Skip to main content
  • 1691 Accesses

Abstract

Electron-transfer reactions are reactions of the oxidative-reductive type. They are of great importance in nature, but also in technology, and have been in the center of interest during the last 50 years, which is evident from several thousands of publications in the field. Many biological processes, e.g., photosynthesis and oxygen transfer in living cells, involve reactions that are governed by electron transfer over distances as large as 1 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Taube, H. Myers, and R. L. Rich, J. Am. Chem. Soc. 1953, 75, 4118.

    Article  CAS  Google Scholar 

  2. H. Taube and H. Myers, J. Am. Chem. Soc. 1954, 76, 2103.

    Article  CAS  Google Scholar 

  3. W. F. Libby, J. Phys. Chem. 1952, 56, 863.

    Article  CAS  Google Scholar 

  4. R. J. Marcus, B. J. Zwolinski, and H. Eyring, J. Phys. Chem. 1954, 58, 432.

    Article  CAS  Google Scholar 

  5. B. J. Zwolinski, J. J. Marcus, and H. Eyring, Chem. Rev. 1955, 55, 157.

    Article  CAS  Google Scholar 

  6. J. Weiss, Proc. R. Soc. London, A, 1954, 222, 128.

    Article  CAS  Google Scholar 

  7. K. J. Laidler, Can. J. Chem. 1959, 37, 138.

    Article  CAS  Google Scholar 

  8. R. A. Marcus, J. Chem. Phys. 1965, 43, 679.

    Article  CAS  Google Scholar 

  9. J. Halpern, Quart. Rev. 1961, 15, 207.

    Article  CAS  Google Scholar 

  10. M. L. Tobe, Inorganic Reaction Mechanisms, Thomas Nelson, London 1972, p. 128–130.

    Google Scholar 

  11. H. Taube, J. Chem. Educ. 1968, 45, 452.

    Article  CAS  Google Scholar 

  12. N. Sutin, Acc. Chem. Res. 1968, 1, 225.

    Article  CAS  Google Scholar 

  13. H. Taube and E. S. Gould, Acc. Chem. Res. 1969, 2, 321.

    Article  CAS  Google Scholar 

  14. L. E. Bennett, Prog. Inorg. Chem. 1973, 18, 2.

    Google Scholar 

  15. A. Haim, Acc. Chem. Res. 1975, 8, 264.

    Article  CAS  Google Scholar 

  16. S. Bellard, K. A. Rubinson, and G. M. Sheldrick, Acta Crystallogr., Sect. B, 1979, 35, 271.

    Article  Google Scholar 

  17. R. D. Wilson and R. Bau, J. Am. Chem. Soc. 1974, 96, 7601.

    Article  CAS  Google Scholar 

  18. R. A. Marcus and N. Sutin, Biochim. Biophys. Acta, 1985, 811, 265.

    Article  CAS  Google Scholar 

  19. B. S. Brunschwig, C. Creutz, D. H. Macartney, T.-K. Sham, and N. Sutin, Faraday Discuss. Chem. Soc. 1982, 74, 113.

    Article  Google Scholar 

  20. T. J. Meyer and H. Taube, Inorg. Chem. 1968, 7, 2369.

    Article  CAS  Google Scholar 

  21. D. W. Larsen and A. C. Wahl, J. Chem. Phys. 1965, 43, 3765.

    Article  CAS  Google Scholar 

  22. Ref. 10, p. 132.

    Google Scholar 

  23. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 5th ed., Wiley, New York 1988, p. 1308.

    Google Scholar 

  24. P. Bernhard, H. B. Bürgi, J. Hauser, H. Lehmann, and A. Ludi, Inorg. Chem. 1982, 21, 3936.

    Article  CAS  Google Scholar 

  25. A. E. Merbach, J. Am. Chem. Soc. 1985, 107, 312.

    Article  Google Scholar 

  26. J. Silverman and R. W. Dobson, J. Phys. Chem. 1952, 56, 846.

    Article  Google Scholar 

  27. R. J. Marcus, B. J. Zvolinski, and H. Eyring, J. Phys. Chem. 1954, 58, 432.

    Article  CAS  Google Scholar 

  28. Ref. 6, p. 128ff.

    Google Scholar 

  29. R. A. Marcus, J. Chem. Phys. 1956, 24, 966; ibid. 1957, 26, 867.

    Article  CAS  Google Scholar 

  30. R. A. Marcus, Ann. Rev. Phys. Chem. 1964, 15, 155.

    Article  CAS  Google Scholar 

  31. N. S. Hush, Trans. Faraday Soc. 1961, 57, 557.

    Article  CAS  Google Scholar 

  32. V. G. Levich, Adv. Electrochem. Eng. 1966, 4, 249.

    CAS  Google Scholar 

  33. N. Sutin, Acc. Chem. Res. 1982, 15, 275.

    Article  CAS  Google Scholar 

  34. N. Sutin, Prog. Inorg. Chem. 1983, 30, 441.

    Article  CAS  Google Scholar 

  35. N. Sutin, B. S. Brunschwig, C. Creutz, and J. R. Winkler, Pure Appl. Chem. 1988, 60, 1817.

    Article  CAS  Google Scholar 

  36. M. D. Newton and N. Sutin, Ann. Rev. Phys. Chem. 1984, 35, 437.

    Article  CAS  Google Scholar 

  37. R. A. Marcus, J. Phys. Chem. 1968, 72, 891.

    Article  CAS  Google Scholar 

  38. T. W Newton, J. Chem. Educ. 1968, 45, 571.

    Article  CAS  Google Scholar 

  39. J. H. Espenson, Chemical Kinetics and Reaction Mechanism, Mc Graw-Hill, New York 1981, pp. 107–198 and 204-207.

    Google Scholar 

  40. S. F. A. Kettle, Physical Inorganic Chemistry, Oxford University Press, Oxford 1998, pp. 320–325.

    Google Scholar 

  41. R. B. Jordan, Reaction Mechanisms of Inorganic and Organometalic Systems, Oxford University Press, New York 1991, pp. 173–183.

    Google Scholar 

  42. D. E. Pennigton, in: A. E. Martell, Ed., Coordination Chemistry, Am. Chem. Soc., Washington 1978, pp. 482–483.

    Google Scholar 

  43. J. R. Pladziewicz and J. H. Espenson, J. Am. Chem. Soc. 1973, 95, 56.

    Article  CAS  Google Scholar 

  44. C. C. Moser, J. M. Keske, K. Warncke, R. S. Farid, and P. L. Dutton, Nature, 1992, 355, 796.

    Article  CAS  Google Scholar 

  45. R. M. Baum, Chem. Eng. News, 1993, 71, 20.

    Google Scholar 

  46. D. N. Beratan, J. N. Betts, and J. N. Onuchic, Science, 1991, 252, 1285.

    Article  CAS  Google Scholar 

  47. H. Pelletier and J. Kraut, Science, 1992, 258, 1748.

    Article  CAS  Google Scholar 

  48. D. N. Beratan, J. N. Onuchic, J. R. Winkler, and H. B. Gray, Science, 1992, 258, 1740.

    Article  CAS  Google Scholar 

  49. D. S. Wuttke, M. J. Bjerrum, J. R. Winkler, and H. B. Gray, Science, 1992, 256, 1007.

    Article  CAS  Google Scholar 

  50. J. Jortner, J. Chem. Phys. 1976, 64, 4860.

    Article  CAS  Google Scholar 

  51. J. N. Onuchic, D. N. Beratan. J. R. Winkler, and H. B. Gray, Ann. Rev. Biophys. Biomol. Struct. 1992, 114, 4013.

    Google Scholar 

  52. C. Turo, C. K. Chang, G. E. Leroi, R. I. Cukier, and D. G. Nocera, J. Am. Chem. Soc. 1992, 114, 4013.

    Article  Google Scholar 

  53. K. F. Purcell and J. C. Kotz, Inorganic Chemistry, W. B. Saunders, Philadelphia 1977, p. 1078.

    Google Scholar 

  54. Ref. 23, p. 1349.

    Google Scholar 

  55. Ref. 53, pp. 518, 675.

    Google Scholar 

  56. C. Shea and A. Haim, J. Am. Chem. Soc. 1971, 93, 3055.

    Article  Google Scholar 

  57. D. K. Sebera and H. Taube, J. Am. Chem. Soc. 1961, 83, 1785.

    Article  CAS  Google Scholar 

  58. H. Taube, J. Am. Chem. Soc. 1955, 77, 4481.

    Article  CAS  Google Scholar 

  59. R. K. Murmann, H. Taube, and F. A. Posey, J. Am. Chem. Soc. 1957, 79, 262.

    Article  CAS  Google Scholar 

  60. J. O. Edwards, Inorganic Reaction Mechanisms, W. A. Benjamin, New York 1964, p. 42.

    Google Scholar 

  61. R. G. Wilkins, Kinetics and Mechanism of Reactions of Transition Metal Complexes, 2nd ed., VCH Publishers, New York 1991, p. 271.

    Book  Google Scholar 

  62. B. W. Dockum, G. A. Eisman, E. H. Witten, and W. M. Reift, Inorg. Chem. 1983, 22, 150.

    Article  CAS  Google Scholar 

  63. N. Zumbulyadis and H. J. Gysling, J. Am. Chem. Soc. 1982, 104, 3246.

    Article  CAS  Google Scholar 

  64. W. R. Scheldt, Y. J. Lee, D. K. Geiger, K. Taylor, and K. Hatano, J. Am. Chem. Soc. 1982, 104, 3367.

    Google Scholar 

  65. A. Haim, Acc. Chem. Res. 1975, 8, 264.

    Article  CAS  Google Scholar 

  66. A. Haim, Prog. Inorg. Chem. 1983, 30, 273.

    Article  CAS  Google Scholar 

  67. D. N. Hague, Fast Reactions, Wiley-Interscience, London 1971, p. 25.

    Google Scholar 

  68. Farhataziz and M. A. J. Rodgers, Eds., Radiation Chemistry, VCH Publishers, New York 1987, p. 78.

    Google Scholar 

  69. M. Bonifačić, Kern. Ind. (Zagreb), 1987, 36, 435.

    Google Scholar 

  70. D. Schulte-Frohlinde and K. Eiben, Z. Naturforsch., Teil A, 1962, 17, 445; E. J. Hart and J. W. Boag, J. Am. Chem. Soc. 1962, 84, 4090.

    Google Scholar 

  71. B. D. Michael, E. J. Hart, and K. H. Schmidt, J. Phys. Chem. 1971, 75, 2798.

    Article  Google Scholar 

  72. Ref. 67, p. 98

    Google Scholar 

  73. E. J. Hart, in: M. Haissinsky, Ed., Actions Chimiques et Biologiques des Radiations, Vol. 10, Masson et Cie., Paris 1966, p. 3.

    Google Scholar 

  74. J. P. Keene, Radial Res. 1964, 22, 1.

    Article  CAS  Google Scholar 

  75. Ref. 68, p. 33.

    Google Scholar 

  76. Ref. 67, p. 102.

    Google Scholar 

  77. Ref. 10, p. 126.

    Google Scholar 

  78. Ref. 67, p. 99.

    Google Scholar 

  79. Ref. 67, pp. 74-78.

    Google Scholar 

  80. Ref. 67, pp. 106-107.

    Google Scholar 

Bibliography

  1. W. L. Reynolds and R. W. Lumry, Mechanism of Electron Transfer, Ronald Press, New York 1966.

    Google Scholar 

  2. K. F. Purcell and J. C. Kotz, Inorganic Chemistry, W. B. Saunders, Philadelphia 1977, pp. 655–693.

    Google Scholar 

  3. M. L. Tobe, Inorganic Reaction Mechanisms, Thomas Nelson, London 1972, pp. 124–150.

    Google Scholar 

  4. J. O. Edwards, Inorganic Reaction Mechanisms, W. A. Benjamin, New York 1964, pp. 115–136.

    Google Scholar 

  5. R. B. Jordan, Reaction Mechanisms of Inorganic and Organometallic Systems, Oxford University Press, New York 1991, pp. 167–197.

    Google Scholar 

  6. J. D. Atwood, Inorganic and Organometallic Reaction Mechanisms, 2nd ed., VCH Publishers, New York 1997, pp. 273–302.

    Google Scholar 

  7. R. G. Wilkins, Kinetics and Mechanism of Reactions of Transition Metal Complexes, 2nd ed., VCH Publishers, New York 1991, pp. 257–292.

    Book  Google Scholar 

  8. R. D. Cannon, Electron Transfer Reactions, Butterworth, London 1980.

    Google Scholar 

  9. J. J. Zuckerman, Ed., Inorganic Reactions and Methods, Vol. 15. Electron Transfer and Electrochemical Reactions; Photochemical and other Energized Reactions, VCH, Weinheim 1986.

    Google Scholar 

  10. Farhataziz and M. A. J. Rodgers, Eds., Radiation Chemistry, VCH Publishers, New York 1987.

    Google Scholar 

  11. S. F. A. Kettle, Physical Inorganic Chemistry, Oxford University Press, Oxford 1998.

    Google Scholar 

  12. J. H. Espenson, Chemical Kinetics and Reaction Mechanisms, 2nd ed., McGraw-Hill, New York 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ašperger, S. (2003). Electron-Transfer Reactions. In: Chemical Kinetics and Inorganic Reaction Mechanisms. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9276-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9276-5_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4871-9

  • Online ISBN: 978-1-4419-9276-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics