Skip to main content

Enhancing Effect of Vasopressin on the Hyperglycemic Response to Carotid Body Chemoreceptor Stimulation

Role of metabolic variables.

  • Conference paper
Chemoreception

Abstract

Glucose homeostasis, a fundamental process for life, is controlled at multiple levels. Glucose sensitive receptors in the brain, portal vein, liver, pancreas and carotid bodies (Álvarez-Buylla and Roces de Álvarez-Buylla, 1994) provide afferent information to central nervous system (CNS) about the glucose concentration in different regions of the body. In the CNS, this input is integrated by the hypothalamus and the nucleus of the tractus solitarius (NTS) (Adachi et al., 1995). Additionally, there is evidence that carotid body receptors (CBR) are also sensitive to changes in blood glucose concentration (Álvarez- Buylla and Roces de Álvarez-Buylla, 1994; López-Barneo et al., 2001) and afferent impulses from these receptors induce a reflex response on glucose levels: 1) by enhancing glucose production by the liver, and 2 by promoting glucose retention by the brain. Carotid bodies play an important role in the insulin-induced counterregulatory response to mild hypoglycemia (Koyama et al., 2000). The efferent pathway for these reflexes is not fully understood, but previous experiments identify the neurohypophysis and adrenal glands as necessary for the hyperglycemic reflex initiated by NaCN stimulation, and suggest that the effects of these two glands on CBR hyperglycemic reflex are humoral (Álvarez-Buylla et al., 1997). This is supported by the finding that the neurohypophyseal hormone arginine-vasopressin (AVP) has a modulatory role on glucose metabolism during stress, and that an increase of vasopressin plasma levels is observed after perfusion of the carotid sinus with deoxygenated blood, a method similar to NaCN stimulation (Share and Levy, 1966). In addition, hypophysectomy leads to adrenal cortical atrophy and hypoglycemia (Wurtman et al., 1968). We have previously hypothesized that pituitary AVP may be involved in the hyperglycemic reflex initiated by CBR stimulation. In this paper we extend the study to the role of glucose in regulating AVP at the level of NTS (Yarkov et al., 2001), and suggest that this peptide may facilitate hyperglycemic reflexes elicited by CBR stimulation. We show that AVP can directly trigger a hyperglycemic reflex similar to that obtained after CBR stimulation. We suggest that AVP may interact with vasopressin receptors located in the NTS, liver, adrenal cells and pancreas to stimulate the secretion of epinephrine (E) and glucagon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi A, Kobashi M, Funahashi M. (1995) Glucose-responsive neurons in the brainstem. Obes. Res. 5: 735-740.

    Google Scholar 

  • Alvarez-Buylla R., Alvarez-Buylla E. (1988) Carotid sinus receptors participate in glucose homeostasis. Respir. Physiol. 72:347-360.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Buylla R, Alvarez-Buylla de ER, Mendoza H, Montero SA, Alvarez-Buylla A. (1997) Pituitary and adrenals are required for hyperglycemic reflex initiated by stimulation of CBR with cyanide. Am J Physiol 272: R392-R399.

    PubMed  CAS  Google Scholar 

  • Alvarez-Buylla, R, Roces de Alvarez-Buylla, E. (1994) Changes in blood glucose concentration in the carotid body-sinus modify brain glucose retention. Brain Res., 654: 167-170.

    Article  PubMed  CAS  Google Scholar 

  • De Vries GJ, Buijs RM, Van Leeuwen FW, Caffé AR, Swaab DF. (1985) The vasopressinergic innervation of brain in normal an castrated rat. J. Comp. Neurol. 233: 236-254.

    Article  Google Scholar 

  • Gomez F, Chapleur M, Fernette B, Burlet C, Nicolas J-P. Burlet A. (1997) Arginine vasopressin (AVP) depletion in neurons of the suprachiasmatic nuclei affects the AVP content of the paraventricular neurons and stimulates adrenocorticotrophic hormone release. J. Neurosci. Res, 50: 565-574.

    Article  PubMed  CAS  Google Scholar 

  • Grazzini E, Boccara G, Joubert D, Trueba M, Durroux T, Guillon G, Gallo-Payet N, Chouinard L, Payet MD, Serradeil Le Gal C. (1998) Vasopressin regulates adrenal functions by acting through different vasopressin receptor subtypes. Advan. Exp. Med. Biol. 449: 325-334.

    Article  CAS  Google Scholar 

  • Guarner V, Alvarez-Buylla R. (1991) Changes in brain glucose retention produced by the stimulation of an insulin-sensitive reflexogenic zone in rats. J. Auton. Nerv. Syst. 34:89-94.

    Article  PubMed  CAS  Google Scholar 

  • Hegarty AA, Felder RB. (1997) Vasopressin and VI-receptor antagonists modulate the activity of NTS neurons receiving baroreceptor input. Am. J. Physiol. 273: 143-152.

    Google Scholar 

  • Hems DA, Rodrigues LM, Whitton PD. (1978) Rapid stimulation by vasopressin, oxytocin and angiotensin II of glycogen degradation in hepatocyte suspensions. Biochem. J. 172: 311-317.

    PubMed  CAS  Google Scholar 

  • Koyama Y, Cocker RH, Stone EE, Lacy DB, Jabbour K, Williams PE, Wasserman DH. (2000) Evidence that carotid bodies play an important role in glucoregulation in vivo. Diabetes 49: 1434-1442.

    Article  PubMed  CAS  Google Scholar 

  • López-Barneo J, Parda, R, Ortega-Sáinz P. (2001) Cellular mechanism of oxygen sensing. Annu. Rev. Physiol. 63: 259-287.

    Article  PubMed  Google Scholar 

  • Ostrowski NL, Lolait, SJ, Young WS. (1994) Cellular localization of vasopressin Via receptor messenger ribonucleic acid in adult male rat brain, pineal, and brain vasculature, Endocrinol. 135: 1511-1528.

    Article  CAS  Google Scholar 

  • Paxinos G, Watson C. (1986) The Rat Brain in Stereotaxic Coordinates. New York: Academic Press,

    Google Scholar 

  • Rosen SG, Clutter WE, Shah SD, Miller JP, Bier DM, Cryer PE. (1983) Direct a-adrenergic stimulation of hepatic glucose production in human subjects. Am J Physiol 245: E616-E626.

    PubMed  CAS  Google Scholar 

  • Share L, Levy MN. (1966) Effect of carotid chemoreceptor stimulation on plasma antidiuretic hormone titer. Am. J. Physiol. 210:157-161.

    CAS  Google Scholar 

  • Spruce BA., McCulloch AJ, Burd J, Orskov H, Heaton A, Baylis PH, and Alberti KGMM. (1985) The effect of vasopressin infusion on glucose metabolismin man. Clin. Endocrinol. 22: 463- 468.

    Article  CAS  Google Scholar 

  • Wurtman RJ, Casper A, Pohorecky LA, Bartter FC. (1968) Impaired secretion of epinephrine in response to insulin among hypophysectomized dogs. Proc. Natl. Acad. Sci. USA 61:522-528.

    Article  PubMed  CAS  Google Scholar 

  • Yarkov, A., Montero, S., Lemus, M., de Alvarez-Buylla, ER., Alvarez-Buylla R. (2001) Arginine- vasopressin in nucleus of the tractus solitarius induce hyperglycemia and brain glucose retention. Brain Res. 902: 212-222.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

Montero, S.A. et al. (2003). Enhancing Effect of Vasopressin on the Hyperglycemic Response to Carotid Body Chemoreceptor Stimulation. In: Pequignot, JM., Gonzalez, C., Nurse, C.A., Prabhakar, N.R., Dalmaz, Y. (eds) Chemoreception. Advances in Experimental Medicine and Biology, vol 536. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9280-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9280-2_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4873-3

  • Online ISBN: 978-1-4419-9280-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics