Skip to main content

Part of the book series: Fundamental Materials Research ((FMRE))

  • 707 Accesses

Abstract

It is widely believed that significant improvements in the performance of thermoelectric materials are possible.1,2The development of such improved materials could lead to revolutionary advances in many important technologies, such as refrigeration, electric power generation, and cooling of both superconducting and conventional electronic components.2,3Because device efficiency depends critically on the product of the thermoelectric figure of merit, Z, and the temperature, T, the key issue is the identification of materials that exhibit enhanced values of ZT. Though there are currently many niche applications for thermoelectrics, no bulk materials are yet known that exhibit values of ZT (~4) necessary for thermoelectric refrigeration to be competitive with small refrigerant-based systems and thus to see widespread technological application. However, even more modest increases in ZT above the current best values (ZT~1) should lead to many more applications.1-3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. D. Mahan, and J. O. Sofo,1234,Proc. Natl Acad. Sci. 93, 7436–7439 (1996).

    Article  CAS  Google Scholar 

  2. CRC handbook of thermoelectrics(ed. D. M. Rowe) (CRC Press, Boca Raton, F1, 1995).

    Google Scholar 

  3. F. J. DiSalvo,Science 285, 703–706 (1999).

    Article  CAS  Google Scholar 

  4. T. C. Harmon, and J. M. Honig,Thermoelectric and thermomagnetic effects and appli tions(McGraw Hill, New York, 1967).

    Google Scholar 

  5. N. W. Ashcroft, and N. D. Mermin,Solid State Physics(Holt, Rinehart, and Winston, 1976).

    Google Scholar 

  6. B. C. Sales, D. Mandrus, and R. K. Williams,Science 272, 1325 (1996).

    Article  CAS  Google Scholar 

  7. D. A. Polvani, J. F. Meng, N. V. C. Shekar, J. Sharp, and J. V. Badding,Chem. Mat.13,2068–2071(2001).

    Article  CAS  Google Scholar 

  8. R. D. Barnard, Thermoelectricity in metals and alloys(Taylor & Francis, London 1972).

    Google Scholar 

  9. J. V. Badding, J. F. Meng, and D. A. Polvani,Chem. Mat.10,2889–2894(1998).

    Article  CAS  Google Scholar 

  10. J. F. Meng, et al.,Chem. Mat. 12, 197–201 (2000).

    Article  CAS  Google Scholar 

  11. J. F. Meng, N. V. C. Shekar, J. V. Badding, D. Y. Chung, and M. G. J. Kanatzidis, Appl. Phys.90,2836–2839(2001).

    CAS  Google Scholar 

  12. J. F. Meng, N. V. C. Shekar, J. V. Badding, and G. S. Nolas,J. Appl. Phys 89, 1730–1733(2001).

    Article  CAS  Google Scholar 

  13. W. Paul, J. H. Burnett, and H. M. Cheong, in High-Pressure Science and Technology 1993 (eds. S. C. Schmidt, J. W. Shaner, G. Samara, and M. Ross) 545–548 (American Institute of Physics, New York, 1994).

    Google Scholar 

  14. M. Tomozawa, 26,43–74 (1996).

    Google Scholar 

  15. J. V. Badding, unpublished observation.

    Google Scholar 

  16. J. P. Locquet, et al. Nature 394, 453–456 (1998).

    Article  CAS  Google Scholar 

  17. U. Ghoshal, et al. Appl. Phys.Lett. 80, 3006–3008 (2002).

    Article  CAS  Google Scholar 

  18. D. A. Polvani, J. F. Meng, M. Hasegawa, and J. V. Badding,Rev. Sci. Instrum. 70, 3586–3589(1999).

    Article  CAS  Google Scholar 

  19. C. D. W. Jones, K. A. Regan, and F. J. DiSalvo, Phys. Rev. B 58, 16057–16063 (1998).

    Article  CAS  Google Scholar 

  20. D. Gerlich, and P. Andersson, J Phys. C:Solid State Phys. 15, 5211–5222 (1982).

    Article  CAS  Google Scholar 

  21. A. A. Averkin, Z. Z. Zhaparov, and L. S. Stilbans,Sov.Phys. Semicond. 51954–1956 (1972).

    Google Scholar 

  22. D. Y. Chung, et al.,J. Am. Chem. Soc. 119, 2504–2515 (1997).

    Article  Google Scholar 

  23. Y. M. Blanter, M. I. Kaganov, A. V. Pantsulaya, and A. A. Varlamov,Phys. Rep. 245, 159–257 (1994).

    Article  CAS  Google Scholar 

  24. I. M. Lifshitz, Sov. Phys.JETP 11, 1130–1135 (1960).

    Google Scholar 

  25. B. K. Godwal, et al. Phys. Rev. B 65, art. no.-140101 (2002).

    Google Scholar 

  26. A. A. Varlamov and A. V. Pantsulaya,Sov.Phys.JETP 62, 1263–1267 (1985).

    Google Scholar 

  27. A. A. Varlamov, V. S. Egorov, and A. V. Pantsulaya, Advan. Phys. 38, 469–564 (1989).

    Article  CAS  Google Scholar 

  28. S. J. Youn and A. J. Freeman,Phys. Rev. B 63, 085112 (2001).

    Article  Google Scholar 

  29. V. V. Sologub, et al. Sov. Phys. JETP 52, 1203–1206 (1980).

    Google Scholar 

  30. V. V. Sologub, R. V. Parfen’ev, and A. D. Goletskaya, JETP Lett. 21, 337–338 (1975).

    Google Scholar 

  31. P. Larson, S. D. Mahanti, and M. G. Kanatzidis, Phys. Rev. B 61, 8162 (2000).

    Article  CAS  Google Scholar 

  32. E. S. Itskevich, L. M. Kashirskay, and V. F. Kraidenov, Semiconductors 31, 276–278 (1996).

    Article  Google Scholar 

  33. B. K. Godwal, et al. Phys. Rev. B 57, 773–776 (1998).

    Article  CAS  Google Scholar 

  34. I. A. Abrikosov, Y. K. Vekilov, P. A. Korzhavyi, A. V. Ruban, and L. E. Shilkrot, Fiz. Tverd. Tela 34, 2922–2926 (1992).

    CAS  Google Scholar 

  35. E. Bruno, B. Ginatempo, E. S. Giuliano, A. V. Ruban, and Y. K. Vekilov, Phys. Rep.- Rev. Sec. Phys. Lett. 249, 353–419 (1994).

    CAS  Google Scholar 

  36. O. I. Velikokhatnyi, II Naumov, and E. V. Puchkarev, Phys. Solid State39, 872–876 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Scheidemantel, T.J., Badding, J.V. (2003). Pressure Tuning of Thermoelectric Materials. In: Kanatzidis, M.G., Mahanti, S.D., Hogan, T.P. (eds) Chemistry, Physics, and Materials Science of Thermoelectric Materials. Fundamental Materials Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9278-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9278-9_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4872-6

  • Online ISBN: 978-1-4419-9278-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics