Skip to main content
  • 1473 Accesses

Abstract

When a substance is heated, the kinetic energy of atoms and molecules increases. E.g., if methane is heated, the kinetic energy of translation, vibration and rotation of methane molecules increases, as discussed in section 1.2. As heat is applied, higher vibrational states are increasingly populated. In higher vibrational quantum states, the average C-H bond distance increases until finally the C-H bond breaks. The result is the formation of a methyl radical and a hydrogen atom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Bodenstein and S. C. Lind, Z.Phys. Chem. 1907, 57, 168.

    Google Scholar 

  2. J. A. Christiansen, Kgl. Danske Videnskab. Selskab., Mat.-fys. Medd. 1919. 1, 141.

    Google Scholar 

  3. K. F. Herzfeld, Ann. Phys. 1919, 59, 635.

    Article  CAS  Google Scholar 

  4. M. Polanyi, Z.Elektrochem. 1920, 26, 50.

    Google Scholar 

  5. H. S. Taylor, Trans. Faraday Soc. 1925, 21, 560.

    Google Scholar 

  6. F. Paneth and W. Hafeditz, Ber. 1929, 62, 1335.

    Google Scholar 

  7. F. O. Rice and K. F. Herzfeld, J. Am. Chem. Soc. 1934, 56, 284.

    Google Scholar 

  8. W. J. Moore, Physical Chemistry, Prentice Hall, Englewood Cliffs, NJ 1972, p. 401.

    Google Scholar 

  9. P. S. Braterman and R. J. Cross, J. Chem. Soc, Dalton Trans. 1972, 657.

    Google Scholar 

  10. G. Wilkinson, Pure Appl. Chem. 1972, 30, 627.

    Article  CAS  Google Scholar 

  11. W. Mowat, A. Shortland, G. Yagupsky, N. J. Hill, M. Yagupsky, and G. Wilkinson, J. Chem. Soc. A, 1972, 533.

    Google Scholar 

  12. R. R. Schrock and G. W. Parshall, Chem. Rev. 1976, 76, 243.

    Article  CAS  Google Scholar 

  13. P. J. Davidson, M. F. Lappert, and R. Pearce, Chem. Rev. 1976, 76, 219.

    Article  CAS  Google Scholar 

  14. M. F. Lappert, D. A. Patil, and J. B. Pedley, Chem. Commun. 1975, 830.

    Google Scholar 

  15. P. S. Braterman and R. J. Cross, J. Chem. Soc, Dalton Trans. 1972, 657.

    Google Scholar 

  16. P. S. Braterman and R. J. Cross, Chem. Soc. Rev. 1973, 2, 271.

    Article  CAS  Google Scholar 

  17. N. A. Dunham and M. C. Baird, J. Chem. Soc, Dalton Trans. 1975, 774.

    Google Scholar 

  18. E. L. Muetterties and P. L. Watson, J. Am. Chem. Soc. 1976, 98, 4665.

    Article  CAS  Google Scholar 

  19. K. Wada, M. Tamura, and J. K. Kochi, J. Am. Chem. Soc. 1970, 92, 6656.

    Article  Google Scholar 

  20. M. Tamura and J. K. Kochi, J. Am. Chem. Soc. 1971, 93, 1483.

    Article  Google Scholar 

  21. M. Tamura and J. K. Kochi, J. Organomet. Chem. 1972, 42, 205.

    Article  CAS  Google Scholar 

  22. P. O’Neill and D. Schulte-Frohlinde, J. Chem. Soc, Chem. Commun. 1975, 387.

    Google Scholar 

  23. V. M. Berdnikov, Russ. J. Phys. Chem. (Engl. Transl), 1973, 47, 1574.

    Google Scholar 

  24. M. Z. Hoffman and D. W. Kimmel, J. Chem. Soc, Chem. Commun. 1975, 549.

    Google Scholar 

  25. A. Bakač, V. Butković, J. H. Espenson, J. Lovrić, and M. Orhanović, Inorg. Chem. 1996, 35, 5168

    Article  Google Scholar 

  26. A. Bakač, V. Butković, J. H. Espenson, and R. Marčec, Inorg. Chem. 1991, 30, 481

    Article  Google Scholar 

  27. A. Bakač, V. Butković, J. H. Espenson, J. Lovrić, and M. Orhanović, Inorg. Chem. 1989, 28, 4323

    Article  Google Scholar 

  28. A. Bakač, V. Butković, J. H. Espenson, R. Marčec, and M. Orhanović, Inorg. Chem. 1987, 26, 3249

    Article  Google Scholar 

  29. A. Bakač, V. Butković, J. H. Espenson, R. Marčec, and M. Orhanović, Inorg. Chem. 1986, 25, 341

    Article  Google Scholar 

  30. A. Bakač, V. Butković, J. H. Espenson, R. Marčee, and M. Orhanović, Inorg. Chem. 1986, 25, 2562.

    Article  Google Scholar 

  31. G. W. Kirker, A. Bakač, and J. H. Espenson, J. Am. Chem. Soc. 1982, 104, 1249.

    Article  CAS  Google Scholar 

  32. J. H. Espenson, Acc. Chem. Res. 1992, 25, 222.

    Article  CAS  Google Scholar 

  33. J. H. Espenson, Homolytic and Free Radical Pathway in the Reaction of Organochromium Complexes, in: J. S. Lippard, Ed., Progress in Inorganic Chemistry, Wiley, New York 1983, p. 189.

    Chapter  Google Scholar 

  34. S. Muralidharan and J. H. Espenson, Inorg. Chem. 1984, 23, 636.

    Article  CAS  Google Scholar 

  35. M. Shimura and J. H. Espenson, Inorg. Chem. 1983, 22, 334.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ašperger, S. (2003). Reactions of Free Radicals. In: Chemical Kinetics and Inorganic Reaction Mechanisms. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9276-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9276-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4871-9

  • Online ISBN: 978-1-4419-9276-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics