Advertisement

Enhancing Effect of Vasopressin on the Hyperglycemic Response to Carotid Body Chemoreceptor Stimulation

Role of metabolic variables.
  • Sergio A. Montero
  • Alexander Yarkov
  • Mónica Lemus
  • Herón Mendoza
  • Victoria Valles
  • Elena R. De Álvarez-Buylla
  • Ramón ÁLvarez-Buylla
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 536)

Abstract

Glucose homeostasis, a fundamental process for life, is controlled at multiple levels. Glucose sensitive receptors in the brain, portal vein, liver, pancreas and carotid bodies (Álvarez-Buylla and Roces de Álvarez-Buylla, 1994) provide afferent information to central nervous system (CNS) about the glucose concentration in different regions of the body. In the CNS, this input is integrated by the hypothalamus and the nucleus of the tractus solitarius (NTS) (Adachi et al., 1995). Additionally, there is evidence that carotid body receptors (CBR) are also sensitive to changes in blood glucose concentration (Álvarez- Buylla and Roces de Álvarez-Buylla, 1994; López-Barneo et al., 2001) and afferent impulses from these receptors induce a reflex response on glucose levels: 1) by enhancing glucose production by the liver, and 2 by promoting glucose retention by the brain. Carotid bodies play an important role in the insulin-induced counterregulatory response to mild hypoglycemia (Koyama et al., 2000). The efferent pathway for these reflexes is not fully understood, but previous experiments identify the neurohypophysis and adrenal glands as necessary for the hyperglycemic reflex initiated by NaCN stimulation, and suggest that the effects of these two glands on CBR hyperglycemic reflex are humoral (Álvarez-Buylla et al., 1997). This is supported by the finding that the neurohypophyseal hormone arginine-vasopressin (AVP) has a modulatory role on glucose metabolism during stress, and that an increase of vasopressin plasma levels is observed after perfusion of the carotid sinus with deoxygenated blood, a method similar to NaCN stimulation (Share and Levy, 1966). In addition, hypophysectomy leads to adrenal cortical atrophy and hypoglycemia (Wurtman et al., 1968). We have previously hypothesized that pituitary AVP may be involved in the hyperglycemic reflex initiated by CBR stimulation. In this paper we extend the study to the role of glucose in regulating AVP at the level of NTS (Yarkov et al., 2001), and suggest that this peptide may facilitate hyperglycemic reflexes elicited by CBR stimulation. We show that AVP can directly trigger a hyperglycemic reflex similar to that obtained after CBR stimulation. We suggest that AVP may interact with vasopressin receptors located in the NTS, liver, adrenal cells and pancreas to stimulate the secretion of epinephrine (E) and glucagon.

Keywords

Carotid Body Carotid Sinus Artificial Cerebrospinal Fluid Vasopressin Receptor Sodium Cyanide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adachi A, Kobashi M, Funahashi M. (1995) Glucose-responsive neurons in the brainstem. Obes. Res. 5: 735-740.Google Scholar
  2. Alvarez-Buylla R., Alvarez-Buylla E. (1988) Carotid sinus receptors participate in glucose homeostasis. Respir. Physiol. 72:347-360.PubMedCrossRefGoogle Scholar
  3. Alvarez-Buylla R, Alvarez-Buylla de ER, Mendoza H, Montero SA, Alvarez-Buylla A. (1997) Pituitary and adrenals are required for hyperglycemic reflex initiated by stimulation of CBR with cyanide. Am J Physiol 272: R392-R399.PubMedGoogle Scholar
  4. Alvarez-Buylla, R, Roces de Alvarez-Buylla, E. (1994) Changes in blood glucose concentration in the carotid body-sinus modify brain glucose retention. Brain Res., 654: 167-170.PubMedCrossRefGoogle Scholar
  5. De Vries GJ, Buijs RM, Van Leeuwen FW, Caffé AR, Swaab DF. (1985) The vasopressinergic innervation of brain in normal an castrated rat. J. Comp. Neurol. 233: 236-254.CrossRefGoogle Scholar
  6. Gomez F, Chapleur M, Fernette B, Burlet C, Nicolas J-P. Burlet A. (1997) Arginine vasopressin (AVP) depletion in neurons of the suprachiasmatic nuclei affects the AVP content of the paraventricular neurons and stimulates adrenocorticotrophic hormone release. J. Neurosci. Res, 50: 565-574.PubMedCrossRefGoogle Scholar
  7. Grazzini E, Boccara G, Joubert D, Trueba M, Durroux T, Guillon G, Gallo-Payet N, Chouinard L, Payet MD, Serradeil Le Gal C. (1998) Vasopressin regulates adrenal functions by acting through different vasopressin receptor subtypes. Advan. Exp. Med. Biol. 449: 325-334.CrossRefGoogle Scholar
  8. Guarner V, Alvarez-Buylla R. (1991) Changes in brain glucose retention produced by the stimulation of an insulin-sensitive reflexogenic zone in rats. J. Auton. Nerv. Syst. 34:89-94.PubMedCrossRefGoogle Scholar
  9. Hegarty AA, Felder RB. (1997) Vasopressin and VI-receptor antagonists modulate the activity of NTS neurons receiving baroreceptor input. Am. J. Physiol. 273: 143-152.Google Scholar
  10. Hems DA, Rodrigues LM, Whitton PD. (1978) Rapid stimulation by vasopressin, oxytocin and angiotensin II of glycogen degradation in hepatocyte suspensions. Biochem. J. 172: 311-317.PubMedGoogle Scholar
  11. Koyama Y, Cocker RH, Stone EE, Lacy DB, Jabbour K, Williams PE, Wasserman DH. (2000) Evidence that carotid bodies play an important role in glucoregulation in vivo. Diabetes 49: 1434-1442.PubMedCrossRefGoogle Scholar
  12. López-Barneo J, Parda, R, Ortega-Sáinz P. (2001) Cellular mechanism of oxygen sensing. Annu. Rev. Physiol. 63: 259-287.PubMedCrossRefGoogle Scholar
  13. Ostrowski NL, Lolait, SJ, Young WS. (1994) Cellular localization of vasopressin Via receptor messenger ribonucleic acid in adult male rat brain, pineal, and brain vasculature, Endocrinol. 135: 1511-1528.CrossRefGoogle Scholar
  14. Paxinos G, Watson C. (1986) The Rat Brain in Stereotaxic Coordinates. New York: Academic Press, Google Scholar
  15. Rosen SG, Clutter WE, Shah SD, Miller JP, Bier DM, Cryer PE. (1983) Direct a-adrenergic stimulation of hepatic glucose production in human subjects. Am J Physiol 245: E616-E626.PubMedGoogle Scholar
  16. Share L, Levy MN. (1966) Effect of carotid chemoreceptor stimulation on plasma antidiuretic hormone titer. Am. J. Physiol. 210:157-161.Google Scholar
  17. Spruce BA., McCulloch AJ, Burd J, Orskov H, Heaton A, Baylis PH, and Alberti KGMM. (1985) The effect of vasopressin infusion on glucose metabolismin man. Clin. Endocrinol. 22: 463- 468.CrossRefGoogle Scholar
  18. Wurtman RJ, Casper A, Pohorecky LA, Bartter FC. (1968) Impaired secretion of epinephrine in response to insulin among hypophysectomized dogs. Proc. Natl. Acad. Sci. USA 61:522-528.PubMedCrossRefGoogle Scholar
  19. Yarkov, A., Montero, S., Lemus, M., de Alvarez-Buylla, ER., Alvarez-Buylla R. (2001) Arginine- vasopressin in nucleus of the tractus solitarius induce hyperglycemia and brain glucose retention. Brain Res. 902: 212-222.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Sergio A. Montero
    • 1
    • 2
  • Alexander Yarkov
    • 1
  • Mónica Lemus
    • 1
  • Herón Mendoza
    • 3
  • Victoria Valles
    • 4
  • Elena R. De Álvarez-Buylla
    • 1
    • 5
  • Ramón ÁLvarez-Buylla
    • 1
  1. 1.Centro Universitario de Investigaciones BiomédicasCinvestavMéxico
  2. 2.Fac. de MedicinaUniversidad de ColimaCinvestavMéxico
  3. 3.Fac. de MedicinaUniversidad Autónoma de TamaulipasCinvestavMéxico
  4. 4.Depto. de Diabetes, InstNac. de Nutrición y Ciencias Médicas "Salvador Zubirán"CinvestavMéxico.
  5. 5.CINVESTAVMéxico

Personalised recommendations