Skip to main content

The Group B Coxsackieviruses as Vaccines and Vectors

  • Chapter
Cardiomyopathies and Heart Failure

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 248))

  • 143 Accesses

Abstract

Nearly all of what is understood about vaccinating against human enteroviruses comes from studies on the poliovirus (PV) vaccines. These highly successful products have eradicated poliomyelitis wherever they have been rigorously applied. At present, there are no other vaccines commercially available against human enteroviruses other than those against the PV. The group B coxsackieviruses (CVB) are the best studied non-polio enteroviruses primarily because of their association with serious human diseases that include acute viral inflammatory heart disease and pancreatitis. Like the PV, different studies have reported on the use of inactivated as well as attenuated vaccines against the group B coxsackieviruses (CVB). In addition, subunit vaccines as well as chimeric attenuated strains that express antigenic epitopes other than those of the vector strain itself have been reported. These studies have used the excellent murine models of CVBinduced myocarditis. Attenuation of a virulent or pathogenic CVB strain can be accomplished by site-specific mutagenesis or by creating recombinant chimeric CVB genomes. These viruses act as useful serotype-specific vaccine strains. The CVB are capable of expressing both foreign antigenic epitopes as well as biologically active proteins from within the viral single open reading frame. Expression of foreign (non-CVB3) antigens by a CVB3 vector can elicit a host immune response against the foreign antigen even in the face of pre-existing anti-vector immunity. More recently, inoculation of nonobese diabetic (NOD) mice with CVB has been effective to suppress the development of insulin-dependent diabetes mellitus in these mice. Together, the data suggest the CVB represent a robust and useful vaccine and vector system with high potential for clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nathanson N. Epidemiologic Aspects of Poliomyelitis Eradication. Rev Infect Dis 1984;6:S308–312.

    Article  PubMed  Google Scholar 

  2. Blume S, Geesink I. A Brief History of Polio Vaccines. Science 2000;288:1593–1594.

    Article  PubMed  CAS  Google Scholar 

  3. Baboonian C, Davies MJ, Booth JC, et al. Coxsackie B Visuses and Human Heart Disease. Curr Top Microbiol Immunol 1997;223:31–52.

    Article  PubMed  CAS  Google Scholar 

  4. CDC. Enterovirus Surveillance-United States, 1997 to 1999. MMWR 2000;49:913–916.

    Google Scholar 

  5. Zaoutis T, Klein JD. Enterovirus Infections. PediatrRev 1998;19:183–191.

    CAS  Google Scholar 

  6. Modlin JF, Rotbart HA. Group B Coxsackie Disease in Children. Curr Top Microbiol Immunol. 1997;223:53–80.

    Article  PubMed  CAS  Google Scholar 

  7. Martino TA, Liu P, Petric M, et al. “Enteroviral Myocarditis and Dilated Cardiomyopathy: A Review of Clinical and Experiemental Studies.” In: Human Enterovirus Infections, H Rotbart, ed. Washington, DC: ASM Press, 1995.

    Google Scholar 

  8. Grumbach M, Heim A, Vonhof S, et al. Coxsackievirus Genome in Myocardium of Patients with Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy. Cardiology 1998;89:241–245.

    Article  PubMed  CAS  Google Scholar 

  9. Archard LC, Khan MA, Soteriou BA, et al. Characterization of Coxsackie B Virus RNA in Myocardium from Patients with Dilated Cardiomyopathy by Nucleotide Sequencing of Reverse Transcription-Nested Polymerase Chain Reaction Products. Hum Pathol 1998;29:578–584.

    Article  PubMed  CAS  Google Scholar 

  10. Kim KS, Hufnagel G, Chapman NM, et al. The Group B Coxsackieviruses and Myocarditis. Rev Med Virol. 2001;11:355–368.

    Article  PubMed  CAS  Google Scholar 

  11. Huber SA, Gauntt CJ, Sakkinen P. Enteroviruses and MyoCarditis: Viral Pathogenesis Through Replication, Cytokine Induction, and Immunopathogenicity. Adv Virus Res 1998:51:35–80.

    Article  PubMed  CAS  Google Scholar 

  12. Liu PP, Mason JW. Advances in the Understanding of Myocarditis. Circulation. 2001;104:1076–1082.

    Article  PubMed  CAS  Google Scholar 

  13. Rotbart HA. Enteroviral Infections of the Central Nervous System. Clin Infect Dis 1995;20:971–981.

    Article  PubMed  CAS  Google Scholar 

  14. Berlin LE, Rorabaugh ML, Heldrich F, et al. Antiseptic Meningitis in Infacts <2 years of age: Diagnosis and Etiology. J Infect Dis 1993;168:888–892.

    Article  PubMed  CAS  Google Scholar 

  15. Parasuraman TV, Frenia K, Romero J. Enteroviral Meningitis. Cost of Illness and Considerations for the Economic Evaluation of Potential Therapies. Pharmacoeconomics 2001;9:3–12.

    Article  Google Scholar 

  16. Yoon JW, Austin M, Onodera T, et al. Isolation of a Virus from the Pancreas of a Child with Diabetic Ketoacidosis. N Engl J Med 1979;300:1173–1179.

    Article  PubMed  CAS  Google Scholar 

  17. Juhela S, Hyoty H, Roivainen M, et al. T-Cell Responses to Enterovirus Antigens in Children with Type 1 Diabetes. Diabetes 2000;49:1308–1313.

    Article  PubMed  CAS  Google Scholar 

  18. Sadeharju K, Lonnrot M, Kimpimaki T, et al. Enterovirus Antibody Levels During the First Two Years of Life in Prediabetic Autoantibody-Positive Children. Diabetologia 2001;44:818–823.

    Article  PubMed  CAS  Google Scholar 

  19. Lonnrot M, Salminen K, Knip M, et al. Enterovirus RNA in Serum is a Risk Factor for Beta-Cell Autoimmunity and Clinical Type 1 Diabetes: A Prospective Study. J Med Virol 2000;61:214–220.

    Article  PubMed  CAS  Google Scholar 

  20. Naserke HE, Bonifacio E, Ziegler AG. Prevalence, Characteristics and Diabetes Risk Associated with Transient Maternally Acquired Islet Antibodies and Persistent Islet Antibodies in Offspring of Parents with Type 1 Diabetes. J Clin Endocrinol Metab 2001;86:4826–4833.

    Article  PubMed  CAS  Google Scholar 

  21. Tracy S, Drescher KM, Chapman NM, et al. Manuscript in preparation.

    Google Scholar 

  22. Tracy S, Hofling K, Pirruccello S, et al. Group B Coxsackievirus Myocarditis and Pancreatitis: Connection Between Viral Virulence Phenotypes in Mice. J Med Virol 2000;62:70–81.

    Article  PubMed  CAS  Google Scholar 

  23. Ramsingh AI. Coxsackieviruses and Pancreatitis. Front Biosci 1997;2:E53–E62.

    PubMed  CAS  Google Scholar 

  24. Byington CL, Taggart EW, Carroll KC, et al. A Polymerase Chain Reaction-Based Epidemiologic Investigation of the Incidence of Nonpolio Enteroviral Infections in Febrile and Afebrile Infants 90 days and Younger. Pediatrics 1999;103:E27

    Article  PubMed  CAS  Google Scholar 

  25. Salk JE. Landmark Article August 6, 1955: Considerations in the Preparation and Use of Poliomyelitis Virus Vaccine. JAMA 1984;251:2700–2709.

    Article  PubMed  CAS  Google Scholar 

  26. Sabin AB. Oral Poliovirus Vaccine: History of its Development and Use and Current Challenge to Eliminate Poliomyelitis from the World. J Infect Dis. 1985:151:420–436.

    Article  PubMed  CAS  Google Scholar 

  27. Hammond GW, Lukes H, Wells B, et al. Maternal and Neonatal Neutralizing Antibody Titers to Selected Enteroviruses. Pediatr Infect Dis 1985;4:32–35.

    Article  PubMed  CAS  Google Scholar 

  28. Siafakas N, Georgopoulou A, Markoulatos P, et al. Molecular Detection and Identification of an Enterovirus During an Outbreak of Aseptic Meningitis. Clin Lab Anal 2001;15:87–95.

    Article  CAS  Google Scholar 

  29. Kopecka H, Brown B, Pallansch M. Genotypic Variation in Coxsackievirus B5 Isolates from Three Different Outbreaks in the United States. Virus Res 1995;38:125–136.

    Article  PubMed  CAS  Google Scholar 

  30. Goldwater PN. Immunoglobulin M Capture Immunoassay in Investigation of Coxsackievirus B5 and B6 Outbreaks in South Australia. J Clin Microbiol 1995;33:1628–1631.

    PubMed  CAS  Google Scholar 

  31. Wu CN, Lin YC, Fann C, et al. Protection Against Lethal Enterovirus 71 Infection in Newborn Mice by Passive Immunization with Subunit VP1 Vaccines and Inactivated Virus. Vaccine 2001;20:895–904.

    Article  PubMed  CAS  Google Scholar 

  32. See DM, Tilles JG. Occurrence of Coxsackievirus Hepatitis in Baby Rabbits and Protection by a Formalin-Inactivated Polyvalent Vaccine. Proc Soc Exp Biol Med 1997;216:52–56.

    PubMed  CAS  Google Scholar 

  33. See DM, Tilles JG. Efficacy of a Polyvalent Inactivated-Virus Vaccine in Protecting Mice from Infection with Clinical Strains of Group B Coxsackieviruses. Scand J Infect Dis 1994;26:739–747.

    Article  PubMed  CAS  Google Scholar 

  34. Fohlman J, Pauksen K, Morein B, et al. High Yield Production of an Inactivated Coxsackie B3 Adjuvant Vaccine with Protective Effect Against Experimental Myocarditis. Scand J Infect Dis Suppl 1993;88:103–108.

    PubMed  CAS  Google Scholar 

  35. Tomko RP, Xu R, Philipson L. HCAR and MCAR: The Human and Mouse Cellular Receptors for Subgroup C Adenoviruses and Group B Coxsackieviruses. Proc Natl Aca. Sci USA 1997;94:3352–3356.

    Article  CAS  Google Scholar 

  36. Bergelson JM, Krithivas A, Celi L, et al. The Murine CAR Homolog is a Receptor for Coxsackie B Viruses and Adenoviruses. J Virol 1998;72:415–419.

    PubMed  CAS  Google Scholar 

  37. Carson SD, Chapman NM, Tracy S. Purification of the Putative Coxsackievirus B Receptor from HeLa Cells. Biochem Biophys Res Commun 1997;233:325–328.

    Article  PubMed  CAS  Google Scholar 

  38. Juhela S, Hyoty H, Uibo R, et al. Comparison of Enterovirus-Specific Cellular Immunity in Two Populations of Young Children Vaccinated with Inactivated or Live PolioVirus Vaccines. Clin Exp Immunol 1999;117:100–105.

    Article  PubMed  CAS  Google Scholar 

  39. Gauntt CJ, Paque RE, Trousdale MD, et al. Temperature-Sensitive Mutant of Coxsackievirus B3 Establishes Resistance in Neonatal Mice that Protects Them During Adolescence Against Coxsackievirus B3-Induced Myocarditis. Infect Immun 1983;39:851–864.

    PubMed  CAS  Google Scholar 

  40. Zhang HY, Yousef GE, Cunningham L, et al. Attenuation of a Reactivated Cardiovirulent Coxsackievirus B3: The 5’-Nontranslated Region Does Not Contain Major Attenuation Determinants. J Med Virol 1993;41:129–137.

    Article  PubMed  CAS  Google Scholar 

  41. Zhang H, Morgan-Capner P, Latif N, et al. Coxsackivirus B3-Induced Myocarditis. Characterization of Stable Attenuated Variants that Protect Against Infection with the Cardiovirulent Wild-Type Strain. Am J Pathol 1997;150:2197–2208.

    PubMed  CAS  Google Scholar 

  42. Cameron-Wilson CL, Pandolfino YA, Zhang HY, et al. Nucleotide Sequence of an Attenuated Mutant of Coxsackievirus B3 Compared with the Cardiovirulent Wildtype: Assessment of Candidate Mutations by Analysis of a Revertant to Cardiovirulence. CoClin Diagn Virol 1998;9:99–105.

    Article  CAS  Google Scholar 

  43. Gauntt CJ, Gomez PT, Duffey PS, et al. Characterization and Myocarditic Capabilities of Coxsackievirus B3 Variants in Selected Mouse Strains. J Virol 1984;52:598–605.

    PubMed  CAS  Google Scholar 

  44. Tu Z, Chapman NM, Hufnagel G, et al. The Cardiovirulent Phenotype of Coxsackievirus B3 is Determined at a Single Site in the Genomic 5’ Nontranslated Region. J Virol. 1995;69:4607–4618.

    PubMed  CAS  Google Scholar 

  45. Chapman NM, Ragland A, Leser JS, et al. A Group B Coxsackievirus/Poliovirus 5’ Nontranslated Region Chimera can Act as an Attenuated Vaccine Strain In Mice. J Virol. 2000;74:4047–4056.

    Article  PubMed  CAS  Google Scholar 

  46. Semler BL, Johnson VH, Tracy S. A Chimeric Plasmid from cDNA Clones of Poliovirus and Coxsackievirus Produces a Recumbant Virus that is Temperature- Sensitive. Proc Natl Acad Sci USA 1986;83:1777–1781.

    Article  PubMed  CAS  Google Scholar 

  47. Zell R, Klingel K, Sauter M, et al. Coxsackieviral Proteins Functionally Recognized the Polioviral Cloverleaf Structure of the 5’-NTR of a Chimeric Enterovirus RNA: Influence of Species-Specific Host Cell Factors on Virus Growth. Virus Res 1995;39:87–103.

    Article  PubMed  CAS  Google Scholar 

  48. Bell YC, Semler BL, Ehrenfeld E. Requirements for RNA Replication of a Poliovirus Replicon by Coxsackievirus B3 RNA Polymerase. J Virol 1999;73:9413–9421.

    PubMed  CAS  Google Scholar 

  49. Henke A, Wagner E, Whitton JL, et al. Protection of Mice Against Lethal Coxsackievirus B3 Infection by using DNA Immunization. J Virol 1998;72:8327–8331.

    PubMed  CAS  Google Scholar 

  50. Henke A, Zell R, Stelzner A. DNA Vaccine-Mediated Immune Responses in Coxsackievirus B3-Infected Mice. Antiviral Res 2001;49:49–54.

    Article  PubMed  CAS  Google Scholar 

  51. Morein B, Sundquist B, Hoglund S, et al. Iscom, a Novel Structure for Antigenic Presentation of Membrane Proteins from Enveloped Viruses. Nature 1984;308:457–460.

    Article  PubMed  CAS  Google Scholar 

  52. Fohlman J, Ilback NG, Friman G, et al. Vaccination of Balb/c Mice Against Enteroviral Mediated Myocarditis. Vaccine 1990;8:381–384.

    Article  PubMed  CAS  Google Scholar 

  53. McKinney RE, Katz SL, Wilfert CM. Chronic Enteroviral Meningoencephalitis in Agammaglobulinemic Patients. Rev Infect Dis 1987;9:334–356.

    Article  PubMed  Google Scholar 

  54. Cho CT, Feng KK, McCarthy VP, et al. Role of Antiviral Antibodies in Resistance Against Coxsackievirus B3 Infection: Interaction Between Preexisting Antibodies and an Interferon Inducer. Infect Immun 1982;37:720–727.

    PubMed  CAS  Google Scholar 

  55. Godney EK, Arizpe HM, Gauntt CJ. Characterization of the Antibody Response in Vaccinated Mice Protected against Coxsackievirus B3-induced myocarditis. Viral Immunol. 1988:1:305–313.

    Article  CAS  Google Scholar 

  56. Minor PD, Ferguson M, Evans DM, et al. Antigenic and Molecular Properties of Type 3 Poliovirus Responsible for an Outbreak of Poliomyelitis in a Vaccinated Population. J Gen Virol 1986;67:1283–1291.

    Article  PubMed  CAS  Google Scholar 

  57. Kanno T, Inoue T, Wang Y, et al. Identification of the Location of Antigenic Sites of Swine Vesicular Disease Virus with Neutralization-Resistant Mutants. J Gen Virol 1995;76:3099–3106.

    Article  PubMed  CAS  Google Scholar 

  58. Nijhar S, Mackay DK, Brocchi E, et al. Identification of Neutralizing Epitopes on a European Strain of Swine Vesicular Disease Virus. J Gen Virol 1999;80:277–282.

    PubMed  CAS  Google Scholar 

  59. Knowles NJ, McCauley JW. Coxsakievirus B5 and the Relationship to Swine Vesicular Disease Virus. Curr Top Microbiol Immunol 1997;223:153–167.

    Article  PubMed  CAS  Google Scholar 

  60. Borrego B, Carra E, Garcia-Ranea JA, et al. Characterization of Neutralization Sites on the Circulating Variant of Swine Vesicular Disease Virus (SVDV): A New Site is Shared by SVDV and the Related Coxsackie B5 Virus. J Gen Virol. 2002;83:35–44.

    PubMed  CAS  Google Scholar 

  61. McPhee F, Zell R, Reimann BY, et al. Characterization of the N-Terminal Part of the Neurtralizing Antigenic Site I of Coxsackievirus B4 by Mutation Analysis of Antigen Chimeras. Virus Res 1994;34:139–151.

    Article  PubMed  CAS  Google Scholar 

  62. Reimann BY, Zell R, Kandolf R. Mapping of a Neutralizing Antigenic Site of Coxsackievirus B4 by Construction of an Antigen Chimera. J Virol 1991;65:3475–3480.

    PubMed  CAS  Google Scholar 

  63. Cunningham MW, Antone SM, Gulizia JM, et al. Cytotoxic and Viral Neutralizing Antibodies Crossreact with Streptococcal M Protein, Enteroviruses, and Human Cardiac Myosin. Natl Acad Sci USA 1992;89:1320–1324.

    Article  CAS  Google Scholar 

  64. Beatrice ST, Katze MG, Zajac BA, et al. Induction of Neutralizing Antibodies by the Coxsackievirus B3 Virion Polypeptide, VP2. Virology 1980;104:426–438.

    Article  PubMed  CAS  Google Scholar 

  65. Pulli T, Lankinen H, Roivainen M, et al. Antigenic Sites of Coxsackievirus A9. Virology 1998;240:202–212.

    Article  PubMed  CAS  Google Scholar 

  66. Haarmann CM, Schwimmbeck PL, Mertens T, et al. Identification of Serotype-Specific and Nonserotype-Specific B-Cell Epitopes of Coxsackie B Virus Using Synthetic Peptides. Virology 1994;200:381–389.

    Article  PubMed  CAS  Google Scholar 

  67. Auvinen P, Makela MJ, Roivainen M, et al. Mapping of Antigenic Sites of Coxsackievirus B3 by Synthetic Peptides. APMIS 1993;101:517–528.

    Article  PubMed  CAS  Google Scholar 

  68. Cello J, Samuelson A, Stalhandske P, et al. Identification of Group-Common Linear Epitopes in Structural and Nonstructural Proteins of Enteroviruses by Using Synthetic Peptides. Clin Microbiol 1993;31:911–916.

    CAS  Google Scholar 

  69. Knowlton KU, Badorff C. The Immune System in Viral Myocarditis: Maintaining the Balance. Circ Res 1999;85:559–561.

    Article  PubMed  CAS  Google Scholar 

  70. Liu P, Penninger J, Aitken K, et al. The Role of Transgenic Knockout Models in Defining the Pathogenesis of Viral Heart Disease. Eur Heart J 1995;16 Suppl 0:25–27.

    Article  PubMed  Google Scholar 

  71. Chow LH., Beisel KW, McManus BM. Enteroviral Infection of Mice with Severe Combined Immunodeficiency. Evidence for Direct Viral Pathogenesis of Myocardial Injury. Lab Invest 1992;66:24–31.

    PubMed  CAS  Google Scholar 

  72. Beck MA, Tracy S, Coller BA, et al. Comoviruses and Enteroviruses Share a T Cell Epitope. Virology 1992;186:238–246.

    Article  PubMed  CAS  Google Scholar 

  73. Marttila J, Juhela S, Vaarala O, et al. Responses of Coxsackievirus B4-Specific T-Cell Lines to 2C Protein-Characterization of Epitopes with Special Reference to the GAD65 Homology Region. Virology 2001;284:131–141.

    Article  PubMed  CAS  Google Scholar 

  74. Leclerc C, Deriaud E, Mimic V, et al. Identification of a T-Cell Epitope Adjacent to Neutralization Antigenic Site 1 of Poliovirus Type 1. J Virol 1991;65:711–718.

    PubMed  CAS  Google Scholar 

  75. Graham S, Wang EC, Jenkins O, et al. Analysis of the Human T-Cell Response to Picornaviruses: Identification of T-Cell Epitopes Close to B-Cell Epitopes in Poliovirus. J Virol 1993;67:1627–1637.

    PubMed  CAS  Google Scholar 

  76. Mahon BP, Katrak K, Mills KH. Antigenic Sequences of Polioviruses Recognized by T Cells: Serotype-Specific Epitopes on VP1 and VP3 and Cross-Reactive Epitopes on VP4 Defined by Using CD4+ T-Cell Clones. J Virol 1992;66:7012–7020.

    PubMed  CAS  Google Scholar 

  77. Marttila J, Hyoty H, Vilja P, et al. T Cell Epitopes in Coxsackievirus B4 Structural Proteins Concentrate in Regions Conserved Between Enteroviruses. Virology 2002;293:217–224.

    Article  PubMed  CAS  Google Scholar 

  78. Cello J, Strannegard O, Svennerholm B. A Study of Cellular Immune Response to Enteroviruses in Humans: Identification of Cross-Reactive T Cell Epitopes on the Structural Proteins of Enteroviruses. J Gen Virol 1996;77:2097–2108.

    Article  PubMed  CAS  Google Scholar 

  79. Atkinson MA, Bowman MA, Campbell L, et al. Cellular Immunity to a Determinant Common to Glutamate Decarboxylase and Coxsackievirus in Insulin-Dependent Diabetes. J Clin Invest 1994;94:2125–2129.

    Article  PubMed  CAS  Google Scholar 

  80. Tian J, Lehmann PV, Kaufman DL. T Cell Cross-Reactivity Between Coxsackievirus and Glutamate Decarboxylase is Associated with a Murine Diabetes Susceptibility Allele. J Exp Med 1994;180:1979–1984.

    Article  PubMed  CAS  Google Scholar 

  81. Willian S, Tracy S, Chapman N, et al. Mutations in a Conserved Enteroviral RNA Oligonucleotide Sequence Affect Positive Strand Viral RNA Synthesis. Arch Virol 2000;145:2061–2086.

    Article  PubMed  CAS  Google Scholar 

  82. Hofling K, Tracy S, Chapman N, et al. Expression of an Antigenic Adenovirus Epitope in a Group B Coxsackievirus. J Virol 2000;74:4570–4578.

    Article  PubMed  CAS  Google Scholar 

  83. Martin AB, Webber S, Fricker FJ, et al. Acute Myocarditis. Rapid Diagnosis by PCR in Children. Circulation 1994;90:330–339.

    Article  PubMed  CAS  Google Scholar 

  84. Feuer R, Mena I, Pagarigan R, et al. Cell Cycle Status Effects Coxsackievirus Replication, Persistence, and Reactivation In Vitro. J Virol 2002;76:4430–4440.

    Article  PubMed  CAS  Google Scholar 

  85. Andino R, Silvera D, Suggett SD, et al. Engineering Poliovirus as a Vaccine Vector for the Expression of Diverse Antigens. Science 1994;265:1448–1451.

    Article  PubMed  CAS  Google Scholar 

  86. Chapman NM, Kim KS, Tracy S, et al. Coxsackievirus Expression of the Murine Secretory Protein Interleukin-4 Induces Increased Synthesis of Immunoglobulin Gl in Mice. J Virol 2000;74:7952–7962.

    Article  PubMed  CAS  Google Scholar 

  87. Mandl S, Sigal LJ, Rock KL, et al. Poliovirus Vaccine Vectors Elicit Antigen-Specific Cytotoxic T Cells and Protect Mice Against Lethal Challenge with Malignant Melanoma Cells Expressing a Model Antigen. Proc Natl Acad Sci USA 1998;95:8216–8221.

    Article  PubMed  CAS  Google Scholar 

  88. Crotty S, Miller CJ, Lohman BL, et al. Protection Against Simian Immunodeficiency Virus Vaginal Challenge by Using Sabin Poliovirus Vectors. J Virol 2001;75:7435–7452.

    Article  PubMed  CAS  Google Scholar 

  89. Dowdle WR, Featherstone DA, Birmingham ME, et al. Poliomyelitis Eradication. Virus Res 1999;62:185–192.

    Article  PubMed  CAS  Google Scholar 

  90. Halim SS, Ostrowski SE, Lee WT, et al. Immunogenicity of a Foreign Peptide Expressed within a Capsid Protein of an Attenuated Coxsackievirus. Vaccine 2000;19:958–96.

    Article  PubMed  CAS  Google Scholar 

  91. Slifka MK, Pagarigan R, Mena I, et al. Using Recombinant Coxsackievirus B3 to Evaluate the Induction and Protective Efficacy of CD8+ T Cells During Picornavirus Infection. J Virol 2001;75:2377–2387.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chapman, N.M., Kim, KS., Tracy, S. (2003). The Group B Coxsackieviruses as Vaccines and Vectors. In: Matsumori, A. (eds) Cardiomyopathies and Heart Failure. Developments in Cardiovascular Medicine, vol 248. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9264-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9264-2_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4865-8

  • Online ISBN: 978-1-4419-9264-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics