Chain Propagation Mechanisms

  • Ayusman Sen
Part of the Catalysis by Metal Complexes book series (CMCO, volume 27)

Abstract

The copolymers of olefins with carbon monoxide are of great interest from at least four standpoints [1. First, as a monomer, carbon monoxide is particularly plentiful and inexpensive. Second, the presence of the carbonyl chromophore in the backbone makes them photodegradable [2], A third reason for the interest in olefin-carbon monoxide copolymers is that, because of the ease with which the carbonyl group can be chemically modified, the polyketones serve as excellent starting materials for other classes of functionalized polymers. In fact, about two dozen polymers incorporating a variety of functional groups have been previously synthesized [la] from the random ethylene-carbon monoxide copolymer (C2H4:CO>1) made through radical-initiated polymerization. Since carbon monoxide does not homopolymerize, the alternating olefin-carbon monoxide copolymers (olefin: CO = 1) have the highest possible concentration of the reactive carbonyl groups. Moreover, the 1,4-arrangement of the carbonyl groups in the alternating olefin-carbon monoxide copolymers provides additional functionalization pathways [3]. Finally, specific interest in the alternating ethylene-carbon monoxide copolymer stems from its high mechanical strength which results from its high crystallinity [1c,d,4]. To date, the metal ions that have been found to be active for the copolymerization and cooligomerization of vinyl monomers with carbon monoxide are palladium(II), nickel(II), and rhodium(I). The mechanistic pathways through which chain growth occurs at these metal centers are discussed below.

Keywords

Nickel Ketone MeOH Sponge Macromolecule 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reviews: (a) Sen, A. Adv. Polym. ScL, 1986, 73/74, 125. (b) Sen, A. Ace. Chem. Res. 1993, 26, 303. (c) Drent, E.; Budzelaar, P. H. M. Chem. Rev 1996, 96, 663. (d) Sommazzi, A.; Garbassi, F. Prog. Polym. ScL, 1997, 22, 1547. (e) Nozaki, K.; Hiyama, T. J.  Organomet. Chem. 1998, 576, 248. (f) Abu-Surrah, A. S.; Rieger, B. Top. Catal 1999, 7, 165. (g) Bianchini, C; Meli, A. Coord. Chem. Rev 2002, 225, 35.Google Scholar
  2. 2.
    (a) Forbes, M. D. E.; Ruberu, S. R.; Nachtigallova, D.; Jordan, K. D.; Barborak, J. C. J. Am. Chem. Soc. 1995, 117, 3946. (b) Forbes, M. D. E.; Barborak, J. C; Dukes, K. E.; Ruberu, S. R. Macromolecules 1994, 27, 1020. (c) Xu, F. Y.; Chien, J. C. W. Macromolecules 1993, 26, 3485. (d) Guillet, J. Polymer Photophysics and Photochemistry; Cambridge University: Cambridge, 1985; p. 261.Google Scholar
  3. 3.
    (a) Sen, A.; Jiang, Z.; Chen, J.-T. Macromolecules 1989, 22, 2012. (b) Jiang, Z.; Sen, A. Macromolecules 1992, 25, 880. (c) Jiang, Z.; Sanganeria, S.; Sen, A. J. Polym. Sci: A 1994, 32, 841. (d) Green, M. J.; Lucy, A. R.; Lu, S.; Paton, R. M. J. Chem. Soc, Chem. Commun. 1994, 2063. (e) Mul, W. P.; Dirkzwager, H.; Broekhuis, A. A.; Heeres, H. J.; van der Linden, A. J.; Orpen, A. G. Inorg. Chim. Acta 2002, 327, 147.Google Scholar
  4. 4.
    (a) Lommerts, B. J.; Klop, E. A.; Aerts, J. J. Polym. Sci., Part B: Polym. Phys 1993, 31, 1319. (b) Klop, E. A.; Lommerts, B. J.; Veurink, J.; Aerts, J.; Peijenbroek, R. R. J. Polym. Sci., Part B: Polym. Phys. 1995, 33, 315. (c) Lageron, J. M.; Vickers, M. E.; Powell, A. K.; Davidson, N. S. Polymer 2000, 41, 3011.Google Scholar
  5. 5.
    Sen, A.; Lai, T.-W. ,J. Am. Chem. Soc. 1982, 104, 3520.CrossRefGoogle Scholar
  6. 6.
    Lai, T.-W.; Sen, A. , Organometallies, 1984, 3, 866.CrossRefGoogle Scholar
  7. 7.
    Shultz, C. S.; Ledford, J.; DeSimone, J. M.; Brookhart, M. ,J. Am. Chem. Soc 2000, 122, 6351.CrossRefGoogle Scholar
  8. 8.
    Rix, F. C; Brookhart, M.; White, P. S. , J. Am. Chem. Soc 1996, 118, 4746.CrossRefGoogle Scholar
  9. 9.
    (a) Chen, J.-T.; Sen, A. J. Am. Chem. Soc 1984, 106, 1506. (b) Sen, A.; Chen, J.-T.; Vetter, W. M.; Whittle, R. R. /. Am. Chem. Soc 1987, 109, 148.Google Scholar
  10. 10.
    (a) Brumbaugh, J. S.; Whittle, R. R.; Parvez, M. A.; Sen. A. Organometallics, 1990, 9, 1735. (b) Vetter, W. M; Sen, A. J. Organomet. Chem 1989, 378, 485.Google Scholar
  11. 11.
    Drent, E.; van Broekhoven, J. A. M.; Doyle, M. J. , J. Organomet. Chem. 1991, 417, 235.CrossRefGoogle Scholar
  12. 12.
    Xu, F. Y.; Zhao, X.; Chien, J. C. W. , Macromol. Chem. 1993, 194, 2579.CrossRefGoogle Scholar
  13. 13.
    Koide, Y.; Bott, S. G.; Barron, A. R. , Organometallics, 1996, 75, 2213.CrossRefGoogle Scholar
  14. 14.
    Dossett, S. J.; Gillon, A.; Orpen, A. G.; Fleming, J. S.; Pringle, P. G.; Wass, D. F.; Jones, M. D. ,Chem. Commun 2001, 699.Google Scholar
  15. 15.
    (a) Bianchini, C; Lee, H. M.; Meli, A.; Oberhauser, W.; Peruzzini, M.; Vizza, F. Organometallics 2002; 21, 16. (b) Bianchini, C; Lee, H. M.; Meli, A.; Oberhauser, W.; Vizza, F.; Bruegeller, P.; Haid, R.; Langes, C. Chem. Commun 2000, 777.Google Scholar
  16. 16.
    (a) MacNeil, P. A.; Roberts, N. K.; Bosnich, B. J. Am. Chem. Soc 1981, 103, 2273. (b) Fryzuk, M. D.; Bosnich, B. J. Am. Chem. Soc 1977, 99, 6262.Google Scholar
  17. 17.
    Doherty, S.; Eastman, G. R.; Tooze, R. P.; Scanlan, T. H.; Williams, D.; Elsegood, M. R. J.; Clegg, W. ,Organometallics 1999, 18, 3558.CrossRefGoogle Scholar
  18. 18.
    Ledford, J.; Shultz, C. S.; Gates, D. P.; White, P. S.; DeSimone, J. M.; Brookhart, M. ,Organometallics 2001, 20, 5266.CrossRefGoogle Scholar
  19. 19.
    Reddy, K. R.; Tsai, W.-W.; Surekha, K.; Lee, G.-H.; Peng, S.-M.; Chen, J.-T.; Liu, S-T. J. Chem. Soc, Dalton Trans. 2002, 1776.Google Scholar
  20. 20.
    Braunstein, P.; Fryzuk, M. D.; Le Dali, M.; Naud, F.; Rettig, S. J.; Speiser, F. J. Chem Soc, Dalton Trans. 2000, 1067.Google Scholar
  21. 21.
    (a) Chen, Y.-C; Chen, C.-L.; Chen, J.-T.; Liu, S.-T. Organometallics 2001, 20, 1285. (b) Reddy, K. R.; Surekha, K.; Lee, G.-H.; Peng, S.-M.; Chen, J.-T.; Liu, S-T. Organometallics 2001, 20, 1292.Google Scholar
  22. 22.
    Braunstein, P.; Frison, C; Morise, X.,Angew. Chem., Int. Ed. 2000, 39, 2867.CrossRefGoogle Scholar
  23. 23.
    (a) Svensson, M.; Matsubara, T.; Morokuma, K. Organometallics 1996, 75, 5568. (b) Koga, M.; Morokuma, K. J. Am. Chem. Soc. 1986, 108, 6136.Google Scholar
  24. 24.
    (a) Margl, P.; Ziegler, T. J. Am. Chem. Soc 1996, 118, 7337. (b) Margl, P.; Ziegler, T. Organometallics 1996, 15, 5519.Google Scholar
  25. 25.
    Mul, W. P.; Oosterbeck, H.; Betel, G. A.; Kramer, G.-J.; Drent, E. ,Angew. Chem., Int. Ed. 2000,59, 1848.CrossRefGoogle Scholar
  26. 26.
    Brookhart, M.; Rix, F. C; DeSimone, J. M.; Barborak, J. C. ,J. Am. Chem. Soc. 1992, 114, 5894.CrossRefGoogle Scholar
  27. 27.
    Markies, B. A.; Kruis, D.; Rietveld, M. H. P.; Verkerk, K. A. N.; Boersma, J.; Kooijman, H.; Lakin, M. T.; Speck, A. L.; van Koten, G. ,J. Am. Chem. Soc 1995, 117, 5263.CrossRefGoogle Scholar
  28. 28.
    van Asselt, R.; Gielens, E. E. C. G.; Rulke, R. E.; Vrieze, K.; Elsevier, C. J. J. Am. Chem. Soc. 1994, 116, 911.Google Scholar
  29. 29.
    Kacker, S.; Sen, A. ,J. Am. Chem. Soc. 1995, 117, 10591.CrossRefGoogle Scholar
  30. 30.
    Borkowsky, S. L.; Waymouth, R. M. ,Macromolecules 1996, 29, 6377.CrossRefGoogle Scholar
  31. 31.
    Nozaki, K.; Sato, N.; Nakamoto, K.; Takaya, H. ,Bull. Chem. Soc. Jpn. 1997, 70, 659.CrossRefGoogle Scholar
  32. 32.
    (a) Delis, J. G. P.; Groen, J. H.; Vrieze, K.; van Leeuwen, P. W. N. M.; Veldman, N.; Spek, A. L. Organometallics 1997, 16, 551. (b) Groen, J. H.; Elsevier, C. J.; Vrieze, K.; Smeets, W. J. J.; Spek, A. L. Organometallics 1996, 75, 3445.Google Scholar
  33. 33.
    Kacker, S.; Sen, A. ,J. Am. Chem. Soc. 1997, 119, 10028.CrossRefGoogle Scholar
  34. 34.
    (a) Klabunde, U.; Tulip, T. H.; Roe, D. C; Ittel, S. D. J. Organomet. Chem 1987, 334, 141. (b) Klabunde, U.; Ittel, S. D. J. Mol. Catal 1987, 41, 123.Google Scholar
  35. 35.
    (a) Klaui, W.; Bongards, J.; Reiss, G. J. Angew. Chem., Int. Ed 2000, 39, 3894. (b) Domhover, B.; Klaui, W.; Kremer-Aach, A.; Bell, R.; Mootz, D. Angew. Chem., Int. Ed 1998, 37, 3050. (c) Desjardins, S. Y.; Cavell, K. J.; Hoare, J. L.; Skelton, B. W.; Sobolev, A. N.; White, A. H.; Keim, W. J. Organomet. Chem. 1997, 544, 163.Google Scholar
  36. 36.
    (a) Shultz, C. S.; DeSimone, J. M.; Brookhart, M. Organometallics 2001, 20, 16. (b) Shultz, C. S.; DeSimone, J. M.; Brookhart, M. J. Am. Chem. Soc 2001, 123, 9172.Google Scholar
  37. 37.
    Review: Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry; University Science Books: Mill Valey, CA, 1987; p. 621.Google Scholar
  38. 38.
    The mechanism of the final, aldehyde-forming, step is controversial. Both oxidative addition of hydrogen to the metal-acyl species, followed by reductive elimination of aldehyde, as well as binuclear reductive elimination involving a metal-acyl and a metal- hydride species, have been proposed. See reference 37 for a discussion.Google Scholar
  39. 39.
    (a) Sen, A.; Brumbaugh, J. S.; Lin, M. J. Mol. Catal. 1992, 73, 297. (b) Sen, A.; Brumbaugh, J. S. J. Organomet. Chem 1985, 279, C5.Google Scholar
  40. 40.
    Henrici-Olive, G.; Olive, S.,Angew. Chem., Int. Ed. Engl. 1972, 15, 136.CrossRefGoogle Scholar
  41. 41.
    (a) Osakada, K.; Takenaka, Y.; Choi, J.-C.; Yamaguchi, I.; Yamamoto, T. J. Polym. Sci. A: Polym. Chem 2000, 38, 1505. (b) Choi, J.-C; Yamaguchi, I.; Osakada, K.; Yamamoto, T. Macromolecules 1998, 31, 8731. (c) Osakada, K.; Choi, J.-C; Yamamoto, T. J. Am. Chem. Soc. 1997, 119, 12390.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Ayusman Sen
    • 1
  1. 1.Department of Chemistry, The Pennsylvania State UniversityUSA

Personalised recommendations