Advertisement

Chemoreception pp 141-145 | Cite as

The Pulmonary Interstitium: an Introductory Review

  • Giuseppe Miserocchi
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 536)

Abstract

The lung tissue serves the main function of gas diffusion. Diffusion for oxygen at alveolar level can be estimated at some 6 x 10 8 liters over a life span, a tremendous amount, requiring specific morphofunctional adaptations of the lung tissue. The air-blood barrier displays in fact two features optimising gas diffusion: it is very thin, about 0.1-0-5 µm due to its delicate structure and furthermore the extravascular space reflects a condition of minimum hydration, in fact one may think of the pulmonary interstitium as a functionally "dry" tissue space. The minimum amount of interstitial water depends upon the dynamic equilibrium established between fluid filtration through a low permeability microvascular district and a powerful lymphatic drainage. Such equilibrium results in a subatmospheric hydraulic pressure of the interstitial space of the order of- 10 cmH2O (Miserocchi et al. 1990).

Keywords

Interstitial Edema Lung Edema Interstitial Pressure Fluid Filtration Interstitial Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Conforti, E., Fenoglio, C, Bernocchi, G., Bruschi, O., and Miserocchi, G., 2002, Morpho- functional analysis of lung tissue in mild interstitial edema Am. J. Physiol. Lung Cell. Mol. Physiol. 282: L766-L774.PubMedGoogle Scholar
  2. Miserocchi, G., Negrini, D., and Gonano, C., 1990, Direct measurements of interstitial pulmonary pressure in in-lung with intact pleural space. J. Appl. Physiol. 69(6), 2168-2174.PubMedGoogle Scholar
  3. Miserocchi, G., Negrini, D., Passi, A., and De Luca, G., 2001a, Development of lung edema: interstitial fluid dynamics and molecular structure. News Physiol. Sc. 16:66-71.Google Scholar
  4. Miserocchi, G., Passi, A., Negrini, D., Del Fabbro, M., and De Luca, G., 2001b, Pulmonary interstitial pressure and tissue matrix structure in acute hypoxia Am. J. Physiol. Lung Cel. Mol. Physiol.. 280:L881-L887.Google Scholar
  5. Negrini, D., Passi, A., De Luca, G, and Miserocchi, G., 1998, Proteoglycan involvement during development of lesional pulmonary edema Am. J. Physiol. Lung Cell. Mol. Physiol. 274: L203-L211.Google Scholar
  6. Palestini, P., Calvi, C, Conforti, E., Botto, L., Fenoglio, C, and Miserocchi, G., 2002, Composition,cell,biophysical properties, and morphometry of plasmamembranes in pulmonary interstitial edema Am. J. Physiol. Lung Cel. Mol. Physiol. 282: L1382-L1390.Google Scholar
  7. Passi, A., Negrini, D., Albertini, R., De Luca, G., and Miserocchi, G., 1998, Involvement of lung interstitial proteoglycans in development of hydraulic- and elastase-induced edema. Am. J. Physioi. Lung Ceil. Mol. Physiol. 275:L631-L635.Google Scholar
  8. Passi, A., Negrini, D., Albertini, R., Miserocchi, G., and De Luca, G., 1999, The sensitivity of versican from rabbit lung to gelatinase A (MMP-2) and B (MMP-9) and its involvement in the development of hydraulic lung edema. FEBS letters 456: 93-96.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Giuseppe Miserocchi
    • 1
  1. 1.Dipartimento di Medicina SperimentaleAmbientale e Biotecnologie Mediche Università di Milano-BicoccaMONZA - ITALY

Personalised recommendations