Metallocenes, Strong Electron Donors

  • Smiljko Ašperger

Abstract

For many years it was puzzling that metal atoms, which were not considered good Lewis acids, could form adducts with CO, considered to be a poor donor toward most Lewis acids. An example is the hexacarbonylchromium, Cr(CO)6. On the other hand, it was stressed that chromium, having 24 electrons, by accepting 6x2 electrons from 6 CO molecules, will fill its orbitals to a total of 36 electrons, which is the electron configuration of krypton. The LCAO approximation method (linear combination of atomic orbitals) helped to explain the stability of these adducts as being due to a two-way acid-base interaction between the metal and CO: the metal synergically interacts with CO, acting as an acid and a base, while CO simultaneously behaves as a donor and acceptor. In 1955 Ernst Otto Fischer, University of Munich, showed that an increase of the number of chromium electrons to 36 can be achieved by three π-electron pairs of benzene, like, e.g., in benzenetricarbonylchromium, (C6H6)Cr(CO)3. Cyclopentadienyl, C5H5 -, has also been known to form compounds with metal atoms.

Keywords

Adduct Fluorine Deuterium Perchlorate Halide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. J. Kealy and P. L. Pauson, Nature, 1951, 168, 1039.CrossRefGoogle Scholar
  2. 2.
    M. Rosenblum, Chemistry of the Iron Group Metallocenes, Interscience, New York 1965.Google Scholar
  3. 3.
    G. Wilkinson, J. Organomet. Chem. 1975, 100, 273.CrossRefGoogle Scholar
  4. 4.
    J. S. Thayer, Adv. Organomet. Chem. 1975, 13, 1.CrossRefGoogle Scholar
  5. 5.
    K. F. Purcell and J. C. Kotz, Inorganic Chemistry, W. B.Saunders, Philadelphia 1977, p. 877.Google Scholar
  6. 6.
    C. A. Tolman, Chem. Soc. Rev.Chem. Soc. Rev. 1972,1, 337.CrossRefGoogle Scholar
  7. 7.
    F. A. Cotton, J. Organomet. Chem. 1975, 100, 29.Google Scholar
  8. 8.
    M. Green, D. M. Grove, J. A. K. Howard, J. L. Spencer, and F. G. A. Stone, J. Chem. Soc, Chem. Commun. 19761976, 759.CrossRefGoogle Scholar
  9. 9.
    Ref. 4, pp. 1-49.Google Scholar
  10. 10.
    F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 5th ed., Wiley, New York 1988, pp. 78–83.Google Scholar
  11. 11.
    J. Howard, J. Chem. Soc, Dalton Trans. 1982, 967.Google Scholar
  12. 12.
    R. K. Bohn and A. Haaland, J. Organomet. Chem. 1966, 5, 470.CrossRefGoogle Scholar
  13. 13.
    G. J. Palenik, Inorg. Chem. 1970, 9, 2424.CrossRefGoogle Scholar
  14. 14.
    R. L. Sime and R. J. Sime, J. Am. Chem. Soc. 1974, 96, 892.CrossRefGoogle Scholar
  15. 15.
    M. Cais, Organomet. Chem. Rev. 1966, 1, 435.Google Scholar
  16. 16.
    T. G. Traylor and J. C. Ware, J. Am. Chem. Soc. 1967, 89, 2304.CrossRefGoogle Scholar
  17. 17.
    T. D. Turbitt and W. E. Watts, J. Chem. Soc, Perkin Trans. 2, 1974, 177, and refs. therein.Google Scholar
  18. 18.
    J. W. Larsen and P. Ashkenazi, J. Am. Chem. Soc. 1975, 97, 2140.CrossRefGoogle Scholar
  19. 19.
    C. C. Lee, S. C. Chen, W J. Pannekoek, and R. G. Sutherland, J. Organomet. Chem. 1976, 118, C47.CrossRefGoogle Scholar
  20. 20.
    M. Hisatome and K. Yamakawa, J. Organomet. Chem. 1977, 133, C9.CrossRefGoogle Scholar
  21. 21.
    W.E. Watts, J. Chem. Soc, Perkin Trans. 1976, 1, 804.CrossRefGoogle Scholar
  22. 22.
    S. Ursic and S. Ašperger, J. Inorg. Nucl. Chem. 1979, 41, 1329, and refs. therein.CrossRefGoogle Scholar
  23. 23.
    R. Gleiter and R. Seeger, Helv. Chim. Acta, 1971, 54, 1217.CrossRefGoogle Scholar
  24. 24.
    M. J. Nugent, R. E. Carter, and J. H. Richards, J. Am. Chem. Soc 1969, 91, 6145.CrossRefGoogle Scholar
  25. 25.
    M. Cais, J. J. Dannenberg, A. Eisenstadt, M. L. Levenberg, and J. H. Richards, Tetrahedron Lett. 1966, 1695.Google Scholar
  26. 26.
    M. Hisatome and K. Yamakawa, Tetrahedron Lett. 1971, 27, 2101; ibid, 3533.Google Scholar
  27. 27.
    J. J. Dannenberg, M. L. Levenberg, and J. H. Richards, Tetrahedron, 1973, 29, 1575.CrossRefGoogle Scholar
  28. 28.
    A. Streitwieser, Jr., and R. C. Fahey, Chem. Ind. (London) 1957, 1417.Google Scholar
  29. 29.
    W. H. Saunders, Jr., S. Ašperger, and D. H. Edison, Chem. Ind. (London), 1957, 1417.Google Scholar
  30. 30.
    A. Streitwieser, Jr., R. H. Jagow, R. C. Fahey, and S. Suzuki, J. Am. Chem. Soc. 1958, 80, 2326.CrossRefGoogle Scholar
  31. 31.
    W. H. Saunders, Jr., S. Ašperger, and D. H. Edison, J. Am. Chem. Soc 1958, 80, 2421.CrossRefGoogle Scholar
  32. 32.
    K. Mislow, S. Borcic, and V. Prelog, Helv. Chim. Acta, 1957, 40, 2477.CrossRefGoogle Scholar
  33. 33.
    R. R. Johnson and E. S. Lewis, Proc. Chem. Soc 1958, 52.Google Scholar
  34. 34.
    D. E. Sunko and S. Borcic, ACS Monogr. No. 167, Chap. 3; L. Melander and W H. Saunders, Jr., Reaction Rates of Isotopic Molecules, Wiley, New York 1980; A. Thibblin and P. Ahlberg, Chem. Soc. Rev. 1989, 18, 209-224.Google Scholar
  35. 35.
    D. E. Sunko, Croat. Chem. Acta, 1996, 69, 1275–1304.Google Scholar
  36. 36.
    K. C. Westway in: E. Buncel and C. C. Lee, Eds., Isotopes in Organic Chemistry, Vol. 7, Elsevier, Amsterdam 1987, Chap. 5.Google Scholar
  37. 37.
    B. Capon and S. P. Mc Manus. Neighboring Group Participation, Plenum Press, New York 1976.CrossRefGoogle Scholar
  38. 38.
    D. T. Stoelting and V. J. Shiner, Jr., J. Am. Chem. Soc. 1993, 115, 1695; V. J. Shiner and F. P. Wilgis, in: E. Buncel and W. H. Saunders Jr., Eds., Isotopes in Organic Chemistry, Vol. 8, Elsevier, Amsterdam 1992, Chap. 6; V. J. Shiner, Jr., T. E. Neumann, and B. B. Basinger, Croat Chem. Acta, 1996, 69, 1405.CrossRefGoogle Scholar
  39. 39.
    Y. Zhang, J. Bommuswamy, and M. L. Sinnott, J. Am. Chem. Soc. 1994, 116, 7557.CrossRefGoogle Scholar
  40. 40.
    S. Ašperger, D. Pavlović, Z. Kukrić, and D. Šutić, Inorg. Chim. Acta, 1990, 171, 5.CrossRefGoogle Scholar
  41. 41.
    V. J. Shiner, Jr., ACS Monogr. No. 167, 1970, p. 104.Google Scholar
  42. 42.
    A. Streitwieser, Jr. and G. A. Daffon, Tetrahedron Lett. 1969, 1263.Google Scholar
  43. 43.
    V. J. Shiner, Jr., M. W. Rapp, E. A. Halevi, and M. Wolfsberg, J. Am. Chem. Soc. 1968, 90, 7171.CrossRefGoogle Scholar
  44. 44.
    M. Schwarz, Ed., Ions and Ion Pairs in Organic Reactions, Vol. 2, Wiley, New York 1974, pp. 297–329.Google Scholar
  45. 45.
    B. Goričnik, Z. Majerski, S. Borčić, and D. E. Sunko, J. Org. Chem. 1973, 38, 1881.CrossRefGoogle Scholar
  46. 46.
    D. Šutić, S. Ašperger, and S. Borčić, Org. Chem. 1982, 47, 5120.CrossRefGoogle Scholar
  47. 47.
    E. A. Hill and J. H. Richards, J. Am. Chem. Soc. 1961, 83, 3840.CrossRefGoogle Scholar
  48. 48.
    S. Winstein and R. Heck, J. Am. Chem. Soc. 1956, 78, 4801.CrossRefGoogle Scholar
  49. 49.
    S. Winstein and G. C. Robinson, J. Am. Chem. Soc. 1958, 80, 169.CrossRefGoogle Scholar
  50. 50.
    S. Ašperger, Z. Kukrić, W. H. Saunders, Jr., and D. Šutić, J. Chem. Soc, Perkin. Trans. 2, 1992, 275.Google Scholar
  51. 51.
    S. R. Hartshorn and V. J. Shiner, Jr., J. Am. Chem. Soc. 1972, 94, 9002.CrossRefGoogle Scholar
  52. 52.
    E. G. Perevalova, Yu. A. Ustynyuk, and A. N. Nesmeyanov, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 1963, 1036.Google Scholar
  53. 53.
    W. H. Saunders, Jr., J. Am. Chem. Soc. 1985, 107, 164.CrossRefGoogle Scholar
  54. 54.
    M. Amin, R. C. Price, and W. H. Saunders, Jr., J. Am. Chem. Soc. 1990, 112, 4467.CrossRefGoogle Scholar
  55. 55.
    L. Melander and W. H. Saunders, Jr., Reaction Rates of Isotopic Molecules, Wiley-Interscience, New York 1980, pp. 140–152.Google Scholar
  56. 56.
    S. Winstein and G. C. Robinson, J. Am. Chem. Soc. 1958, 80, 169.CrossRefGoogle Scholar
  57. 57.
    C. A. Bunton, N. Carrasco, F. Davoudzadeh, and W. E. Watts, J. Chem. Soc, Perkin Trans 2, 1980, 1520.Google Scholar
  58. 58.
    J. H. Richards and E. A. Hill, J. Am. Chem. Soc. 1959, 81, 3484.CrossRefGoogle Scholar
  59. 59.
    G. Gerichelli, B. Floris, and G. Ortaggi, J. Organomet. Chem. 1974, 78, 241.CrossRefGoogle Scholar
  60. 60.
    C. Lo Sterzo and G. Ortaggi, Tetrahedron, 1984, 40, 593.CrossRefGoogle Scholar
  61. 61.
    C. A. Bunton, N. Carrasco, and W. E. Watts, J. Organomet. Chem., C, 1977, 131, 21.CrossRefGoogle Scholar
  62. 62.
    L. I. Kazakova, N. M. Loim, E. G. Perevalova, and Z. N. Parnes, J. Org. Chem. USSR (Engl. Transl.), 1974, 2294.Google Scholar
  63. 63.
    C. A. Bunton, W. E. Watts, Tetrahedron Lett. 1977, 2049.Google Scholar
  64. 64.
    C. A. Bunton, N. Carrasco, N. Cully, and W. E. Watts, J. Chem. Soc, Perkin Trans. 2, 1980, 1859.Google Scholar
  65. 65.
    H. Mayr and D. Rau, Chem. Ber. 1994, 127, 2493.CrossRefGoogle Scholar
  66. 66.
    G. Neshvad, R. M. G. Roberts, and J. Silver, J. Organomet. Chem. 1982, 236, 237.CrossRefGoogle Scholar
  67. 67.
    C. Cordier, M. Gruselle, J. Vaissermann, L. L. Troitskaya, V. I. Bakhmutov, V. I. Sokolov, and G. Jauoen, Organometallics, 1992, 11, 3825.CrossRefGoogle Scholar
  68. 68.
    S. Braun, T. S. Abram, and W E. Watts, J. Organomet. Chem. 1975, 97, 429.CrossRefGoogle Scholar
  69. 69.
    U. Behrens, J. Organomet. Chem. 1979, 182, 89.CrossRefGoogle Scholar
  70. 70.
    G. A. Olah, P. W. Westerman, and D. A. Forsyth, J. Am. Chem. Soc. 1975, 97, 3419.CrossRefGoogle Scholar
  71. 71.
    K. V. Kilway and A. Streitwieser, Jr., Abstracts of 213 ACS National Meeting, San Francisco, CA, April 13-17, 1997.Google Scholar
  72. 72.
    C. A. Bunton and A. Konasiewicz, J. Chem. Soc. 1955, 1354.Google Scholar
  73. 73.
    C. G. Swain, R. B. Mosely, and D. F. Bown, J. Am. Chem. Soc. 1955, 77, 3731; C. G. Swain, T. E. C. Knee, and A. Maclachlan, J. Am. Chem. Soc. 1960, 82, 6101.CrossRefGoogle Scholar
  74. 74.
    D. N. Kevill and A. R. Pinhas, J. Org. Chem. 1993, 58, 197.CrossRefGoogle Scholar
  75. 75.
    S. Winstein, B. Appel, R. Baker, and A. Diaz, in: Organic Reaction Mechanisms, The Chemical Society, London 1965, pp. 124–126.Google Scholar
  76. 76.
    A. H. Fainberg and S. Winstein, J. Am. Chem. Soc. 1956, 78, 2770.CrossRefGoogle Scholar
  77. 77.
    T. W. Bentley and P.v. R. Schleyer, J. Am. Chem. Soc. 1976, 98, 7658.CrossRefGoogle Scholar
  78. 78.
    S. Winstein, E. Grunwald, and L. L. Ingraham, J. Am. Chem. Soc. 1948, 70, 821.CrossRefGoogle Scholar
  79. 79.
    S. Ašperger and B. Cetina-Čižmek, in preparation.Google Scholar
  80. 80.
    D. N. Kevill and S. W. Abderson, J. Am. Chem. Soc. 1986, 108, 1579.CrossRefGoogle Scholar
  81. 81.
    R. S. Drago and D. C. Ferris, J. Phys. Chem. 1995, 99, 6563.CrossRefGoogle Scholar
  82. 82.
    M. J. Weaver, Chem. Rev. 1992, 92, 463, and refs. therein.CrossRefGoogle Scholar
  83. 83.
    G. E. Mc Mannis, R. M. Nielson, A. Gochev, and M. J. Weaver, J. Am. Chem. Soc. 1989, 111, 5533.CrossRefGoogle Scholar
  84. 84.
    R. M. Nielson, G. E. Mc Manis, M. N. Golovin, and M. J. Weaver, J. Phys. Chem. 1988, 92, 3441.CrossRefGoogle Scholar
  85. 85.
    H. Köpf, Anticancer Res. 1986, 6, 33; Arzneim. Forsch. 1987, 37, 532; Eur. J. Cancer Clin. Oncol. 1985, 21, 853.Google Scholar
  86. 86.
    N. Freestone, Educ. Chem. 1988, 25, 156.Google Scholar
  87. 87.
    S. E. Sherman and S. J. Lippard, Chem. Rev. 1987, 1153.Google Scholar
  88. 88.
    A. Pasini and F. Zunino, Angew. Chem., Int. Ed. Engl. 1987, 26, 615.CrossRefGoogle Scholar
  89. 89.
    M. J. S. Dewar and K. M. Merz, J. Am. Chem. Soc. 1987, 109, 6553.CrossRefGoogle Scholar
  90. 90.
    B. K. Keppler and K. Michels, Arzneim. Forsch. 1985, 35, 1837.Google Scholar
  91. 91.
    P. Köpf-Maier and H. Köpf, Chem. Rev. 1987, 87, 1137.CrossRefGoogle Scholar
  92. 92.
    I. Haiduc and C. Silvestru, Coord. Chem. Rev. 1990, 99, 253–296.CrossRefGoogle Scholar
  93. 93.
    J. C. Ruble and G. C. Fu, J. Org. Chem. 1996, 61, 7230.CrossRefGoogle Scholar
  94. 94.
    E. F. V. Scriven, Chem. Soc. Rev. 1983, 12, 129.CrossRefGoogle Scholar
  95. 95.
    E. Vedejs and X. Chen, J. Am. Chem. Soc. 1996, 118, 1809.CrossRefGoogle Scholar
  96. 96.
    J. C. Ruble, H. A. Latham, and G. C. Fu, J. Am. Chem. Soc. 1997, 119, 1492.CrossRefGoogle Scholar
  97. 97.
    S. Stinson, Chem. Eng. News, 1997 (February 17), p. 10.Google Scholar
  98. 98.
    A. Togni and T. Hayashi, Eds., Ferrocenes, VCH, New York 1995.Google Scholar
  99. 99.
    A. Togni, Angew. Chem., Int. Ed. Engl. 1996, 35, 1475.CrossRefGoogle Scholar
  100. 100.
    H. C. L. Abbenhuis, U. Burckhardt, V. Gramlich, A. Martelletti, J. Spencer, I. Steiner, and A. Togni, Organometallics, 1996, 15, 1614.CrossRefGoogle Scholar
  101. 101.
    C. Janiak and H. Schumann, Adv. Organomet. Chem. 1991, 33, 291.CrossRefGoogle Scholar
  102. 102.
    C. J. Pederson, J. Am. Chem. Soc. 1967, 89, 2495.CrossRefGoogle Scholar
  103. 103.
    J. C. Medina, I. Gay, Z. Chen, L. Echegoyen, and G. W. Gokel, J. Am. Chem. Soc. 1991, 113, 365.CrossRefGoogle Scholar
  104. 104.
    J. C. Medina, C. Li, S. G. Bott, J. L. Atwood, and G. W. Gokel, J. Am. Chem. Soc. 1991, 113, 366.CrossRefGoogle Scholar
  105. 105.
    E. C. Constable, Angew. Chem., Int. Ed. Engl. 1991, 30, 407.CrossRefGoogle Scholar
  106. 106.
    J. C. Medina, T. T. Goodnow, M. T. Rojas, J. L. Atwood, B. C. Lynn, E. A. Kaifer, and G. W. Gokel, J. Am. Chem. Soc. 1992, 114, 10583.CrossRefGoogle Scholar
  107. 107.
    P. D. Beer, Z. Chen, M. G. B. Drew, J. Kingston, M. Ogden, and P. Spencer, J. Chem. Soc, Chem. Commun. 1993, 1046, and refs. therein.Google Scholar
  108. 108.
    Z. Chen, A. R. Graydon, and P. D. Beer, J. Chem. Soc, Faraday Trans. 2, 1996, 97.CrossRefGoogle Scholar
  109. 109.
    B. Dietrich, Pure Appl. Chem. 1993, 65, 1457.CrossRefGoogle Scholar
  110. 110.
    P. D. Beer, Z. Chen, A. J. Goulden, A Grieve, D. Hesek, F. Szemes, and T. Wear, J. Chem. Soc, Chem. Commun. 1994, 1269; P. D. Beer, D. Hesek, J. Hadacovd, and S. E. Stokes, J. Chem. Soc, Chem. Commun. 1992, 270; P. D. Beer, Chem. Soc. Rev. 1989,18, 409.Google Scholar
  111. 111.
    S. Barlow and D. O’Hare, Chem. Rev. 1997, 97, 637–669.CrossRefGoogle Scholar
  112. 112.
    H. H. Brintzinger, D. Fischer, R. Mülhaupt, B. Rieger, and R. Waymouth, Angew. Chem. 1995, 107, 1255; Angew. Chem., Int. Ed. Engl. 1995, 34, 143; H. Cherdron, M. J. Brekner, and F. Osan, Angew. Macromol. Chem. 1994, 223, 121.CrossRefGoogle Scholar
  113. 113.
    W. A. Herrmann and B. Cornils, Angew. Chem., Int. Ed. Engl. 1997, 36, 1048–1067.CrossRefGoogle Scholar
  114. 114.
    P. Gómez-Elipe, P. M. Macdonald, and I. Manners, Angew. Chem., Int. Ed. Engl. 1997, 7, 762; I. Manners, Adv. Organomet. Chem. 1995, 37, 131; S. Barlow, L. Rohl, S. Shi, C. M. Freeman, and D. O’Hare, J. Am. Chem. Soc. 1996, 118, 7578; R. Rulkens, Y. Ni, and I. Manners, J. Am. Chem. Soc. 1994, 116, 12121; T. J. Peckham, J. A. Massey, M. Edwards, I. Manners, and D. A. Fencher, Macromolecules, 1996, 29, 2396.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Smiljko Ašperger
    • 1
  1. 1.Croatian Academy of Sciences and ArtsUniversity of ZagrebZagrebCroatia

Personalised recommendations