGoogle Scholar
  20. Goldstein, S.A., Price, L.A., Rosenthal, D.N. and Pausch, M.H., 1996, ORK1, a potassium-selective leak channel with two pore domains cloned from Drosophila melanogaster by expression in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 93: 13256–13261.PubMedCrossRefGoogle Scholar
  21. Goldstein, S.A.N., Bockenhauer, D., O’Kelly, I. and Zilberg, N., 2001, Potassium leak channels and the KCNK family of two-P-domain subunits. Nature Reviews/Neuroscience 2: 175–184.Google Scholar
  22. Gray, A.T., Winegar, B.D., Leonoudakis, D.J., Forsayeth, J.R. and Yost, C.S., 1998, TOK1 is a volatile anesthetic stimulated K+ channel. Anesthesiology 88: 1076–1084.PubMedCrossRefGoogle Scholar
  23. Gray, A.T., Zhao, B.B., Kindler, C.H., Winegar, B.D., Mazurek, M.J., Xu, J., Chavez, R.A., Forsayeth, J.R. and Yost, C.S., 2000, Volatile anesthetics activate the human tandem pore domain baseline K+ channel KCNK5. Anesthesiology 92: 1722–1730.PubMedCrossRefGoogle Scholar
  24. Gu, W., Schlichthorl, G., Hirsch, J.R., Engels, H., Karschin, C, Karschin, A., Derst, C, Steinlein, O.K. and Daut, J., 2002, Expression pattern and functional characteristics of two novel splice variants of the two-pore-domain potassium channel TREK-2. J. Physiol. 539: 657–668.PubMedCrossRefGoogle Scholar
  25. Harris, R.A., Mihic, S.J., Dildy-Mayfield, J.E. and Machu, T.K., 1995, Actions of anesthetics on ligand-gated ion channels: role of receptor subunit composition. Faseb J. 9: 1454–1462.PubMedGoogle Scholar
  26. Hille, B., 1992, Ionic channels of excitable membranes. Sinauer Associates Inc Sunderland, Massachusetts.Google Scholar
  27. Ketchum, K.A., Joiner, W.J., Sellers, A.J., Kaczmarek, L.K. and Goldstein, S.A.N., 1995, A new family of outwardly rectifying potassium channel proteins with two pore domains in tandem. Nature 376: 690–695.Google Scholar
  28. Kim, D., Fujita, A., Horio, Y. and Kurachi, Y., 1998, Cloning and functional expression of a novel cardiac two-pore background K+ channel (cTBAK-1). Circ. Res. 82: 513–518.PubMedCrossRefGoogle Scholar
  29. Kim, Y., Bang, H. and Kim, D., 2000, TASK-3, a new member of the tandem pore K+ channel family. J. Biol. Chem. 275: 9340–9347.PubMedCrossRefGoogle Scholar
  30. Kindler, C.H., Yost, C.S. and Gray, A.T., 1999, Local anaesthetic inhibition of baseline potassium channels with two pore domains in tandem. Anesthesiology 90: 1092–1102.PubMedCrossRefGoogle Scholar
  31. Kunkel, M.T., Johnstone, D.B., Thomas, J.H. and Salkoff, L., 2000, Mutants of a temperature-sensitive two-P domain potassium channel. J. Neurosci. 20: 7517–7524.PubMedGoogle Scholar
  32. Leonoudakis, D., Gray, A.T., Winegar, B.D., Kindler, C.H., Harada, M., Taylor, D.M., Chavez, R.A., Forsayeth, J.R. and Yost, C.S., 1998, An open rectifier potassium channel with two pore domains in tandem cloned from rat cerebellum. J. Neurosci. 18: 868–877.PubMedGoogle Scholar
  33. Lesage, F., Guillemare, E., Fink, M., Duprat, F., Lazdunski, M., Romey, G. and Barhanin, J., 1996, TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure. EMBO J. 15: 1004–1011.PubMedGoogle Scholar
  34. Lesage, F. and Lazdunski, M., 2000, Molecular and functional properties of two-pore-domain potassium channels. Am. J Physiol. Renal Physiol 279: F793–801.PubMedGoogle Scholar
  35. Lesage, F., Reyes, R., Fink, M., Duprat, F., Guillemare, E. and Lazdunski, M., 1996, Dimerization of TWIK-1 K+channel subunits via a disulfide bridge. EMBO J. 15: 6400–6407.PubMedGoogle Scholar
  36. Lesage, F., Terrenoire, C, Romey, G. and Lazdunski, M., 2000, Human TREK2, a 2P domain mechano-sensitive K+ channel with multiple regulations by polyunsaturated fatty acids, lysophospholipids, and Gs, Gi, and Gq protein-coupled receptors. J. Biol. Chem. 275: 28398–28405.Google Scholar
  37. Lopes, CM., Gallagher, P.G., Buck, M.E., Butler, M.H. and Goldstein, S.A., 2000, Proton block and voltage gating are potassium-dependent in the cardiac leak channel Kcnk3. J. Biol. Chem. 275: 16969–16978.PubMedCrossRefGoogle Scholar
  38. Lopes, CM., Zilberberg, N. and Goldstein, S.A., 2001, Block of Kcnk3 by protons. Evidence that 2-P-domain potassium channel subunits function as homodimers. J. Biol. Chem 276: 24449–24452.Google Scholar
  39. Lopes, C.M.B., Franks, N.P. and Lieb, W.R., 1998, Actions of general anaesthetics and arachidonic acid pathway inhibitors on K+ currents activated by volatile anaesthetics and FMRFamide in molluscan neurones. Br. J. Pharmacol. 125: 309–318.PubMedCrossRefGoogle Scholar
  40. Lopez-Barneo, J., 1996, Oxygen-sensing by ion channels and the regulation of cellular functions. Trends Neurosci. 19:435–40.PubMedGoogle Scholar
  41. Maclver, M.B. and Kendig, J.J., 1991, Anesthetic effects on resting membrane potential are voltage-dependent and agent-specific. Anesthesiology 74: 83–88.CrossRefGoogle Scholar
  42. Maingret, F., Launtzen, I., Patel, A., Heurteaux, C, Reyes, R., Lesage, F., Lazdunski, M. and Honoré, E., 2000, TREK-1 is a heat-activated background K+ channel. EMBO J. 19: 2483–2491.Google Scholar
  43. Maingret, F., Patel, A., Lazdunski, M. and Honoré, E., 2001, The endocannabinoid anandamide is a direct and selective blocker of the background K+ channel TASK-1. EMBO J. 20: 47–54.PubMedCrossRefGoogle Scholar
  44. Maingret, F., Patel, A.J., Lesage, F., Lazdunski, M. and Honore, E., 1999, Mechano-or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J Biol Chem 274: 26691–6.PubMedCrossRefGoogle Scholar
  45. Maingret, F., Patel, A.J., Lesage, F., Lazdunski, M. and Honore, E., 2000, Lysophospholipids open the two P domain mechano-gated K+ channels TREK-1 and TRAAK. J. Biol. Chem. 275: 10128–10133.PubMedCrossRefGoogle Scholar
  46. Meadows, H.J., Benham, CD., Cairns, W., Gloger, I., Jennings, C, Medhurst, A.D., Murdock, P. and Chapman, C.G., 2000, Cloning, localisation and functional expression of the human orthologue of the TREK-1 potassium channel. Pflugers Arch. 439: 714–722.PubMedCrossRefGoogle Scholar
  47. Meadows, H.J. and Randall, A.D., 2001, Functional characterisation of human TASK-3, an acid-sensitive two-pore domain potassium channel. Neuropharmacology 40: 551–9.PubMedCrossRefGoogle Scholar
  48. Medhurst, A.D., Rennie, G., Chapman, C.G., Meadows, H., Duckworth, M.D., Kelsell, R.E., Gloger, II and Pangalos, M.N., 2001, Distribution analysis of human two pore domain potassium channels in tissues of the central nervous system and periphery. Brain Res Mol Brain Res. 86: 101–114.PubMedCrossRefGoogle Scholar
  49. Millar, J.A., Barratt, L., Southan, A.P., Page, K.M., Fyffe, R.E., Robertson, B. and Mathie, A., 2000, A functional role for the two-pore domain potassium channel TASK-1 in cerebellar granule neurons. Proc. Natl. Acad. Sci. USA 97: 3614–3618.PubMedCrossRefGoogle Scholar
  50. Nicoll, R.A. and Madison, D.V., 1982, General anaesthetics hyperpolarize neurons in the vertebrate central nervous system. Science 217: 1055–1057.PubMedCrossRefGoogle Scholar
  51. Patel, A.J. and Honoré, E., 2001, Anesthetic-sensitive 2P domain K+ channels. Anesthesiology 95: 1013–1025.PubMedCrossRefGoogle Scholar
  52. Patel, A.J. and Honoré, E., 2001, Molecular Physiology of oxygen-sensitive potassium channels. Eur. Resp. J. I18: 221–221.CrossRefGoogle Scholar
  53. Patel, A.J. and Honoré, E., 2001, Properties and modulation of mammalian 2P domain K+ channels. Trends Neurosci.24: 339–46.PubMedCrossRefGoogle Scholar
  54. Patel, A.J., Honoré, E., Lesage, F., Fink, M., Romey, G. and Lazdunski, M., 1999, Inhalational anaesthetics activate two-pore-domain background K+ channels. Nature Neurosci. 2: 422–426.PubMedCrossRefGoogle Scholar
  55. Patel, A.J., Honoré, E., Maingret, F., Lesage, F., Fink, M., Duprat, F. and Lazdunski, M., 1998, A mammalian two pore domain mechano-gated S-like K+ channel. EMBO J. 17: 4283–4290.PubMedCrossRefGoogle Scholar
  56. Patel, A.J., Lazdunski, M. and Honoré, E., 2001, Lipid and mechano-gated 2P domain K+ channels. Curr Opin Cell Biol 13: 422–8.PubMedCrossRefGoogle Scholar
  57. Patel, A.J., Maingret, F., Magnone, V., Fosset, M., Lazdunski, M. and Honore, E., 2000, TWIK-2, an inactivating 2P domain K+ channel. J Biol Chem 275: 28722–30.PubMedCrossRefGoogle Scholar
  58. Pountney, D.J., Gulkarov, I., Vega-Saenz de Miera, E., Holmes, D., Saganich, M., Rudy, B., Artman, M. and Coetzee, W.A., 1999, Identification and cloning of TWIK-originated similarity sequence (TOSS): a novel human 2-pore K+ channel principal subunit. FEBS Lett. 450: 191–196.PubMedCrossRefGoogle Scholar
  59. Rajan, S., Wischmeyer, E., Karschin, C, Preisig-Muller, R., Grzeschik, K.H., Daut, J., Karschin, A. and Derst, C, 2000, THIK-1 and THIK-2, a novel subfamily of tandem pore domain K+ channels. J. Biol. Chem. 276: 7302–7311.PubMedCrossRefGoogle Scholar
  60. Rajan, S., Wischmeyer, E., Liu, G.X., Preisig-Muller, R., Daut, J., Karschin, A. and Derst, C, 2000, TASK-3, a novel tandem pore-domain acid-sensitive K+ channel: an extracellular histidine as pH sensor. J. Biol. Chem. 275: 16650–16657.PubMedCrossRefGoogle Scholar
  61. Reyes, R., Duprat, F., Lesage, F., Fink, M., Farman, N. and Lazdunski, M., 1998, Cloning and expression of a novel pH-sensitive two pore domain potassium channel from human kidney. J. Biol Chem. 273: 30863–30869.PubMedCrossRefGoogle Scholar
  62. Rubin, G.M., Yandell, M.D. and Wortman, J.R., 2000, Comparative genomics of the eukaryotes. Science 287: 2204–2215.PubMedCrossRefGoogle Scholar
  63. Ruppersberg, J.P., 2000, Intracellular regulation of inward rectifier K+ channels. Pflugers Arch 441: 1–11.PubMedCrossRefGoogle Scholar
  64. Salinas, M., Reyes, R., Lesage, F., Fosset, M, Heurteaux, C, Romey, G. and Lazdunski, M., 1999, Cloning of a new mouse two-P domain channel subunit and a human homologue with a unique pore structure. J. Biol. Chem. 274: 11751–11760.PubMedCrossRefGoogle Scholar
  65. Sirois, J.E., Lei, Q., Talley, E.M., Lynch, C, 3rd and Bayliss, D.A., 2000, The TASK-1 two-pore domain K+ channel is a molecular substrate for neuronal effects of inhalational anesthetics. J. Neurosci. 20: 6347–6354.PubMedGoogle Scholar
  66. Sirois, J.E., Pancrazio, J.J., Lynch, C. and Bayliss, D.A., 1998, Multiple ionic mechanisms mediate inhibition of rat motoneurones by inhalation anaesthetics. J. Physiol. 512.3: 851–862.PubMedCrossRefGoogle Scholar
  67. Southan, A.P. and Wann, K.T., 1989, Inhalation anaesthetics block accommodation of pyramidal cell discharge in the rat hippocampus. Br. J. Anaesth. 63: 581–586.PubMedCrossRefGoogle Scholar
  68. Talley, E.M. and Bayliss, D.A., 2002, Modulation of TASK-1 (Kcnk3) and TASK-3 (Kcnk9) potassium channels: volatile anesthetics and neurotransmitters share a molecular site of action. J. Biol; Chem 277: 17733–42.PubMedCrossRefGoogle Scholar
  69. Talley, E.M., Lei, Q., Sirois, J.E. and Bayliss, D.A., 2000, TASK-1, a two-pore domain K+ channel, is modulated by multiple neurotransmitters in motoneurons. Neuron 25: 399–410.PubMedCrossRefGoogle Scholar
  70. Wei, A., Jegla, T. and Salkoff, L., 1996, Eight potassium channel families revealed by the C. elegans genome project. Neuropharmacology 35: 805–829.PubMedCrossRefGoogle Scholar
  71. Winegar, B.D., Owen, D.F., Yost, C.S., Forsayeth, J.R. and Mayeri, E., 1996, Volatile general anesthetics produce hyperpolarization of Aplysia neurons by activation of a discrete population of baseline pot.assium channels. Anesthesiology 85: 889–900.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Amanda J. Patel
    • 1
  • Eric Honore
    • 1
  1. 1.From Institut de Pharmacologie Moléculaire et CellulaireCNRS-UMR6097ValbonneFrance

Personalised recommendations